Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2020

On third-order h-Jacobsthal and third-order
h-Jacobsthal-Lucas sequences, and related
quaternions

Gamaliel Cerda-Morales

Abstract. In this paper, inspired by recent articles of G. Anatriello and
G. Vincenzi (see [1]), and G. Cerda-Morales (see [3, 4]), we will intro-
duce the third-order h-Jacobsthal and third-order h-Jacobsthal-Lucas
sequences and their associated quaternions. The new results that we
have obtained extend most of those obtained in [4].
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1. Introduction

The quaternions are objects introduced by Hamilton order to attempt a defi-
nition of coordinate system different from cartesian one. Hamilton idea’s had
a great success by his contemporary scientist, and in particular it had a strong
application in physics. Actually, after a period of shadow, they have been re-
cently considered in different branches of mathematics (see for example [10]
and reference therein), and many researches are devoted to them.

The set of real quaternions is denoted by H and a quaternion number
appears in the form ¢ = go 4+ q17+ ¢2J + g3k, where ¢; € R (1 =0,1,2,3). The
basic rules is given by

i =j% =k* =ijk=—1. (1.1)

For an introduction to quaternions theory see [11] (see also the intro-
duction of [4] for basic rules).
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In 1963, A. F. Horadam [9] had the idea to investigate special quater-
nion numbers. Precisely, the Fibonacci quaternions @Q,,, that are quaternions
of the form @, = F, + iF,41 + jFnt2 + kFy,y3, where F), is the n-th Fi-
bonacci number. Following him other authors had investigated other kind of
quaternions, and many interesting properties of Fibonacci and generalized
Fibonacci quaternions had ben obtained (see [7, 8] and reference therein).

Recently, in [3] and [4] the author starting from third-order Jacobsthal
sequence {J7(l3)}n20 and third-order Jacobsthal-Lucas sequence {j,(f)}nzo

{ I =0, 1Y =uP =1 { iV =2 =1, =5

1.2
Y/ Y IR N

considered the third-order Jacobsthal quaternions and third-order Jacobsthal—
Lucas quaternions, obtaining properties and matrix representation of such
numbers.

As the author had highlighted in [3], the numbers of Tribonacci type
have many applications in distinct area of mathematics (see also [2] and ref-
erence therein). Therefore, it seems a natural question to investigate quater-
nions connected to either a Tribonacci-like sequence or more generally, to a
whichever recursive sequence of third order; but it seems not easy to develop
a general theory for quaternions connected to a whichever sequence too much
different from Tribonacci sequence.

In this paper, in order to attempt to this kind of investigation, we re-
strict our attention to quaternions connected to generalizations of third-order
Jacobsthal sequences and third-order Jacobsthal-Lucas sequence (see Eq.

(1.4)).

Let h be a complex number, we will define third-order h-Jacobsthal
sequence {J, }(ngz}nzo and third-order h-Jacobsthal-Lucas sequence {j }(«ngL}nZO
the homogenous recursive sequences of third order with constant coefficients,

whose characteristic polynomial is
23— (h—1a? —(h—1z—h=(x—h)(z*+z+1), (1.3)
and initial conditions are 0, 1, 1 and 2, 1, 5 respectively:

B =0, 1 =1, J%) =h -1
Thn = (b= D5+ (= D5+ b

\n ,n—37

=2 =, g o
Jin = (=10 + (= 10y + bl .

Note that when h = 2, we have the quoted third-order Jacobsthal se-
quence and third-order Jacobsthal-Lucas sequence. Taking the paper of G.
Cerda-Morales as model we will extend most of the results showed in [3]
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to third-order h-Jacobsthal quaternions and third-order h-Jacobsthal-Lucas

quaternions.

2. Basic Properties

In [6], the authors provided many basic identities for third-order Jacobsthal
numbers, {J'r(13)}nZOa and third-order Jacobsthal-Lucas numbers, {j,(f)}nzo
(see also [5] and reference therein):

3JP) 443 = ontl] (2.1)
i =3I =25V, (2:2)
-2 if n=1 (mod 3)

J(3) —4JB) = , 2.3
n+2 n 1 if n#1 (mod 3) (2:3)
2 if n=0 (mod 3)

i@ —4g® = 3 if n=1 (mod3) , (24)
1 if n=2 (mod 3)

IS+ 3P = 3350, 25)
1 if n=0 (mod 3)
- Jr(jb =q¢ -1 if n=1 (mod3) , (2.6)
0 if n=2 (mod 3)
2
(3825) + 384245 = 4, (27)
ijlgs) _ { (‘3])7(521 if n#0 (mod 3) (2.8)
prt Jol1—1 if n=0 (mod 3)
) =2 i m#0 (mod 3) (2.9)
i i 41 if n=0 (mod 3)
and 5 9
(399) =0 () =222 (210)

Using standard techniques for solving recurrence relations, the auxiliary
equation, and its roots are given by

22— —2—-2=0;2=2, and z =

—1+iV3
—s

Note that the latter two are the complex conjugate cube roots of unity.
Call them w; and ws, respectively. Thus the Binet formulas can be written

JB® = ; Jon <3+2“/§> W — (3_2’\/§> W (2.11)

as

21 21
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and
8 3+ 2iv3 3—2iv3
i® = = on 4 <+7“[> Wl + (7“[> Wy, (2.12)

respectively.

Remark 2.1. We note that when h = w; or h = ws, then the characteristic
polynomial has the unique roots wy and wy (with multiplicity 2 one of them).
In this case the sequences {J}S?T)L}HZO and {j}(jzl}nzo are both geometric and
their study can be considered trivial.

Let h # w1,ws be a complex number. In order to extend similar prop-
erties to third-order h-Jacobsthal and third-order h-Jacobsthal-Lucas se-
quences we will provide the Binet’s formula for these sequences.

Lemma 2.2 (Binet’s Formula). Let h # wq,ws be a compleac number, and
let {J}(l Ynso be the third-order h-Jacobsthal sequence and {_]h n}">0 be the

third-order h-Jacobsthal-Lucas sequence. Then the Binet’s formulas reads:

1 h— h—
T == [h"“ - <w2 > wit! 4+ <w1 ) wg“] (2.13)
’ op w1 — W2 W1 — W2
and
h— h—
T [(h2 +h+2)h" + (h+1) (( i ) Wit — (wl ) wg“ﬂ ,
’ O'h w1 — w2 W1 — W2
(2.14)

where o, = h? + h + 1.

Proof. The characteristic polynomial of both the sequences {J;E?%}nzo and
{j;(le}nzo is (x—h)(z? + 2 +1), and by hypothesis it has three distinct roots,
namely wy, wo and h. It follows that there exist suitable a1, as, as, by, bs,
bz € C such that the Binet’s formula for {J}(Lil}nz() and {j;(le}nzo is of the
type:

J(3) = a1h" + aw + aswy, j}(”)l = b1h" + baw( + b3wy.
In particular, using the initial conditions we have the relations:

J}(L?’(% =a1h® + agw? + agwg =0

J(g) = a1h! + agwi + azwi =1

J}(Lg% = a1h? + asw? + azws = h —1

and
323()) = b1hY + bow? + bzwd = 2
gff’{ = byh! + bow! + bswl = h — 1
]h2 = b1h2 + bgwl + b3w2 =h*+1
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Thus we have the following systems

a1 +as+az3 =0 by +by+b3 =2
arh + aswi + asws =1 and b1h + bawy + bzws = h — 1 ,
arh? + agw} + asw3 = h—1 bi1h? + bow? + byw? = h? + 1
whose solutions are:
h w2 w1
M U T T o) —w) T (h—w2)(wr — wo)
and
h*+h+2 wa(h+1) wi(h+1)
bp=————, by = by = —

R+h+1 2 (h—w)(w —ws)’ (h —wo)(w; —wa)’

O

Remark 2.3. We highlight that when h = 2 the above Binet’s formulas (2.13)
and (2.14) give the Binet’s formula of the third-order Jacobsthal sequence

{JT(LS)}n>O'
B =000 =1,0 =1, =2, =55 =9,...

and third-order Jacobsthal-Lucas sequence { s }nzo'

(3)_2 ](3) (3) =5, ](3) 10, ]( ) —17, Jé)—37,'“
Precisely, the Binet’s formulas for Jy ) and ]( ) are:
1 2wy + 3 2w + 3
J(S) J( ) gn+1 n _ n 2.15
n 20 T 7 + W1 — wg Wy W1 — wo ) ( )

and

1 2 3 2 3
(3)_j£37)l:7[2n+3_3<w2+ )w?+3<m+ )w?] (2.16)

W1 — W2 W1 — W2

(see [6, Eq. (3.1)])

For simplicity of notation, we define
h—w h—w
Zn = <2) wptt - (1> wytt, (2.17)
W1 — W2 w1 — W2
Next result show that each term of {Zj, ,}n>0 has one more represen-
tation. It will be useful for proving condition of the Lemma 2.5.

Corollary 2.4. Let h # wy,ws be a complex number, and let {Zp n}n>0 as in
Eq. (2.17). Then the following identities hold:

Zan + Zhnt1 + Znpye =0, (2.18)
h if n=0 (mod 3)
Zhn = —(h+1) if n=1 (mod3) . (2.19)

1 if n=2 (mod 3)
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Proof. (2.18): Using the Eq. (2.17), we obtain

h—WQ

Zpn + Zhnt1 + Lhnt2 = ( ) Wit (1 4wy + w?)

W1 — W2

h—
- ( t )wé‘“(l + wy + w3)

W1 — w2

=0.
(2.19): Using the Eq. (2.17), wiws = 1 and wy + wy = —1. Then,

h — w2 h — w1
Zhin = Wit = —— Jwp ™
W1 — w2 W1 — w2

_ W?H WSH Wi —wy
W1 — w2 w1 — w2

)

) -

)

h if n=0 (mod 3
=¢ —(h+1) if n=1 (mod3

1 if n=2 (mod 3
d
Then, using Corollary 2.4 we can write
I = ﬁ [+ = Z ] (2.20)
and
i® = ﬁ (0% + b+ 0"+ (h+ 1) Zn0] (2.21)

The next Lemma shows that similar properties to (2.1)—(2.10) also hold
for third-order h-Jacobsthal and third-order h-Jacobsthal-Lucas sequences:

Lemma 2.5. Let h # wi,ws be a complex number, and let {J}(L tn>0 be the

third-order h-Jacobsthal sequence and {Jh,n}n20 be the h-Jacobsthal-Lucas
sequence. Then the following identities hold:

(h+ 1) + 332 = 2h", (2.22)
h—1 if n=0 (mod 3)
I o=k =8 —hif n=1 (mod3) , (2.23)
1 if n=2 (mod 3)
(ot DI s = ionss = dion = (h = 2)(h+ 1), (2.24)
1 4 n=0 (mod 3)
G = I8 L+ (h=2)h" =4 —1 if n=1 (mod3) , (2.25)

0 i n=2 (mod 3)
B — B2+ (h = 2)h" = Zy o, (2.26)
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(],33;) —(h+1)? (J,f’fl) = an" (350, = ). (2.27)

J J}(L 1 T Ji537)1+2 R, (2.28)

3 I = 3(h1_ 3 [0 = (=200 +h = 1] AL (229)

=0

Proof. By Egs. (2.18), (2.19), (2.20) and (2.21), we have
(2.22):

]' n
(h+ D00+ i = g LB DI = (1) 2]

1
+h2+h+1

1 n n

[(B? + h+2)h" + (h +1)Z ]

(2.23):

3) 2 ,(3) _ 1
Tnnse =W =
1

R+ h+1
1

Ryl
h—1 if n=0 (mod 3)

= —h if n=1 (mod 3)
1 if n=2 (mod 3)

(R H3 — Z)y o]
(% A" + W2 Z), ]

Zh,n+1 + (h2 + 1)Zh,n]

(2.24):

3 3 3
(h+ 1)‘]}(1 7)L+2 _Ji(z 7)14—1 _J;(LL

1
=i hel [(h+1DR" 3 — (h+ 1) Zp 2]
_ 1
h24+h+1
v
h24+h+1
1 n
= (h—2)(h+ 1)h"

[(h? + b+ 2)" T 4 (h+ 1) Zp 1]

[(h? + B4+ 2B + (h+1)Zp.)
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(2.25):

Ghon = Tyt (h = 2) 1"
1

TRt h+1
1

CR24+h+1
1

+h2+h+1
1
=5 1)Z 7
h2+h—|—]_[(h+ ) h,n"’ h,n+2]
1 if n=0 (mod 3)
=¢ -1 if n=1 (mod 3)
0 if n=2 (mod 3)

[(R? +h+2)h" + (h+ 1) Zp ]
[hn+3 _ Zh,n+2]

[(W*+h+1)(h—2)]n"

(2.26):
(3) 2 1(3) n_ 1 2 n
1 2 “+1 2
h2 +h+1 [*- A W2
1
— (=22 +h+1] A"
T hg (DR )
=Zhn-

(2.27):
(1) = e 12 (22) = (32 = 0 032 (60 + 0 1)
=2 (i — ) - 2nn

= an™ (352, = ).

(2.28):
3, 13 3 _ 1 n+1
Jpn t Tiner T Ihnge = RErhel [R" T — Z), ]

1 n+2

Twrnrr M el
1 3

T [ = Zhne]

1 n
= mThRTl [R" TN (R® + h+ 1))

— hn+1
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(2.29)
~ @) _ - ~ ) ~ )
3 3 3
ZJh,l Z‘Ihl 1T _1)Z‘Ih,l72+h2‘]h,l73
1=0 1=3 1=3 1=3
= (3h —2) Z T+ 1= (3h—2)J0) — (2h—1)J) | g,
1=0
Then, we obtain
Z T8 = 1) |81 =2)7) + @k = ) + bS5 1]
1 (3) (3) (3)
= 36-D [0+ @h =), + R 1]
1 3) 3) (3)
= m [']h n+2 (h_Q)Jthrl +h‘]hn } :

3. The third-order h-Jacobsthal and third-order
h-Jacobsthal-Lucas Quaternions

Let h be a real number. Following [3], we define the n-th third-order h-

Jacobsthal quaternion {.J Qi’;}nzo and the n-th third-order h-Jacobsthal-

Lucas quaternion {j Qégl}nzo as

I = J‘3> R SUEED N ¥

3
JQh n= Jh n T w;ﬁ ) o i g2 T kﬂh 3

(3.1)

Ezample. If we put h = 2 in the Eqns. (3.1), we have the third-order Jacob-
stal quaternions sequence {J Q%S)}nzo and the third-order Jacobstal-Lucas
quaternions sequence { jQS)}nzo studied in [3]:

JQW =i+ j+2k

JQWP =1+4i+2j+5k
JQY) =1+2i+5j+9%k
JQY) =24 5i 495 + 18k

The following result extends [3], next theorem just replacing h = 2.
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Theorem 3.1. Let h be a real number, and let {JQS:L},LZO be the third-order

h-Jacobsthal and {jQS:Zl}nZO be the third-order h-Jacobsthal —~Lucas quater-
nions sequence. Then, for every positive integer n, we have:

JQY +JQY L+ JQ) = h YL+ hi+ %) + hPk), (3.2)
(h+1)JQ +3Q = 2h"(1 + hi + h*j + k%K), (3.3)

h—1—hi+j+(h—1k i n=0 (mod 3)

T 1o~ 12IQY =S —h+i+t(h—1)j—hk if n=1 (mod 3)
1+(h—-1)3i—hj+k if n=2 (mod3)

(3.4)

(h+1)JQE) L, —iQ) L =i = (h=2)(h+1)h" (1+hi+h*j+hk). (3.5)

Proof. (3.2): By definition, we have

3 3 3 3 3 3
JQ;,EL + JQ;L,ZLH + JQEL 3L+1 = Ji(b ) Ji(L 7)z+1 Jf(b 7)z+1

3 3 3
+i(Thoni T Thomsa + Tionys)

3 (3
+J(J}(L nye T J( )+3 + Jh 7)L+4)

(3 3 3)
+k(<]h 7)L+3 J}(l T)L+4 Jf(L n45)-

Using the property (2.28) in Lemma 2.5, we have

JQY, +JQY  + Q) | = W it g T g gt
= h" (1 + hi + h%5 + h3k).

(h+1)JQY, + Q) = (h+1)J5) + i)
+il(h+ 1) I hss + )
((h+1)Jf(7.3’r)L+2+]}(13’21+2)
+ R((h+ D)5 s+ 380 ys).

Using the property (2.22) in Lemma 2.5, we have

(h+1)JQY, +jQY, = 2h™ + 2ih"+ 4 21" +2 4 2kR"+
= 2h"™(1 + hi + h?%j + h’k).
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(3.3):
JQh n+2 —h? JQS:) Ji(LBr)L+2 h? J;S‘D’Z

il — W)
+ J(Jh ntd hQJi(ng)z+2)
R s — B2 ).

Using the property (2.23) in Lemma 2.5 and n = 0(mod 3), we have

JQY o —h2IQY), = h— 1+i(~h) + j(1) + k(h — 1).
Finally, we obtain

h—1—hi+j+ (h—1k if n=0 (mod 3)
JQY o~ QY =S —h+i+(h—1)j—hk if n=1 (mod 3)
1+ (h—1)i—hj+k if n=2 (mod3)

(3.4): By definition, we have
(h+ 1)‘]Qh 42 JQh 1l T J'ng = (h+ 1)Jh3r)L+2 - Ji(133L+1 - -7}(137)1
+i((h + 1)Ji(LBr)L+3 - -7}(137)z+2 Ji(zgzﬂrl)
+j((h+ 1)J}(z37)1+4 - ‘7}(137)1-"-3 3}237)1+2)
+ k((h + 1)Jh37)L+5 jl(zgzt+4 -]i(z ’I)’L+3)'
Using the property (2.24) in Lemma 2.5, we have
(h+1)JQR, o = Qi — JQhn = (A= 2)(h + A"
+i((h —2)(h+ 1))
+j((h—2)(h + 1)h"2)
E((h —2)(h + 1)R"3)
= (h—2)(h + 1)R"(1 + hi + h%j + h3k).
Then, the result is obtained. O

In addition, some formulae involving sums of terms of the third-order
h-Jacobsthal quaternion sequence will be provided in the following theorem.

Theorem 3.2. Let h € R — {1}. For a natural numbers m, n, with n > m,
if JQELSL is the n-th third-order h-Jacobsthal quaternion, then the following
identities are true:

n 3)
J (3) — 1 JQh n+1 + (2h )JQ + hJQ ) 36
; i 3(h—1) { —JQP) + (2h - 3).]@,1)1 (h— 2)JQh)0 (36)
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Proof. Using Egs. (1.4) and (3.1), we obtain
n
Z Jth = Jthzn +']th+1 +Jth+2 + Z JQ;EZ

l=m+3
= JQ;on + JQh ,m+1 + JQh ,m+2

h—1) Z JQ) + (h—1) Z JQ¢ +hZJQ)

l=m+2 l=m+1
=(3h-2)Y JQ
l=m
+JQY s~ (2h—3)JQY . — (h—2)JQ5)
- (3h - 2)JQh,n ( )JQh n—1 hJQh n—2

=(3h-2))_JQ

0
3

Qs — 2h=3)IQ0, L — (h—2)JQL),
JthH (h_l)JQh, hJth 1
Then, the result in Eq. (3.6) is completed if m = 0. O

4. Conclusion

Sequences of quaternions have been studied over several years, including the
well-known Tribonacci quaternion sequence [4] and, consequently, on the
third-order Jacobsthal quaternion sequence [3]. In this paper we have also
contributed for the study of third-order h-Jacobsthal quaternion, deducing
some formulae for the sums of such numbers, presenting their Binet-style
formula. It is our intention to continue the study of this type of sequences,
exploring some their applications in the science domain. For example, a new
type of sequences in the octonion algebra with the use of these numbers and
their combinatorial properties.
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