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Abstract. In this paper, inspired by recent articles of G. Anatriello and

G. Vincenzi (see [1]), and G. Cerda-Morales (see [3, 4]), we will intro-

duce the third-order h-Jacobsthal and third-order h-Jacobsthal–Lucas

sequences and their associated quaternions. The new results that we

have obtained extend most of those obtained in [4].
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1. Introduction

The quaternions are objects introduced by Hamilton order to attempt a defi-

nition of coordinate system different from cartesian one. Hamilton idea’s had

a great success by his contemporary scientist, and in particular it had a strong

application in physics. Actually, after a period of shadow, they have been re-

cently considered in different branches of mathematics (see for example [10]

and reference therein), and many researches are devoted to them.

The set of real quaternions is denoted by H and a quaternion number

appears in the form q = q0 + q1i+ q2j+ q3k, where ql ∈ R (l = 0, 1, 2, 3). The

basic rules is given by

i2 = j2 = k2 = ijk = −1. (1.1)

For an introduction to quaternions theory see [11] (see also the intro-

duction of [4] for basic rules).
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In 1963, A. F. Horadam [9] had the idea to investigate special quater-

nion numbers. Precisely, the Fibonacci quaternions Qn, that are quaternions

of the form Qn = Fn + iFn+1 + jFn+2 + kFn+3, where Fn is the n-th Fi-

bonacci number. Following him other authors had investigated other kind of

quaternions, and many interesting properties of Fibonacci and generalized

Fibonacci quaternions had ben obtained (see [7, 8] and reference therein).

Recently, in [3] and [4] the author starting from third-order Jacobsthal

sequence {J (3)
n }n≥0 and third-order Jacobsthal–Lucas sequence {j(3)n }n≥0{

J
(3)
0 = 0, J

(3)
1 = J

(3)
2 = 1

J
(3)
n = J

(3)
n−1 + J

(3)
n−2 + 2J

(3)
n−3,

{
j
(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5

j
(3)
n = j

(3)
n−1 + j

(3)
n−2 + 2j

(3)
n−3,

(1.2)

considered the third-order Jacobsthal quaternions and third-order Jacobsthal–

Lucas quaternions, obtaining properties and matrix representation of such

numbers.

As the author had highlighted in [3], the numbers of Tribonacci type

have many applications in distinct area of mathematics (see also [2] and ref-

erence therein). Therefore, it seems a natural question to investigate quater-

nions connected to either a Tribonacci-like sequence or more generally, to a

whichever recursive sequence of third order; but it seems not easy to develop

a general theory for quaternions connected to a whichever sequence too much

different from Tribonacci sequence.

In this paper, in order to attempt to this kind of investigation, we re-

strict our attention to quaternions connected to generalizations of third-order

Jacobsthal sequences and third-order Jacobsthal–Lucas sequence (see Eq.

(1.4)).

Let h be a complex number, we will define third-order h-Jacobsthal

sequence {J (3)
h,n}n≥0 and third-order h-Jacobsthal–Lucas sequence {j(3)h,n}n≥0

the homogenous recursive sequences of third order with constant coefficients,

whose characteristic polynomial is

x3 − (h− 1)x2 − (h− 1)x− h = (x− h)(x2 + x+ 1), (1.3)

and initial conditions are 0, 1, 1 and 2, 1, 5 respectively:{
J
(3)
h,0 = 0, J

(3)
h,1 = 1, J

(3)
h,2 = h− 1

J
(3)
h,n = (h− 1)J

(3)
h,n−1 + (h− 1)J

(3)
h,n−2 + hJ

(3)
h,n−3,{

j
(3)
h,0 = 2, j

(3)
h,1 = h− 1, j

(3)
h,2 = h2 + 1

j
(3)
h,n = (h− 1)j

(3)
h,n−1 + (h− 1)j

(3)
h,n−2 + hj

(3)
h,n−3.

(1.4)

Note that when h = 2, we have the quoted third-order Jacobsthal se-

quence and third-order Jacobsthal–Lucas sequence. Taking the paper of G.

Cerda-Morales as model we will extend most of the results showed in [3]
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On third-order h-Jacobsthal quaternion 3

to third-order h-Jacobsthal quaternions and third-order h-Jacobsthal–Lucas

quaternions.

2. Basic Properties

In [6], the authors provided many basic identities for third-order Jacobsthal

numbers, {J (3)
n }n≥0, and third-order Jacobsthal–Lucas numbers, {j(3)n }n≥0

(see also [5] and reference therein):

3J (3)
n + j(3)n = 2n+1, (2.1)

j(3)n − 3J (3)
n = 2j

(3)
n−3, (2.2)

J
(3)
n+2 − 4J (3)

n =

{
−2 if n ≡ 1 (mod 3)

1 if n 6≡ 1 (mod 3)
, (2.3)

j(3)n − 4J (3)
n =


2 if n ≡ 0 (mod 3)

−3 if n ≡ 1 (mod 3)

1 if n ≡ 2 (mod 3)

, (2.4)

j
(3)
n+1 + j(3)n = 3J

(3)
n+2, (2.5)

j(3)n − J (3)
n+2 =


1 if n ≡ 0 (mod 3)

−1 if n ≡ 1 (mod 3)

0 if n ≡ 2 (mod 3)

, (2.6)

(
j
(3)
n−3

)2
+ 3J (3)

n j(3)n = 4n, (2.7)

n∑
k=0

J
(3)
k =

{
J
(3)
n+1 if n 6≡ 0 (mod 3)

J
(3)
n+1 − 1 if n ≡ 0 (mod 3)

, (2.8)

n∑
k=0

j
(3)
k =

{
j
(3)
n+1 − 2 if n 6≡ 0 (mod 3)

j
(3)
n+1 + 1 if n ≡ 0 (mod 3)

(2.9)

and (
j(3)n

)2
− 9

(
J (3)
n

)2
= 2n+2j

(3)
n−3. (2.10)

Using standard techniques for solving recurrence relations, the auxiliary

equation, and its roots are given by

x3 − x2 − x− 2 = 0; x = 2, and x =
−1± i

√
3

2
.

Note that the latter two are the complex conjugate cube roots of unity.

Call them ω1 and ω2, respectively. Thus the Binet formulas can be written

as

J (3)
n =

2

7
· 2n −

(
3 + 2i

√
3

21

)
ωn
1 −

(
3− 2i

√
3

21

)
ωn
2 (2.11)
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and

j(3)n =
8

7
· 2n +

(
3 + 2i

√
3

7

)
ωn
1 +

(
3− 2i

√
3

7

)
ωn
2 , (2.12)

respectively.

Remark 2.1. We note that when h = ω1 or h = ω2, then the characteristic

polynomial has the unique roots ω1 and ω2 (with multiplicity 2 one of them).

In this case the sequences {J (3)
h,n}n≥0 and {j(3)h,n}n≥0 are both geometric and

their study can be considered trivial.

Let h 6= ω1, ω2 be a complex number. In order to extend similar prop-

erties to third-order h-Jacobsthal and third-order h-Jacobsthal–Lucas se-

quences we will provide the Binet’s formula for these sequences.

Lemma 2.2 (Binet’s Formula). Let h 6= ω1, ω2 be a complex number, and

let {J (3)
h,n}n≥0 be the third-order h-Jacobsthal sequence and {j(3)h,n}n≥0 be the

third-order h-Jacobsthal–Lucas sequence. Then the Binet’s formulas reads:

J
(3)
h,n =

1

σh

[
hn+1 −

(
h− ω2

ω1 − ω2

)
ωn+1
1 +

(
h− ω1

ω1 − ω2

)
ωn+1
2

]
(2.13)

and

j
(3)
h,n =

1

σh

[
(h2 + h+ 2)hn + (h+ 1)

((
h− ω2

ω1 − ω2

)
ωn+1
1 −

(
h− ω1

ω1 − ω2

)
ωn+1
2

)]
,

(2.14)

where σh = h2 + h+ 1.

Proof. The characteristic polynomial of both the sequences {J (3)
h,n}n≥0 and

{j(3)h,n}n≥0 is (x−h)(x2 +x+1), and by hypothesis it has three distinct roots,

namely ω1, ω2 and h. It follows that there exist suitable a1, a2, a3, b1, b2,

b3 ∈ C such that the Binet’s formula for {J (3)
h,n}n≥0 and {j(3)h,n}n≥0 is of the

type:

J
(3)
h,n = a1h

n + a2ω
n
1 + a3ω

n
2 , j

(3)
h,n = b1h

n + b2ω
n
1 + b3ω

n
2 .

In particular, using the initial conditions we have the relations:
J
(3)
h,0 = a1h

0 + a2ω
0
1 + a3ω

0
2 = 0

J
(3)
h,1 = a1h

1 + a2ω
1
1 + a3ω

1
2 = 1

J
(3)
h,2 = a1h

2 + a2ω
2
1 + a3ω

2
2 = h− 1

and 
j
(3)
h,0 = b1h

0 + b2ω
0
1 + b3ω

0
2 = 2

j
(3)
h,1 = b1h

1 + b2ω
1
1 + b3ω

1
2 = h− 1

j
(3)
h,2 = b1h

2 + b2ω
2
1 + b3ω

2
2 = h2 + 1

.
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Thus we have the following systems
a1 + a2 + a3 = 0

a1h+ a2ω1 + a3ω2 = 1

a1h
2 + a2ω

2
1 + a3ω

2
2 = h− 1

and


b1 + b2 + b3 = 2

b1h+ b2ω1 + b3ω2 = h− 1

b1h
2 + b2ω

2
1 + b3ω

2
2 = h2 + 1

,

whose solutions are:

a1 =
h

h2 + h+ 1
, a2 = − ω2

(h− ω1)(ω1 − ω2)
, a3 =

ω1

(h− ω2)(ω1 − ω2)

and

b1 =
h2 + h+ 2

h2 + h+ 1
, b2 =

ω2(h+ 1)

(h− ω1)(ω1 − ω2)
, b3 = − ω1(h+ 1)

(h− ω2)(ω1 − ω2)
.

�

Remark 2.3. We highlight that when h = 2 the above Binet’s formulas (2.13)

and (2.14) give the Binet’s formula of the third-order Jacobsthal sequence

{J (3)
n }n≥0:

J
(3)
0 = 0, J

(3)
1 = 1, J

(3)
2 = 1, J

(3)
3 = 2, J

(3)
4 = 5, J

(3)
5 = 9, · · ·

and third-order Jacobsthal–Lucas sequence {j(3)n }n≥0:

j
(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5, j

(3)
3 = 10, j

(3)
4 = 17, j

(3)
5 = 37, · · · .

Precisely, the Binet’s formulas for J
(3)
n and j

(3)
n are:

J (3)
n = J

(3)
2,n =

1

7

[
2n+1 +

(
2ω2 + 3

ω1 − ω2

)
ωn
1 −

(
2ω1 + 3

ω1 − ω2

)
ωn
2

]
(2.15)

and

j(3)n = j
(3)
2,n =

1

7

[
2n+3 − 3

(
2ω2 + 3

ω1 − ω2

)
ωn
1 + 3

(
2ω1 + 3

ω1 − ω2

)
ωn
2

]
. (2.16)

(see [6, Eq. (3.1)])

For simplicity of notation, we define

Zh,n =

(
h− ω2

ω1 − ω2

)
ωn+1
1 −

(
h− ω1

ω1 − ω2

)
ωn+1
2 . (2.17)

Next result show that each term of {Zh,n}n≥0 has one more represen-

tation. It will be useful for proving condition of the Lemma 2.5.

Corollary 2.4. Let h 6= ω1, ω2 be a complex number, and let {Zh,n}n≥0 as in

Eq. (2.17). Then the following identities hold:

Zh,n + Zh,n+1 + Zh,n+2 = 0, (2.18)

Zh,n =


h if n ≡ 0 (mod 3)

−(h+ 1) if n ≡ 1 (mod 3)

1 if n ≡ 2 (mod 3)

. (2.19)
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Proof. (2.18): Using the Eq. (2.17), we obtain

Zh,n + Zh,n+1 + Zh,n+2 =

(
h− ω2

ω1 − ω2

)
ωn+1
1 (1 + ω1 + ω2

1)

−
(
h− ω1

ω1 − ω2

)
ωn+1
2 (1 + ω2 + ω2

2)

= 0.

(2.19): Using the Eq. (2.17), ω1ω2 = 1 and ω1 + ω2 = −1. Then,

Zh,n =

(
h− ω2

ω1 − ω2

)
ωn+1
1 −

(
h− ω1

ω1 − ω2

)
ωn+1
2

= h

(
ωn+1
1 − ωn+1

2

ω1 − ω2

)
−
(
ωn
1 − ωn

2

ω1 − ω2

)

=


h if n ≡ 0 (mod 3)

−(h+ 1) if n ≡ 1 (mod 3)

1 if n ≡ 2 (mod 3)

.

�

Then, using Corollary 2.4 we can write

J
(3)
h,n =

1

h2 + h+ 1

[
hn+1 − Zh,n

]
(2.20)

and

j
(3)
h,n =

1

h2 + h+ 1

[
(h2 + h+ 2)hn + (h+ 1)Zh,n

]
. (2.21)

The next Lemma shows that similar properties to (2.1)–(2.10) also hold

for third-order h-Jacobsthal and third-order h-Jacobsthal–Lucas sequences:

Lemma 2.5. Let h 6= ω1, ω2 be a complex number, and let {J (3)
h,n}n≥0 be the

third-order h-Jacobsthal sequence and {j(3)h,n}n≥0 be the h-Jacobsthal–Lucas

sequence. Then the following identities hold:

(h+ 1)J
(3)
h,n + j

(3)
h,n = 2hn, (2.22)

J
(3)
h,n+2 − h

2J
(3)
h,n =


h− 1 if n ≡ 0 (mod 3)

−h if n ≡ 1 (mod 3)

1 if n ≡ 2 (mod 3)

, (2.23)

(h+ 1)J
(3)
h,n+2 − j

(3)
h,n+1 − j

(3)
h,n = (h− 2)(h+ 1)hn, (2.24)

j
(3)
h,n − J

(3)
h,n+2 + (h− 2)hn =


1 if n ≡ 0 (mod 3)

−1 if n ≡ 1 (mod 3)

0 if n ≡ 2 (mod 3)

, (2.25)

j
(3)
h,n − h

2J
(3)
h,n + (h− 2)hn = Zh,n, (2.26)
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On third-order h-Jacobsthal quaternion 7(
j
(3)
h,n

)2
− (h+ 1)2

(
J
(3)
h,n

)2
= 4hn

(
j
(3)
h,n − h

n
)
, (2.27)

J
(3)
h,n + J

(3)
h,n+1 + J

(3)
h,n+2 = hn+1, (2.28)

n∑
l=0

J
(3)
h,l =

1

3(h− 1)

[
J
(3)
h,n+2 − (h− 2)J

(3)
h,n+1 + hJ

(3)
h,n − 1

]
, h 6= 1. (2.29)

Proof. By Eqs. (2.18), (2.19), (2.20) and (2.21), we have

(2.22):

(h+ 1)J
(3)
h,n + j

(3)
h,n =

1

h2 + h+ 1

[
(h+ 1)hn+1 − (h+ 1)Zh,n

]
+

1

h2 + h+ 1

[
(h2 + h+ 2)hn + (h+ 1)Zh,n

]
=

1

h2 + h+ 1

[
2(h2 + h+ 1)hn

]
= 2hn.

(2.23):

J
(3)
h,n+2 − h

2J
(3)
h,n =

1

h2 + h+ 1

[
hn+3 − Zh,n+2

]
− 1

h2 + h+ 1

[
h2 · hn + h2Zh,n

]
=

1

h2 + h+ 1

[
Zh,n+1 + (h2 + 1)Zh,n

]
=


h− 1 if n ≡ 0 (mod 3)

−h if n ≡ 1 (mod 3)

1 if n ≡ 2 (mod 3)

.

(2.24):

(h+ 1)J
(3)
h,n+2 − j

(3)
h,n+1 − j

(3)
h,n

=
1

h2 + h+ 1

[
(h+ 1)hn+3 − (h+ 1)Zh,n+2

]
− 1

h2 + h+ 1

[
(h2 + h+ 2)hn+1 + (h+ 1)Zh,n+1

]
− 1

h2 + h+ 1

[
(h2 + h+ 2)hn + (h+ 1)Zh,n

]
=

1

h2 + h+ 1

[
(h− 2)(h+ 1)(h2 + h+ 1)

]
hn

= (h− 2)(h+ 1)hn.
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(2.25):

j
(3)
h,n − J

(3)
h,n+2+(h− 2)hn

=
1

h2 + h+ 1

[
(h2 + h+ 2)hn + (h+ 1)Zh,n

]
− 1

h2 + h+ 1

[
hn+3 − Zh,n+2

]
+

1

h2 + h+ 1

[
(h2 + h+ 1)(h− 2)

]
hn

=
1

h2 + h+ 1
[(h+ 1)Zh,n + Zh,n+2]

=


1 if n ≡ 0 (mod 3)

−1 if n ≡ 1 (mod 3)

0 if n ≡ 2 (mod 3)

.

(2.26):

j
(3)
h,n − h

2J
(3)
h,n + (h− 2)hn =

1

h2 + h+ 1

[
(h2 + h+ 2)hn + (h+ 1)Zh,n

]
− 1

h2 + h+ 1

[
h2 · hn+1 − h2Zh,n

]
+

1

h2 + h+ 1

[
(h− 2)(h2 + h+ 1)

]
hn

= Zh,n.

(2.27):(
j
(3)
h,n

)2
− (h+ 1)2

(
J
(3)
h,n

)2
=
(
j
(3)
h,n − (h+ 1)J

(3)
h,n

)(
j
(3)
h,n + (h+ 1)J

(3)
h,n

)
= 2

(
j
(3)
h,n − h

n
)
· 2hn

= 4hn
(
j
(3)
h,n − h

n
)
.

(2.28):

J
(3)
h,n + J

(3)
h,n+1 + J

(3)
h,n+2 =

1

h2 + h+ 1

[
hn+1 − Zh,n

]
+

1

h2 + h+ 1

[
hn+2 − Zh,n+1

]
+

1

h2 + h+ 1

[
hn+3 − Zh,n+2

]
=

1

h2 + h+ 1

[
hn+1(h2 + h+ 1)

]
= hn+1.
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(2.29):

n∑
l=0

J
(3)
h,l = h+ (h− 1)

n∑
l=3

J
(3)
h,l−1 + (h− 1)

n∑
l=3

J
(3)
h,l−2 + h

n∑
l=3

J
(3)
h,l−3

= (3h− 2)

n∑
l=0

J
(3)
h,l + 1− (3h− 2)J

(3)
h,n − (2h− 1)J

(3)
h,n−1 − hJ

(3)
h,n−2.

Then, we obtain

n∑
l=0

J
(3)
h,l =

1

3(h− 1)

[
(3h− 2)J

(3)
h,n + (2h− 1)J

(3)
h,n−1 + hJ

(3)
h,n−2 − 1

]
=

1

3(h− 1)

[
J
(3)
h,n+1 + (2h− 1)J

(3)
h,n + hJ

(3)
h,n−1 − 1

]
=

1

3(h− 1)

[
J
(3)
h,n+2 − (h− 2)J

(3)
h,n+1 + hJ

(3)
h,n − 1

]
.

�

3. The third-order h-Jacobsthal and third-order

h-Jacobsthal–Lucas Quaternions

Let h be a real number. Following [3], we define the n-th third-order h-

Jacobsthal quaternion {JQ(3)
h,n}n≥0 and the n-th third-order h-Jacobsthal–

Lucas quaternion {jQ(3)
h,n}n≥0 as

JQ
(3)
h,n = J

(3)
h,n + iJ

(3)
h,n+1 + jJ

(3)
h,n+2 + kJ

(3)
h,n+3,

jQ
(3)
h,n = j

(3)
h,n + ij

(3)
h,n+1 + jj

(3)
h,n+2 + kj

(3)
h,n+3.

(3.1)

Example. If we put h = 2 in the Eqns. (3.1), we have the third-order Jacob-

stal quaternions sequence {JQ(3)
n }n≥0 and the third-order Jacobstal-Lucas

quaternions sequence {jQ(3)
n }n≥0 studied in [3]:

JQ
(3)
0 = i+ j + 2k

JQ
(3)
1 = 1 + i+ 2j + 5k

JQ
(3)
2 = 1 + 2i+ 5j + 9k

JQ
(3)
3 = 2 + 5i+ 9j + 18k

...

The following result extends [3], next theorem just replacing h = 2.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2020                   doi:10.20944/preprints202004.0343.v1

https://doi.org/10.20944/preprints202004.0343.v1


10 G. Cerda-Morales

Theorem 3.1. Let h be a real number, and let {JQ(3)
h,n}n≥0 be the third-order

h-Jacobsthal and {jQ(3)
h,n}n≥0 be the third-order h-Jacobsthal –Lucas quater-

nions sequence. Then, for every positive integer n, we have:

JQ
(3)
h,n + JQ

(3)
h,n+1 + JQ

(3)
h,n+1 = hn+1(1 + hi+ h2j + h3k), (3.2)

(h+ 1)JQ
(3)
h,n + jQ

(3)
h,n = 2hn(1 + hi+ h2j + h3k), (3.3)

JQ
(3)
h,n+2 − h

2JQ
(3)
h,n =


h− 1− hi+ j + (h− 1)k if n ≡ 0 (mod 3)

−h+ i+ (h− 1)j − hk if n ≡ 1 (mod 3)

1 + (h− 1)i− hj + k if n ≡ 2 (mod 3)

,

(3.4)

(h+1)JQ
(3)
h,n+2−jQ

(3)
h,n+1−jQ

(3)
h,n = (h−2)(h+1)hn(1+hi+h2j+h3k). (3.5)

Proof. (3.2): By definition, we have

JQ
(3)
h,n + JQ

(3)
h,n+1 + JQ

(3)
h,n+1 = J

(3)
h,n + J

(3)
h,n+1 + J

(3)
h,n+1

+ i(J
(3)
h,n+1 + J

(3)
h,n+2 + J

(3)
h,n+3)

+ j(J
(3)
h,n+2 + J

(3)
h,n+3 + J

(3)
h,n+4)

+ k(J
(3)
h,n+3 + J

(3)
h,n+4 + J

(3)
h,n+5).

Using the property (2.28) in Lemma 2.5, we have

JQ
(3)
h,n + JQ

(3)
h,n+1 + JQ

(3)
h,n+1 = hn+1 + ihn+2 + jhn+3 + khn+4

= hn+1(1 + hi+ h2j + h3k).

(3.3):

(h+ 1)JQ
(3)
h,n + jQ

(3)
h,n = (h+ 1)J

(3)
h,n + j

(3)
h,n

+ i((h+ 1)J
(3)
h,n+1 + j

(3)
h,n+1)

+ j((h+ 1)J
(3)
h,n+2 + j

(3)
h,n+2)

+ k((h+ 1)J
(3)
h,n+3 + j

(3)
h,n+3).

Using the property (2.22) in Lemma 2.5, we have

(h+ 1)JQ
(3)
h,n + jQ

(3)
h,n = 2hn + 2ihn+1 + 2jhn+2 + 2khn+3

= 2hn(1 + hi+ h2j + h3k).
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(3.3):

JQ
(3)
h,n+2 − h

2JQ
(3)
h,n = J

(3)
h,n+2 − h

2J
(3)
h,n

+ i(J
(3)
h,n+3 − h

2J
(3)
h,n+1)

+ j(J
(3)
h,n+4 − h

2J
(3)
h,n+2)

+ k(J
(3)
h,n+5 − h

2J
(3)
h,n+3).

Using the property (2.23) in Lemma 2.5 and n ≡ 0(mod 3), we have

JQ
(3)
h,n+2 − h

2JQ
(3)
h,n = h− 1 + i(−h) + j(1) + k(h− 1).

Finally, we obtain

JQ
(3)
h,n+2 − h

2JQ
(3)
h,n =


h− 1− hi+ j + (h− 1)k if n ≡ 0 (mod 3)

−h+ i+ (h− 1)j − hk if n ≡ 1 (mod 3)

1 + (h− 1)i− hj + k if n ≡ 2 (mod 3)

.

(3.4): By definition, we have

(h+ 1)JQ
(3)
h,n+2 − jQ

(3)
h,n+1 − jQ

(3)
h,n = (h+ 1)J

(3)
h,n+2 − j

(3)
h,n+1 − j

(3)
h,n

+ i((h+ 1)J
(3)
h,n+3 − j

(3)
h,n+2 − j

(3)
h,n+1)

+ j((h+ 1)J
(3)
h,n+4 − j

(3)
h,n+3 − j

(3)
h,n+2)

+ k((h+ 1)J
(3)
h,n+5 − j

(3)
h,n+4 − j

(3)
h,n+3).

Using the property (2.24) in Lemma 2.5, we have

(h+ 1)JQ
(3)
h,n+2 − jQ

(3)
h,n+1 − jQ

(3)
h,n = (h− 2)(h+ 1)hn

+ i((h− 2)(h+ 1)hn+1)

+ j((h− 2)(h+ 1)hn+2)

+ k((h− 2)(h+ 1)hn+3)

= (h− 2)(h+ 1)hn(1 + hi+ h2j + h3k).

Then, the result is obtained. �

In addition, some formulae involving sums of terms of the third-order

h-Jacobsthal quaternion sequence will be provided in the following theorem.

Theorem 3.2. Let h ∈ R − {1}. For a natural numbers m, n, with n ≥ m,

if JQ
(3)
h,n is the n-th third-order h-Jacobsthal quaternion, then the following

identities are true:

n∑
l=0

JQ
(3)
h,l =

1

3(h− 1)

{
JQ

(3)
h,n+1 + (2h− 1)JQ

(3)
h,n + hJQ

(3)
h,n−1

−JQ(3)
h,2 + (2h− 3)JQ

(3)
h,1 + (h− 2)JQ

(3)
h,0

}
. (3.6)
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Proof. Using Eqs. (1.4) and (3.1), we obtain

n∑
l=m

JQ
(3)
h,l = JQ

(3)
h,m + JQ

(3)
h,m+1 + JQ

(3)
h,m+2 +

n∑
l=m+3

JQ
(3)
h,l

= JQ
(3)
h,m + JQ

(3)
h,m+1 + JQ

(3)
h,m+2

+ (h− 1)

n−1∑
l=m+2

JQ
(3)
h,l + (h− 1)

n−2∑
l=m+1

JQ
(3)
h,l + h

n−3∑
l=m

JQ
(3)
h,l

= (3h− 2)

n∑
l=m

JQ
(3)
h,l

+ JQ
(3)
h,m+2 − (2h− 3)JQ

(3)
h,m+1 − (h− 2)JQ

(3)
h,m

− (3h− 2)JQ
(3)
h,n − (2h− 1)JQ

(3)
h,n−1 − hJQ

(3)
h,n−2

= (3h− 2)

n∑
l=m

JQ
(3)
h,l

+ JQ
(3)
h,m+2 − (2h− 3)JQ

(3)
h,m+1 − (h− 2)JQ

(3)
h,m

− JQ(3)
h,n+1 − (2h− 1)JQ

(3)
h,n − hJQ

(3)
h,n−1.

Then, the result in Eq. (3.6) is completed if m = 0. �

4. Conclusion

Sequences of quaternions have been studied over several years, including the

well-known Tribonacci quaternion sequence [4] and, consequently, on the

third-order Jacobsthal quaternion sequence [3]. In this paper we have also

contributed for the study of third-order h-Jacobsthal quaternion, deducing

some formulae for the sums of such numbers, presenting their Binet-style

formula. It is our intention to continue the study of this type of sequences,

exploring some their applications in the science domain. For example, a new

type of sequences in the octonion algebra with the use of these numbers and

their combinatorial properties.
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