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Abstract: Crop-type mapping is an important intermediate step for cost-effective crop management
at the field level, as an overview of all fields with a particular crop type can be used for monitoring or
yield forecasting, for instance. Our study used a data set with 2400 fields and corresponding satellite
observations from the federal state of Bavaria, Germany. The study classified corn, winter wheat,
winter barley, sugar beet, potato, and winter rapeseed as the main crops grown in Upper Bavaria.
We additionally experimented with a rejection class "Other", which summarised further crop types.
Corresponding Sentinel-2 data included the normalised difference vegetation index (NDVI) and raw
bands from 2016 to 2018 for each selected field. The influence of raw bands compared to NDVI was
analysed and the classification algorithms, i.e. support vector machine (SVM) and random forest
(RF), were compared. The study showed that the use of an index should be critically questioned and
that raw bands provided a wider spectral bandwidth, which significantly improved the mapping
of crop types. The results underline the use of RF with raw bands and achieved overall accuracies
(OA) of up to 92%. We also predicted crop types in an unknown year with significantly different
weather conditions and several months before the end of the growing season. Thus, the influence of
climate anomalies and the accuracy depending on the time of prediction were assessed. The crop
types of a test site and year without labels could be determined with an OA of up to 86%. The results
demonstrate the usefulness of the proof-of-concept and its readiness for use in real applications.
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1. Introduction

Agricultural productivity needs to be increased and its environmental impact must be reduced
to meet the future demand for food and achieve sustainable development goals (SDGs). The
recognition of crop types and their spatial distribution is becoming increasingly important, as many
new methodological developments are based on their knowledge [1]. Knowledge of the crop type
is essential because it can be used to derive targeted and crop type-specific management zones
and management decisions, to make crop type-specific forecasts of crop development, and to make
advanced yield prediction on a field- and region-specific basis. In the context of cross-compliance
measures, knowledge of the crop grown and documentation of its areas is also crucial, as this is also
the basis for support payments and sustainability can be better assessed through knowledge of the
crop types. Through "green direct payments" (or "greening"), the European Union (EU) supports
farmers who are trying to meet environmental and climate goals. One of the required measures is crop
diversification, which must be controlled. Efficient crop mapping will promote this process. Thus,
efficient agricultural land classification gives suppliers, policy makers and governments an up-to-date
overview of the land under cultivation.

Remote sensing provides multispectral data, and especially since the launch of the Sentinel
mission, the spatial and temporal availability of data has been continuously increasing. With its various
satellites and sensors, the Sentinel mission enables innovative applications in different domains, such
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as agriculture or geology. The spatial and temporal resolutions are suitable for precision agriculture
and its applications. This study focuses on the capabilities of Sentinel-2A and 2B, provides an in-depth
look at crop mapping, and addresses critical issues for implementing practical crop-type mapping.
The lack of benchmarks and various metrics makes it difficult to compare performance, which is why
we have published some of our data for research purposes [2].

Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are generally used for
various applications at the county level [3,4] but do not meet the spatial resolution requirements for
field-level mapping. Crop-type mapping is usually based on radar or optical data from Sentinel-1,
Sentinel-2 or Landsat-8, respectively. Some researchers fused optical and radar data and achieved
accuracies of up to 82% [5]. The authors pointed out that the fusion of Sentinel-1 and Sentinel-2
improved the results [5,6] because cloud cover limits the availability of Sentinel-2 data. Our experience
has shown that in regions with moderate cloud cover, as is the case in this study, very high accuracies
can be achieved without fusion. Past research studies also differed in temporal resolution and frequency.
For instance, Saini et al. [7] tested single-date images from Sentinel-2 using support vector machines
(SVMs) and Random Forest (RF) and showed that the OA’s of the classifications achieved by RF and
SVM using one Sentinel-2 image were 84.22% and 81.85%, respectively [7]. While some studies used
only one image for classification [7–13], other researchers have preferred multi-temporal information
[14–18]. A long short-term memory neural net (LSTM) achieved an overall accuracy of up to 89.7% with
Sentinel-2 time series [19,20]. Another study based on support vector regression (SVR) and artificial
neural network (ANN) achieved classification accuracies of up to 92% for broad-leaved forests [18]. In
general, the multi-temporal approach captures better spectral characteristics over the growing season
and improves crop types distinction. Methods such as random forest, neural networks, maximum
likelihood or SVMs have been frequently applied [17,21–23].

In most studies, indices such as the NDVI were used to derive plant-specific differences [3,5,17,
18,24–26]. Belgiu et al. [17] described an object-based approach combined with NDVI time series.
The authors investigated three different test areas and achieved up to 96.2% accuracy for one area,
while the other two areas could not be classified with comparable accuracy. To obtain higher spectral
differentiation, we evaluated the use of raw bands in our study and compared it with an index-based
approach. Immitzer et al. [8] highlighted the importance of the red-edge and shortwave infrared
(SWIR) bands for crop-type classification. Our approach benefits from the usage of all raw bands in
combination with an object-based approach where a mean value is determined for each acquisition
and each field to reduce the complexity while still reflecting the temporal patterns. Object-based
approaches and image segmentation simplify crop-type classifications and provide time series for each
field [27,28]. Nevertheless, sometimes pixel-based approaches have to be chosen to reveal the spatial
differences in the field.

Previous work rarely addressed the prediction of crop types several weeks before harvest or
for a year without labels, and in particular, the impact of different environmental conditions on
crop-type identification was rarely addressed. Unusual weather conditions due to climate change
or agricultural management practices affect the temporal patterns of time series [17,29,30]. In many
cases, ground truth data are insufficient or not available in a timely manner, and it remains a particular
challenge to verify crop types in an unknown area or in subsequent years. Hao et al. [24] predicted
crop types in absence of ground truth data. They achieved classification accuracy up to 87.13% using
MODIS and Landsat NDVI time series. In another work, the use of Sentinel-2 data allowed the correct
determination of cotton, spring, and summer corn 6 to 8 weeks prior to harvest [31], while winter
wheat could be well classified by using EVI and NDVI time series around harvest. The use of a cost
function combined with a stopping rule for crop classification was also investigated and indicated that,
depending on the crop type, satellite observations through June or July were essential to successful
classifications [32,33]. To address these issues, Google Earth Engine (GEE) was used in this work. It
provides an efficient environment for satellite data processing and enables the implementation of
various satellite-based applications and research activities [34–36]. GEE allows the reproducibility
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of research studies without the need to develop own processing pipelines. Our data set differs from
previous studies regarding the number of fields and by inspecting a total of 2400 fields grown in three
years with multiple crops, as well as referencing Sentinel-2 imagery with ground observations. The
data set covers the years 2016 to 2018. Plant growth in 2018 was affected by a climate anomaly with
significant drought and higher temperatures that impacted plant growth.

The objectives of this research are to find out whether (i) index-based classification is suitable
for mapping crop types, (ii) raw bands help to improve classification, (iii) how well crop types can
be classified in a year with widely differing weather conditions, and (iv) whether the classification
accuracy depends on the phenological phase?

2. Materials and methods

2.1. Study site

The study area is Upper Bavaria in southern Germany, with a size of approximately 17529 square
kilometers, of which about 7875 square kilometers make up agricultural land [37]. The main crop types
are corn, winter wheat, barley, rapeseed, sugar beet, and potato. Of these, corn, winter wheat, and
barley are the predominant crops. In general, Bavaria has an annual mean temperature of 8.6 °C and
an annual mean precipitation of 811 mm. Figure 1 shows the typical crop periods with the sowing and
harvest months. Figure 2 illustrates the average yearly maximum and minimum temperatures, monthly
precipitation, and the test site. We focused on the vegetation period 2016–2018 and summarised the
most important weather parameters in Table 1. For example, the average temperature during the
March to July growing season in 2016 was 12.3 °C, while in 2018 it reached 13.7 °C. The rainfall amount
as well as the ET0 values (FAO-56) [38,39] are based on the mean sum per field. While the rainfall
is similar over the years, the evapotranspiration has steadily increased. This is partly due to rising
temperatures and indicates an increased water demand. Unfavourable weather conditions did not
only affect crop yields or reflectance values. These anomalies also affected crop-type mapping in 2018.
Table 1 also shows an overview of the fields for crop-type classification. A total of 2400 samples were
used for the experiments, with all 7 classes evenly distributed. 2099 fields were randomly chosen from
different regions in Upper Bavaria to match the whole administrative district. In addition, a validation
set of 301 neighboring fields from one region and for the year 2018 was created to apply the trained
models to a coherent area and generate images for visual assessment. The Bavarian State Ministry
of Agriculture and Forestry (StMELF) provided the underlying ground-truth data with all fields and
corresponding crop types. The study focuses on Upper Bavaria and the crops considered are corn,
winter wheat, winter barley, sugar beet, potato, winter rapeseed, and an additional rejection class
called "Other", which covers all other crops, such as grassland or summer barley.

Table 1. Overview of the samples per year with corresponding climatic conditions. The coherent area
is shown in Figure 2 a), while all other fields (samples) in Upper Bavaria were randomly selected.

Crop samples Coherent area Temperature (oC) Rain (mm) ET0 (mm)

2016: 699 0 12.3 308.5 447.5

2017: 700 0 13.0 292.9 501.9

2018: 700 301 13.7 315.5 511.4
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Figure 1. Crop phenology of crop types considered. Sowing is marked in lime, green stands for the
vegetation period, and yellow covers the harvest period in Bavaria.

Figure 2. Climate overview of Upper Bavaria and the test site. Figure a) shows a test site with decimal
latitude and longitude coordinates (WGS 84). Figure b) shows Upper Bavaria and Bavaria as an
overlay. Figure c) and d) show the average maximum and minimum temperatures and the monthly
precipitation.
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2.2. Sentinel-2

The Sentinel-2 mission, with its two twin satellites Sentinel-2A and Sentinel-2B, monitors the
Earth with a resolution of up to 10 m/pixel and a revisit time of 2–5 days depending on latitude. The
availability of useful data is nevertheless limited due to clouds. Each identical satellite is equipped
with a multispectral sensor, that covers 13 spectral bands and has a swath width of 290 km. Sentinel-2A
was launched in June 2015 and Sentinel-2B was launched in March 2017. Sentinel-2 provides visible
and near-infrared (NIR) spectral bands (B2, B3, B4, B8) with a resolution of 10 m/pixel and SWIR
bands (B11, B12) with a resolution of 20 m/pixel. Band 1 is for aerosol, while bands 9 and 10 are
suitable for detecting water vapour and cirrus clouds. These bands provide a resolution of 60 m/pixel
for atmospheric corrections and do not need higher resolutions. Table 2 summarises the properties.
In this study, Sentinel’s Level-1C product was downloaded from Google Earth Engine, which stores
terabytes of up-to-date satellite data and provides an efficient and fast way to access this information
through a JavaScript or Python interface [35,40]. Raw bands and NDVI time series were downloaded
for each test field and year.

Table 2. Overview of raw bands of Sentinel-2 [41] and applied NDVI.

Band or Index Central Wavelength (nm) or Formula Description

Band 1 443.9 (S2A) /442.3 (S2B) Aerosol (60 m)

Band 2 496.6 (S2A) /492.1 (S2B) Blue (10 m)

Band 3 560 (S2A) /559 (S2B) Green (10 m)

Band 4 664.5 (S2A) / 665 (S2B) Red (10 m)

Band 5 703.9 (S2A) / 703.8 (S2B) Red Edge (20 m)

Band 6 740.2 (S2A) / 739.1 (S2B) Red Edge (20 m)

Band 7 782.5 (S2A) / 779.7 (S2B) Red Edge (20 m)

Band 8 835.1 (S2A) / 833 (S2B) NIR (10 m)

Band 8A 864.8 (S2A) / 864 (S2B) NIR (20 m)

Band 9 945 (S2A) / 943.2 (S2B) Water vapour (60 m)

Band 10 1373.5 (S2A) / 1376.9 (S2B) Cirrus (60 m)

Band 11 1613.7 (S2A) / 1610.4 (S2B) SWIR (20 m)

Band 12 2202.4 (S2A) / 2185.7 (S2B) SWIR (20 m)

NDVI
(B8 − B4)
(B8 + B4) Ratio of red to NIR

Furthermore, Google Earth Engine provides Level-2A (L2A) images, which are
bottom-of-atmosphere images, based on the European Space Agency’s Sen2Cor open source
processor [42]. This processor handles all the necessary atmospheric corrections and scene
classification tasks. Google Earth Engine provides Level-2A images starting from March, 2017. Former
data needs to be processed with Sen2Cor. Current methods for generating surface reflectance products
are compared in the scope of the Atmospheric Correction Intercomparison Experiment (ACIX) and
the research community [43,44]. We decided to use the Level-1C product for this research study
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because L2A is not mandatory to show that an index is not the appropriate choice for crop-type
detection, and to investigate predictive ability. Nevertheless, in a previous work, we observed that L2A
improves the quality of images but minimally improves the prediction accuracy for some applications.
This has also been observed in other research studies [20]. Figure 3 show the temporal patterns for
every crop type. We compared the minimum and maximum values, the standard deviation, and
the mean value to determine a significant feature. Time, as a feature, uncovers differences as well.
The mean values separate the crop types very well and are used in our experiments for the raw
bands as well as the NDVI. We computed the NDVI using Google Earth Engine and downloaded
all the results into a corresponding file for further analysis. The NDVI was developed to monitor
biomass or plant health and has been widely used for various applications. For each field, the pixels
were aggregated to a mean value to generate a time series for each field. The satellite images were
taken from February to August. All data was downloaded using a cloud meta filter of 20%. The
CLOUDY_PIXEL_PERCENTAGE parameter considers cloudy pixels for a Sentinel-2 scene but does
not recognise all cloudy pixels at the field level.

Figure 3. Temporal patterns of mean NDVI, min NDVI, max NDVI and standard deviation NDVI
values that vary with time.
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2.3. Temporal Interpolation

Another important task of the study is temporal interpolation. Working with time series entails
several problems, such as gaps, different time steps, and noisy measurements. Lepot et all. [45]
reviewed interpolation methods, such as nearest-neighbour and linear interpolation. Sentinel images
are available every 3 to 5 days for our study sites but cloud coverage reduces the amount of suitable
data, which needs to be re-sampled and interpolated. To cover the phenological development, we
decided upon a 2-weeks resolution of our time series data. Polynomial interpolation performs slightly
better, but does not approximate the real reflectance values when satellite data are not available for the
beginning of the vegetation period. Linear interpolation shows stable performance in all the cases and
is, therefore, used.

2.4. Metrics

The performance evaluation of crop-type mapping is based on overall accuracy (OA), producer’s
accuracy (PA), user’s accuracy (UA) and Kappa statistics [46]. The PA and UA values are presented for
each crop type while the OA and Kappa values evaluate the global performance of our trained model.
All the metrics are part of scikit-learn [47]. The OA represents the number of correctly classified crops
divided by all the reference crops. The Kappa coefficient is a measure in the range 0–1 and quantifies
prediction and ground truth. For instance, a value of 1 indicates a perfect match between the prediction
and ground truth. The PA shows how well a classification matches with the ground truth while the
UA refers to the reliability of the classification.

2.5. Crop-type processing

Figure 4 illustrates the general processing chain with its data inputs, pre-processing, training, and
final classification. OpenStreetMap was used to remove irrelevant information, such as roads, water
bodies, and forests. Furthermore, we applied the standard deviation of NDVI as a filter to remove
pixels, which did not change over time. An agricultural area usually changes during a vegetation
period. The training and testing were carried out with official field boundaries and crop types from
StMELF. The SVM and RF were trained with mean values (NDVI/raw bands) and tested with an
independent data set [48–50]. Another experiment focused on the prediction for the year 2018 using a
model trained with data from 2016 and 2017. This represents a challenging step, mainly because of the
target year being divergent.
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Figure 4. Overview of the processing steps with their input data, pre-processing and models.

3. Results

3.1. Crop-type classification with SVM and RF

We compared several interpolation methods in combination with SVMs and RF. Cleaning and
interpolating the data set improves the performance of a classifier. We decided upon linear interpolation
to fill in the missing values and a temporal resolution of 2 weeks from February to August. Our SVM
and RF models were trained with NDVI and all the bands for 2016, 2017, and 2018. NDVI is a good
proxy but the usage of all bands outperforms an index-based approach in our experiments. The
verification is based on a random train/test split with a test size of 25% and 5 splits for K-Fold cross
validation. The entire data set consists of 2099 samples, including 699 samples for 2016, 700 for 2017,
and 700 for 2018. The additional coherent test site is visualised in Figure 6. The yearly crop data set is
uniformly distributed and includes around 100 samples for every class. RF was parametrised with
1000 decision trees in the forest and SVM applied 10 for the "C" parameter and a linear kernel. Table
3 compares the performance of the classifiers using NDVI and all the bands. It clearly simplifies the
collected results and shows that RF performs better in all cases, which is why only the confusion
matrices for RF have been presented in Table 4 and Table 5. Nevertheless, SVM also classified the crop
types very well. In general, the use of all bands improves the OA for SVM and RF. Table 4 summarises
the results of RF using NDVI while Table 5 lists the performance of RF with raw bands and without
the rejection class. The greatest influence on accuracy is provided by the raw bands. This is important
because they cover a wider spectral range than an index alone. Thus, possible important insights are
not lost. Table 5 confirms the performance without the rejection class.

Table 3. Overview of the results with SVM and RF and various features.

NDVI Raw bands Bands without "Other"

SVM: 70% 87% 90%

RF: 75% 88% 92%

The performance of this model is very promising and is analysed in terms of feature importance
(Figure 5). It can be seen that bands B3, B5, B6, B7, B8, B8A, B11 and B12 are the most important
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features, and mainly from May to August. The results could be increased to 94% using hyperparameter
optimisation, but the optimised values were omitted for this publication to keep the configuration
simpler. On the one hand, the rejection class worsens the results, on the other hand, it includes
all agricultural land. The class "Other" includes various types of crops, such as different types of
grasslands. It introduced an error, especially in regions with crops not covered in our model. The
best model was additionally applied to the coherent test site of 301 fields and for the year 2018. When
training the classifier, this area was not included, which allowed us to test the performance of our
model in a real scenario. Figure 6 shows the recorded results from StMELF which act as ground truth
data, followed by the classification results. The OA of 96% was achieved without the rejection class
and it can be seen that the classifier had problems to distinguish barley and rapeseed. This was a bit
surprising since rapeseed is clearly different from other crops in spring.

Figure 5. Sorted features of model for 2016-2018 and without class "Other"

Table 4. Confusion matrix with NDVI and RF.

Other

Winter

wheat

(WW)

Winter

barley

(WB)

Winter

rapeseed

(WR)

Maize Potato

Sugar

beet

(SB)

Total
UA

(%)

PA

(%)

Other 54 0 0 5 2 1 0 62 87.1 69.23

WW 4 54 4 5 1 0 0 68 79.41 72.97

WB 4 7 67 8 0 0 0 86 77.91 81.71

WR 8 12 9 53 1 0 0 83 63.86 73.61

Maize 6 1 2 1 58 10 11 89 65.17 79.45

Potato 2 0 0 0 3 49 6 60 81.67 69.01

SB 0 0 0 0 8 11 58 77 75.32 77.33

Total 78 74 82 72 73 71 75 525

OA 75%

Kappa 0.86

CV 0.75
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Table 5. Confusion matrix with RF, all raw bands and without the rejection class "Other".

Winter

wheat

(WW)

Winter

barley

(WB)

Winter

rapeseed

(WR)

Corn Potato

Sugar

beet

(SB)

Total
UA

(%)

PA

(%)

WW 62 3 3 1 0 1 70 88.57 88.57

WB 7 63 4 1 0 0 75 84 92.65

WR 0 2 78 1 0 0 81 96.3 91.76

Corn 1 0 0 76 3 0 80 95 93.83

Potato 0 0 0 1 58 1 60 96.67 87.88

SB 0 0 0 1 5 78 84 92.86 97.5

Total 70 68 85 81 66 80 450

OA 92%

Kappa 0.97

CV 0.91
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Figure 6. Crop classification based on RF, all bands and without the class ‘Other’. The first image
shows the recorded crop types (ground truth data) while the second image shows the classified crop
types. The last image visualises incorrect classifications.
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3.2. Prediction in an unknown year with anomalies

The prediction for an unknown year was analysed to develop a system for detecting crop types
without labels for the year considered. Especially in times of climate change, this experiment is
important to assess to what extent drought or unusual growing conditions affect the performance
of classifiers. Figure 7 shows the raw reflectance values for band B6 and the crop types considered
in our study. The reflectance values are influenced by weather conditions and the growth progress.
Nevertheless, the trend remains comparable across years, and a separation between crops is given
as well. We trained a model with data from 2016 and 2017 and predict crop types for 2018 using
corresponding satellite observations. The OA was 79% with and 80% without the rejection class "Other"
(see Table 6 and 7), which is very accurate considering that 2018 was not comparable to previous
years. Applying the classifiers to the test area in Figure 8 reached an accuracy of 75% and 86% without
the "Other" class, respectively. The results are even comparable to those of the models trained with
data for 2016–2018. The temporal patterns are preserved even in an unusual year, which is why the
classification performs well. To get a more detailed insight, the dependence of the accuracy on the
classification time was investigated in Figure 9. Here, we see that the PA for winter rapeseed is already
very high in spring, which is related to the clear light green color. At the end of July and in August, the
accuracy for all other crop types converges. This is also visible in the overall accuracy where from the
end of July the maximum is almost reached.

Figure 7. Comparison of B6 mean reflectance across years.
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Table 6. Confusion matrix for RF with all bands and class "Other" based on a model trained with data
for 2016 and 2017. The crop types were determined for 2018.

Other
Winter

wheat

(WW)

Winter

barley

(WB)

Winter

rapeseed

(WR)

Corn Potato
Sugar

beet

(SB)

Total
UA

(%)

PA

(%)

Other 78 9 16 1 4 0 0 108 72.22 78

WW 8 83 11 3 0 0 0 105 79.05 83

WB 3 4 67 1 0 0 0 75 89.33 67

WR 1 3 5 95 0 0 0 104 91.35 95

Corn 3 0 1 0 67 1 0 72 93.06 67

Potato 7 1 0 0 28 99 34 169 58.58 99

SB 0 0 0 0 1 0 66 67 98.51 66

Total 100 100 100 100 100 100 100 700

OA 79%

Kappa 0.91

Table 7. Confusion matrix for RF with all bands and without class "Other" based on a model trained
with data for 2016 and 2017. The crop types were determined for 2018.

Winter

wheat

(WW)

Winter

barley

(WB)

Winter

rapeseed

(WR)

Corn Potato
Sugar

beet

(SB)

Total
UA

(%)

PA

(%)

WW 85 20 5 1 0 0 111 76.58 85

WB 10 71 2 1 0 0 84 84.52 71

WR 3 5 93 0 0 0 101 92.08 93

Corn 0 2 0 69 1 0 72 95.83 69

Potato 2 2 0 28 99 34 165 60 99

SB 0 0 0 1 0 66 67 98.51 66

Total 100 100 100 100 100 100 600

OA 80%

Kappa 0.94
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Figure 8. Prediction in 2018 using a model trained with data for 2016 and 2017 and without class
‘Other’. The model achieved an OA of 86%.
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Figure 9. Prediction of crop types with model 2016/2017 as a function of time.
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4. Discussion

An important factor is pre-processing, which includes temporal interpolation and data cleaning.
While linear interpolation is the right choice in many applications, polynomial interpolation
approximates a time series more accurately, but introduces errors, especially for data sets with gaps at
the beginning of the growing season, which is why linear interpolation was used in this study. Two
weeks temporal resolution proved to be appropriate as it adequately matched the phenology and was
supported by sufficient data in the test region. Single gaps could be filled by linear interpolation. For
future works, it would be interesting to extend the observation period, as, in this study, Sentinel-2
observations were used from February to the end of August. This extension would cover the sowing
and harvesting periods for all crop types as indicated in Figure 1). In our investigations, a small
amount of clouds was acceptable because Random Forest can handle a certain amount of noise [51,52].
Nevertheless, a completely cloud-free time series for each field could minimally improve the results,
but at the cost of run time, since each field time series must be processed with respect to cloudy pixels
or shadows.

Analysis of the raw bands and comparison with the NDVI showed that the raw bands exerted
a significant influence on the accuracy of a classifier. In this work, we chose the NDVI because
other indices such as the NDRE did not result in better separation of crops (unpublished results). A
specific objective of this work was to compare the index-based classification for crop mapping with the
raw band-based classification. The use of all bands exploited additional information that improved
differentiation at specific phenological stages. In general, previous multi-temporal approaches point
to the advantages of time for crop differentiation but at the same time use an index by which this
advantage is partially lost. For example, winter rapeseed fields can be clearly distinguished in spring
with RGB bands, which becomes more difficult with a biomass index. Analysis of predictability as a
function of time showed that the spring season is important for winter rapeseed. This could avoid
misclassification of winter barley as winter rapeseed. Such an advantage of RGB information was
explicitly observed for winter rapeseed, but in general the information from the B5, B6, B7, B8, B11,
and B12 bands was significant.

The rejection class "Other" for further plant types, such as grassland, reduced the classification
accuracies obtained with SVM and RF. Results described in section 3.1 showed that training a classifier
with as many crop types as possible and avoiding the use of a rejection class increased the accuracy.
However, from a practical point of view, this result was important because sometimes a model does
not know all the crop types in a target region. In this context, transfer learning offers a possibility to
extend an existing model by further crop types.

This study assessed how well crop types can be classified in a year with widely differing weather
conditions, since the weather in 2018 was hot and dry. Therefore, an experiment was conducted to
classify crop types in 2018 using a model trained with 2016 and 2017 data. Despite reflectance changes,
the trained model was not inordinately affected by this anomaly and predicted good results. The
temporal patterns of all crop types in 2018 thus remained comparable and could be distinguished. The
early detection of the crop types as outlined in section 3.2 showed that maximal classification accuracy
was reached from July onward, which is also consistent with observations in [33]. This emphasises that
a model based on training data from average years can also be used for future years without labels for
the target year. This experiments were also important because many previous studies are based on a
train/test split of all collected data, which accordingly results in high accuracies. We hypothesise that
climatic change in our test region will not affect the crop-type classification strongly as long as good
water availability can compensate the effects of higher temperatures.

Overall, the results provided very good classification accuracies. The models explained the
variance in our data set very well. Referring to the best results in Table 5 where the model was trained
with data from all years, it can be seen that sugar beet, winter rapeseed and corn all achieve UA’s
and PA’s above 90%. Winter wheat, winter barley and winter rapeseed are occasionally interchanged,
which degrades the accuracies to some degree. Similarly, potatoes are sometimes confused with sugar
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beet and corn. We assume that due to the slight noise some time series become too similar although RF
should deal with a small noise ratio. Special attention should be paid to winter wheat, winter barley
and potatoes, as these have the highest potential for improvement in terms of accuracy. As a further
extension of this work, it seems possible to apply a simplified approach to identify winter rapeseed
based on spring color changes alone. As suggested in other research, radar-based information could
also be used, which is also available from Sentinel-1. Retrieval of cloud-independent data may be
beneficial in regions of high cloud cover, such as the tropics. However, Sentinel-2 data are preferable if
they are available on a regular basis with at least one image every two weeks. For further quantification
using other methods, our data set was partially made available to [2].

5. Conclusion

This study addressed several aspects of crop-type mapping. We used RF and SVM with their
underlying configurations and achieved up to 92% overall accuracies. Using our approach, we
classified seven crop classes with very high precision. Random Forest slightly outperformed SVMs
with input features being critical for accuracy. Especially, the use of all raw bands uncovered additional
information that could not be detected with a single index, such as NDVI, alone. In this context, we
have shown that an index is not always useful. The use of a multi-temporal approach improved
classification accuracies, but data gaps must be avoided, which was realised with a temporal resolution
of two weeks and linear interpolation. Prediction of crop types for a year without labels and with
extraordinary weather conditions showed that the spectral signature was still intact and crop types
could be well determined at our study site. The accuracy of the prediction, depending on the time,
increased steadily with the number of observations and reached a maximum from July onwards. An
exception was winter rapeseed, which was already classified very well in spring. All other crops
needed observations until July to reach the optimal classification level.
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