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Abstract 

This study suggests a novel cooperative multi-simplex algorithm that generalizes a local search 

optimizer to design a novel global search heuristic algorithm. The proposed algorithm exploits the 

vertex sharing strategy to enhance the search abilities of the working simplexes. The vertex sharing 

among the simplexes is carried out through cooperative step that is based on fitness of the 

underlying simplex. The proposed algorithm is applied to solve some systems of nonlinear 

equations by transforming them to optimization problems. Comparative analysis of results shows 

that the proposed method is practical and effective. 

Keywords: Nelder-Mead algorithm; cooperative multi-simplex algorithm; simplex-fitness; 

system of nonlinear equations 

1. Introduction 

Nelder-Mead Simplex (NMS) algorithm [1] is a classical method for numerical optimization of 

unconstrained problems. If 𝑛 ∈ ℤ+ then for solving 𝑛 dimensional problem NMS method uses a 

convex hull of 𝑛 + 1 points, usually called a simplex. The method involves four steps, namely, (i) 

reflection (ii) expansion (iii) contraction and (iv) shrinkage with the help of scalars 𝛼 = 1, 𝛽 =

2, 𝛾 = 0.5 and 𝛿 = −0.5 [1, 2, 3]. 

Consider  𝑽𝑗 ∈ ℝ
𝑛; 1 ≤ 𝑗 ≤ 𝑛 + 1 be the vertices of the Polytopes with corresponding function 

values  𝑓𝑗  arranged in ascending order 𝑓𝑗 ≤ 𝑓𝑙  ∀𝑗 ≤ 𝑙. The NMS method calculates the centroid 𝑮 

by relation (4) and then uses (5)-(8) to improve 𝑽𝑛+1 by generating points  𝑹, 𝑬, 𝑪𝑜𝑢𝑡 or  𝑪𝑖𝑛. 

𝑮 =
1

𝑛
∑ 𝑽𝑗
𝑛
𝑗=1      (4) 

𝑹 = 𝑮 + 1 × (𝑮 − 𝑽𝑛+1)   (5) 

𝑬 = 𝑮 + 2 × (𝑮 − 𝑽𝑛+1)    (6) 

𝑪𝑜𝑢𝑡 = 𝑮 + 0.5 × (𝑮 − 𝑽𝑛+1)   (7) 

𝑪𝑖𝑛 = 𝑮− 0.5 × (𝑮 − 𝑽𝑛+1)  (8) 
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The fifth operation is the shrink step that comes into action when points generated by (5)-(8) fail 

to improve 𝑽𝑛+1 [2]. Figure 1 shows the geometry of the operations of NMS method  in ℝ2 [3].  

 

Figure 1. Operations on a simplex in ℝ2 

 

A general iteration of original NMS method in ℝ𝑛 is restated as under [1, 2, 4]. 

An Iteration of NMS method: 

1. Ordering: Arrange vertices as 𝑓𝑗 ≤ 𝑓𝑙  ∀ 𝑗 ≤ 𝑙. 

2. Reflection: Compute 𝑹, if 𝑓(𝑹) ∈ [𝑓1, 𝑓𝑛+1), save 𝑹  as 𝑽𝑛𝑒𝑤 .  

3. Expansion: If 𝑓(𝑹) < 𝑓1 compute 𝑬, if 𝑓(𝑬) < 𝑓(𝑹) save 𝑬 as 𝑽𝑛𝑒𝑤 .  

4. Contraction Outside: If 𝑓(𝑹) ∈ [𝑓𝑛 , 𝑓𝑛+1) find 𝑪𝑜𝑢𝑡 , if 𝑓(𝑪𝑜𝑢𝑡) ≤ 𝑓(𝑹) save 𝑪𝑜𝑢𝑡 as  𝑽𝑛𝑒𝑤 . 

5. Contraction Inside: If 𝑓(𝑹) ≥ 𝑓𝑛+1 determine  𝑪𝑖𝑛, if  𝑓(𝑪𝑖𝑛) < 𝑓𝑛+1 store 𝑪𝑖𝑛   as 𝑽𝑛𝑒𝑤 . 

6. Shrinkage: If  𝑓(𝑽𝑛𝑒𝑤 ) < 𝑓𝑛+1 then set 𝑽𝑛𝑒𝑤   to 𝑽𝑛+1 otherwise execute shrinkage step: 

𝑽𝑗 ← 𝑽𝑗 + 0.5 × (𝑽1 − 𝑽𝑗)  ∀  𝑗 ∈ {2, 3, 4, . . . , 𝑛 + 1}.  

2. Related works on the proposed Cooperative Multi-Simplex (CMS) algorithm  

The proposed cooperative multi-simplex algorithm (CMS) algorithm starts by randomly 

generating 𝑁𝑠, 𝑁𝑠 ∈ ℤ
+, simplexes in the search space. The iterative process of the proposed CMS 

algorithm is comprised of a cooperative step and a rotational shrinkage based modified iteration 

of NMS method. The cooperative step establishes a probability based sharing among the vertices 

of various simplexes. Based upon a user-defined cooperative sharing probability 𝑝 ∈ [0, 1], the 

vertex sharing is divided in to mixed sharing and ascent sharing. 

To elaborate more clearly, suppose 𝑆(𝑖,𝑘) is the set of vertices belonging to 𝑖𝑡ℎ  simplex  𝑖 ∈

[1,𝑁𝑠]  at 𝑘𝑡ℎ  iteration, the centroid 𝑮(𝑖,𝑘) , calculated by relation (4) relates to 𝑆(𝑖,𝑘)  and let 
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𝑓𝑗
(𝑖,𝑘)

= 𝑓(𝑽𝑗
(𝑖,𝑘)) ; 1 ≤ 𝑗 ≤ 𝑛 + 1. With these notations, the main steps of CMS algorithm are 

summarized as under.  

3.1.  Initialization 

Generate 𝑁𝑠 simplexes  𝑆(𝑖,𝑘): 1 ≤ 𝑖 ≤ 𝑁𝑠 , choose a suitable value of  𝑝 and set an integer 

𝐹𝐸𝑚𝑎𝑥  as maximum number of function evaluations allowed.  

3.2.  Ordering 

Sort all the vertices of the each simplex: 

𝑓1
(𝑖,𝑘)

≤ 𝑓2
(𝑖,𝑘)

≤ 𝑓3
(𝑖,𝑘)

≤ ⋯ ≤ 𝑓𝑛+1
(𝑖,𝑘)

  (9) 

3.3.  Cooperative step 

The attribute of cooperative sharing and exploiting the information composed from the entire 

population are crucial tools of population based heuristic algorithms [5, 6, 7] which empower 

them to perform balanced exploration and exploitation in optimization process. In CMS 

algorithm, the cooperative step handles the sharing of vertices based on the fitness of the 

simplexes. It not only alters orientations of the corresponding simplexes but also enforces 

them to cluster around the promising locations in the search space. The fitness of a simplex is 

calculated by using Equations (10) and (11) in turn. 

𝐹𝑖𝑡(𝑖,𝑘) =
1

1+𝑓(𝑖,𝑘)
     (10) 

𝑓(𝑖,𝑘) =
1

(𝑛+1)
∑ (

1

1+𝑓𝑗
(𝑖,𝑘))

𝑛+1
𝑗=1  (11) 

Two real numbers  𝜇 and 𝜆 ∈ [0, 1] are generated randomly. The sharing of a vertex of some 

𝑖𝑡ℎ simplex with another simplex takes place if 𝜆 > 𝐹𝑖𝑡(𝑖,𝑘), otherwise letting the simplexes 

proceed independently. If 𝜇 < 𝑝 , the mixed sharing exchanges the non-best vertex of a 

randomly simplex with some non-best vertex of the current simplex whereas the ascent 

sharing replaces the worst vertex of the current simplex by the worst vertex of some other 

simplex otherwise.  

3.4.  Rotational shrinkage based iteration of NMS method  

The proposed CMS heuristic method executes the standard operations of reflection, expansion 

and contraction but a different shrinkage step, called rotational shrinkage. The proposed 

rotational shrinkage step aims to change the orientation of the current simplex and to increase 
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the exploration chances without utilizing additional computational cost. The rotational 

shrinkage generates new vertices as follows. 

𝑽𝑗
𝑛𝑒𝑤 = 𝑽1

(𝑖,𝑘)
+ 𝛿(𝑽1

(𝑖,𝑘)
− 𝑽𝑗

(𝑖,𝑘)
) for 𝑗 = 2, 3, 4, … , 𝑛 + 1 (12) 

The new simplex for the  (𝑘 + 1)𝑡ℎ  iteration is constructed using the following conditions. 

𝑆(𝑖,𝑘+1) = {
(𝑆(𝑖,𝑘)\{𝑽𝑛+1

(𝑖,𝑘)}) ∪ {𝑽𝑛𝑒𝑤}                    if no shrinkage occurs

 {𝑽𝑗
𝑛𝑒𝑤 : 2 ≤ 𝑗 ≤ 𝑛 + 1} ∪ {𝑽1

(𝑖,𝑘)}       if shrinkage takes place
 (13) 

During the iterative process, the best of all of the vertices of 𝑁𝑠 simplexes is retained and is updated 

at each function evaluation. The iterative process of CMS method continues up to a predefined 

budget (𝐹𝐸𝑚𝑎𝑥) of function evaluations. The Algorithm 2 presents the pseudo code of the 

proposed CMS method.  

 

Algorithm 2: Pseudo code of the proposed CMS algorithm 

 INITIALIZE: Generate 𝑁𝑠  simplexes; define cooperative probability p 

and the budget FEmax; set the function evaluations counter: NFEs = 0; set 

k = 1. Retain the best of N(n+1) vertices as the current best solution.  

{WHILE  (NFEs< FEmax) 

{FOR  i = 1, 2, 3,…, 𝑁𝑠  

Order 𝑆(𝑖,𝑘) to satisfy Equation (9), calculate  𝐹(𝑖,𝑘) using Equations 

(10) and (11). Choose 𝜆 ∈ [0,1] randomly. 

{IF 𝜆 > 𝐹(𝑖,𝑘) choose 𝜇 ∈ [0,1]  randomly 

{IF 𝜇 < 𝑝 apply mixed sharing on 𝑆(𝑖,𝑘) 

ELSE apply ascent sharing on 𝑆(𝑖,𝑘) 

ENDIF} 

Order 𝑆(𝑖,𝑘) to satisfy sequence (9). 

ENDIF} 

Apply rotational shrinkage based NMS-iteration on 𝑆(𝑖,𝑘).    

ENDFOR} 

Update NFEs and the best solution. Set k = k +1. 

ENDWHILE} 

3. Applications of proposed CMS algorithm to physical systems and numerical results  

In order to validate the effectiveness of our proposed CMS algorithm, two mathematical and one 

physical system of non-linear equations are utilized. Four state of the art algorithms, namely, 
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Particle Swarm Optimization (PSO) [5], Differential Evolution (DE) [6], Artificial Bee Colony 

(ABC) [8] and Teaching Learning Based Optimization (TLBO) [9] are considered for the 

performance comparisons. 

4.1. Mathematical test problem 1 

The first test problem has been taken from [10-13]. This problem is described by the system 

(14) of non-linear equations.  

{
 
 

 
 𝐸1(𝒙) = 𝑥1

𝑥2 + 𝑥2
𝑥1 − 5 𝑥1𝑥2 − 85 = 0,

𝐸2(𝒙) = 𝑥1
3 − 𝑥2

𝑥3 − 𝑥3
𝑥2 − 60 = 0,         

𝐸3(𝒙) = 𝑥1
3 + 𝑥3

𝑥1 − 𝑥2 − 62 = 0,           

3 ≤ 𝑥1 ≤ 5, 2 ≤ 𝑥2 ≤ 4, 0.5 ≤ 𝑥3 ≤ 2.

   (14) 

The exact solution to the system reported is (4, 3, 1). 

 
 

 

Figure 2. Convergence curves for mathematical test problem 1. 

Table 1. Numerical results on mathematical test problem 1. 

 Proposed CMS DE PSO ABC TLBO 

x1 

x2 

x3 

B 

Md 

Mn 

4 

3 

1 

0 

0 

9.2E-16 

4 

3 

1 

0 

3.34E-14 

7.36 E-03 

4 

3 

0.999999 

1.42E-06 

1.71E-05 

1.39 E-01 

4.000526 

3.000485 

1.002746 

1.32E-02 

1.71E-01 

1.97E-01 

4 

3 

1.000001 

1.28E-14 

2.57E-13 

8.83E-13 

NFEs 

F
it

n
es

s 
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4.2. Mathematical test problem 2 

The second problem has been extracted from [14] and involves following four equations: 

{
 
 

 
 
𝐸1(𝒙) = 𝑥2𝑥3 + (𝑥2 + 𝑥3)𝑥4 = 0,          

𝐸2(𝒙) = 𝑥1𝑥3 + ( 𝑥1 + 𝑥3)𝑥4 = 0,         

𝐸3(𝒙) = 𝑥1𝑥2 + ( 𝑥1 + 𝑥2)𝑥4 = 0,         

𝐸4(𝒙) = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 − 1 = 0,
−1 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 1 

  (15) 

Table 2. Numerical results on mathematical test problem 2. 

 Proposed CMS DE PSO ABC TLBO 

x1 

x2 

x3 

x4 

B 

Md 

Mn 

0.5773502692 

0.5773502692 

0.5773502692 

-0.28867513459 

0 

0 

5.44E-18 

-0.5773502692 

-0.5773502692 

-0.5773502692 

0.28867513459 

0 

0 

2.71E-08 

0.57736 

0.57734 

0.577348 

-0.288675 

1.27E-06 

2.41E-05 

4.95E-03 

0.554 

0.582 

0.598 

-0.2887 

2.37E-03 

5.73E-03 

5.77E-03 

-0.5773502691 

-0.57735027 

-0.577350268 

0.28867513452 

1.86E-19 

1.09E-08 

7.09E-06 

 

 

Figure 3. Convergence curves for mathematical test problem 2 

4.3. Thin wall rectangle girder section problem  

Geometry size of thin wall rectangle girder section problem involves following system of 

equations [10, 12, 15, 16]. 

NFEs 

F
it

n
es

s 
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{

𝐸1(𝒙) = 𝑥1𝑥2 − (𝑥2 − 2𝑥3)(𝑥1 − 2𝑥3) − 165 = 0,                           

𝐸2(𝒙) =
𝑥1
3𝑥2

12
−

(𝑥2−2𝑥3)(𝑥1−2𝑥3)
3

12
− 9369 = 0,                                    

𝐸3(𝒙) = 2𝑥3(𝑥1 − 𝑥3)
2(𝑥2 − 𝑥3)

2/(𝑥1 + 𝑥2 − 2𝑥3) − 6835 = 0.

  (16) 

Where 𝑥1, 𝑥2 and 𝑥3 are height, width and thickness of the section respectively. The physical 

constraints on the system are: 

𝑔1(𝒙) = 𝑥3 > 0; 𝑔2(𝒙) = 𝑥2 − 𝑥3 > 0; 𝑔2(𝒙) = 𝑥1 − 𝑥2 > 0.   (17) 

Table 3. Numerical results on girder section problem. 

 Proposed CMS DE PSO ABC TLBO 

x1 

x2 

x3 

B 

Md 

Mn 

22.89494 

12.25652 

2.789818 

3.79E-22 

3.03E-13 

12.321 

22.892 

12.2564 

2.7916 

3.87E-02 

13.50 

14.46 

22.95 

12.258 

2.76 

4.40E-02 

10.00 

13.85 

23.29 

12.28 

2.57 

3.18 

14.72 

16.28 

22.89622 

12.25653 

2.78904 

1.69E-02 

5.05 

9.72 

 

 

 Figure 4. Convergence curves for mathematical test thin wall girder section problem. 

4. Conclusion 

This study presents a novel approach for solving a system of nonlinear equations as an optimization 

problem. The proposed method neither requires initial guess nor derivative information. The 
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analysis has been conducted through detailed and logical comparisons based on statistical 

measures the Best values (B), Median values (Md) and Mean values (Mn). It can be observed from 

Tables 1-3 that the solutions produced by the proposed CMS algorithm are more accurate solutions 

(B, Md, Mn). The convergence graphs shown in Figures 2-4 evidently demonstrates that the 

developed CMS algorithm significantly outperforms DE, PSO, ABC and TLBO in terms of 

solution quality and convergence speed. 

The proposed work can be extended to several disciplines of numerical optimization in 

collaboration with general purpose global search optimization algorithms.    
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