

Epigenetic Regulation Mediated by Methylation in the Pathogenesis and Precision Medicine of Rheumatoid Arthritis

Shicheng Guo^{1,2#*}, Lingxia Xu^{3,4#}, Cen Chang^{3,4#}, Runrun Zhang^{3,4}, Yehua Jin^{3,4}, Dongyi He^{3,4,5*}

¹ Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA

² Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA

³ Shanghai University of Traditional Chinese Medicine, Shanghai, China

⁴ Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

⁵ Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

*SG, LX, and CC contributed equally to the study.

*** Correspondence:**

Shicheng Guo, Ph.D.

Department of Medical Genetics

School of Medicine and Public Health

University of Wisconsin-Madison, Madison

Tel: 281-685-5882

Email: Shicheng.Guo@wisc.edu

Dongyi He, M.D., Ph.D.

Department of Rheumatology

Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine

Shanghai, China

Tel: 158-0030-0800

Email: hedongyi1967@shutcm.edu.cn

Article type: Mini review

Number of words: 2765

Number of figures/tables: 1 figure

Keywords: Epigenetic, Methylation, Rheumatoid Arthritis, Pathogenesis, Regulation

Abstract

Rheumatoid arthritis (RA) is a complex disease triggered by the interaction between genetics and environment, especially through the shared epitope (SE) and cell surface calreticulin (CSC) theory. However, the available evidence shows that genetic diversity and environmental exposure cannot explain all the clinical characteristics and heterogeneity of RA. In contrast, recent studies demonstrate that epigenetics play important roles in the pathogenesis of RA, especially DNA methylation and histone modification. DNA methylation and histone methylation are involved in innate and adaptive immune cell differentiation, and migration, proliferation, apoptosis, and mesenchymal characteristics of fibroblast-like synoviocytes (FLS). Epigenetic-mediated regulation of immune-related genes and inflammation pathways explains the dynamic expression network of RA. In this review, we summarized the comprehensive evidence to show that methylation of DNA and histones is significantly involved in the pathogenesis of RA and could be applied as a promising biomarker in the disease progression and drug response prediction. We also explained the advantages and challenges of the current epigenetics research in RA. In summary, epigenetic modules provide a possible interface, through which genetic and environmental risk factors connect to contribute to the susceptibility and pathogenesis of RA. Additionally, epigenetic regulators provide promising drug targets to develop novel therapeutic drugs for RA. Finally, DNA methylation and histone modifications could be important features for providing a better RA subtype identification, to accelerate personalized treatment and precision medicine.

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and joint destruction (Lee et al., 2017). Its onset is progressive and invasive, which can lead to joint deformity and disability. In the past decades, linkage analysis and genome-wide association studies (GWAS) have identified >100 susceptibility genes, especially shared epitopes (SE), in *HLA* genes (Okada et al., 2019). Cell surface calreticulin (CSC), mediated by *PTPN22* and *PADI4*, has successfully been used to explain the onset of RA (Okada et al., 2014). However, the pathogenesis of RA is still not fully understood. Furthermore, the majority of the current RA drugs have not been developed against GWAS targets, but cytokine and inflammatory pathways. RA-associated genetics thoroughly explain neither the heterogeneity of the clinical characteristics nor the treatment differences among patients with RA. In recent years, more and more studies have started to focus on the role of epigenetics in RA (Ai et al., 2018; Guo et al., 2019; Tseng et al., 2019a; Guo et al., 2020) and investigate the contribution of epigenetics to the heterogeneity of RA. DNA methylation and histone modifications, important epigenetic modifications which affect the expression of immune-related genes and inflammation progression (Meng et al., 2015; Lawrence et al., 2016), have become promising mechanisms to explain the pathogenesis of RA (Mazzzone et al., 2019). Numerous studies have found that methylation in immune cells may lead to RA progression through coordinated control of immune cell differentiation and function (Qiu et al., 2017; Meng et al., 2019). In this review, we systematically summarize the progress of methylation research (DNA and histone) to enhance the understanding of RA pathogenesis. We also summarize the pieces of evidence that show methylation as an interface to connect genetic and environmental exposures, and as a promising biomarker for diagnosis, treatment, and subtype identification. Finally, we show that epigenetic modules are promising novel biomarkers and drug targets for the next generation personalized treatment and precision medicine.

Genome-wide methylation profiling to identify RA-associated epigenetic variants

DNA methylation is an important epigenetic modification which is involved in the regulation of gene expression and transcript splicing. Genome-wide identification of abnormal DNA methylation variations in FLS, innate and adopt immune cells, including B cells and T cells, have provided a full spectrum of epigenetic pattern changes during the onset and progression of RA. Abnormal DNA methylation can be found at a very early stage of RA. Compared with normal synovial fibroblasts (SF), evidence shows that the CpG island located in the promoter region of *PM20D1*, *EN1*, *SHROOM1* are hypermethylated in very early RA-derived synovial fibroblasts (veRASF). *MFAP2*, *RIMBP2*, *IRX6*, *DDR1* and *HLA-C* are found hypermethylated in established, long-standing

RA-SF (estRASF). DNA methylation profiles in cadherin, integrin and Wnt cell adhesion signaling pathways, actin cytoskeleton components and antigen presentation pathways notably change in veRASF and estRASF (Karouzakis et al., 2018). Compared with early RA (ERA), the global DNA methylation level is lower in the cell migration, differentiation and adhesion pathways in long-standing RA (LRA), which may contribute to cell proliferation, differentiation, migration, and transition to chronic RA (Ai et al., 2015). DNA methylation changes in these pathways showed a similar pattern with human cancers, implicating that synovial hyperplasia and invasion may be a shared underlying mechanism with human cancer metastasis (Wang et al., 2015). Moreover, extracellular matrix (ECM), cholesterol biosynthesis and immune system pathways are also significantly enriched in RA high-risk individuals, indicating that DNA methylation signals may be useful in early diagnosis or risk evaluation of RA (Karouzakis et al., 2019).

Genome-wide methylation change was also found in T and B lymphocytes (Glossop et al., 2013; Glossop et al., 2014; Rhead et al., 2017; Guderud et al., 2020). A study identified 150 and 113 CpG loci with unique methylation characteristics in T and B lymphocytes in patients with ERA (Glossop et al., 2016). Evidence shows that *ARSB* and *DUSP22* are hypermethylated while *GALNT9* and *MGMT* are found hypomethylated in the T lymphocytes (Glossop et al., 2014). Interestingly, *DUSP22* codes for a protein tyrosine phosphatase that negatively regulates STAT3 and IL-6/STAT3 signaling pathways, indicating DNA methylation-mediated *DUSP22* silencing might be a fundamental effect to activate STAT signaling in RA (Sekine et al., 2006). *BARX2*, *ASB1*, *ADAMTS17*, *MGMT* are found hypomethylated in the B lymphocytes and can be used to distinguish patients with RA from healthy individuals (Glossop et al., 2014).

Through genome-wide methylation analysis, the discovery of shared methylated regions and pathways in multiple immune diseases may suggest the existence of the same pathogenesis. A recent study identified 337 differential methylated genes shared between RA and Parkinson's Disease (PD), which provides new evidence for the shared biological mechanism between RA and PD (Tang et al., 2018). Another study found that mitochondrial L-carnitine shuttle and PTEN signaling pathways are simultaneously differentially expressed in RA, systemic sclerosis (SSc), and systemic lupus erythematosus (SLE) (Hudson et al., 2017). In other recent studies, genome-wide DNA methylation profiles revealed common epigenetic patterns of interferon-related genes in multiple autoimmune diseases, including Graves' disease (GD), RA, SLE and SSc (Guo et al., 2017; Ding et al., 2018; Chen et al., 2019).

The methylation difference could also explain the different clinical manifestations and mechanisms in different autoimmune diseases. For example, compared with osteoarthritis (OA), 523 low-methylated regions are specific to RA. The regions overlap with specific motifs of transcription factors, such as *GLI1*, *RUNX2* and *TFAP2A/C*, which promote the proliferation of synovial cells and the development and migration of plasmacytoid dendritic cells in RA (Ham et al., 2019). In contrast with OA, in which *C18orf45*, *LMO4*, *MAP3K5*, *ODZ4*, *PKNOX2*, *SEPT11*, *MSRA*, and *MIR155HG* are hypomethylated, *PRDM16* is hypermethylated in RA (Glossop et al., 2015). *CCR6*, *CMTM5*, *IL-10R*, *IL-21R* and *IL-32* are found hypermethylated in SLE and primary Sjögren's syndrome (pSS), while they are also hypomethylated in RA (Wang et al., 2018). Here, we summarized all the differential methylated genes and constructed an interaction network to show the relationship among these differential methylation genes in RA, using the annotations from Ingenuity Pathway Analysis (IPA). We found that these differential methylated genes are not independent but exhibit an interesting network (**Figure 1 and Table S1**). These studies emphasize that changes in DNA methylation among different autoimmune diseases should be investigated in parallel to identify shared, disease-specific epigenetic dysfunctional elements.

Epigenetic regulatory roles in the underlying pathogenesis of rheumatoid arthritis

RA fibroblast-like synoviocytes (RA-FLS) are involved in the release of inflammatory mediators and matrix-degrading enzymes, which are key effector cells leading to synovial inflammation and destruction of bone and cartilage (Neumann et al., 2010). The changes in DNA methylation in RA-FLS plays important roles in the pathogenesis of RA. Hypomethylation in RA-FLS may be caused by the downregulation of *DNMT1* and

DNMT3A after inflammatory environmental stimulation (Nakano et al., 2013). Hypomethylation-mediated overexpression of *TBX5* in RA-FLS increases the expression of *IL-8*, *CXCL12* and *CCL20*, which enhances the inflammatory response in RA (Karouzakis et al., 2014). Hypermethylation of *EBF3* and *IRX1* in RA-FLS mediates the *TNF-β* pathway and affects the proliferation, apoptosis, and mesenchymal characteristics of RA-FLS (Park et al., 2013). In addition, Limb bud and heart development (*LBH*) is a transcription regulator of the cell cycle and is involved in the control of cell growth and proliferation. The activity of *LBH* decreases by enhanced methylation, which may contribute to synovial hyperplasia by initiating the cell cycle (Ekwall et al., 2015; Hammaker et al., 2016).

The critical role of methylation changes in peripheral blood mononuclear cells (PBMCs) during the pathogenesis of RA was also extensively investigated. The demethylation levels in the promoter regions of *IFNG* and *CNS-1* in peripheral blood CD4+ T cells of patients with RA increase, which establishes stable effector/memory during Th1-cell interaction (Dong et al., 2013). In addition, DNA methylation in the promoter region of *CTLA-4* inhibits the activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase pathway, which results in the defunctionalization of Tregs (Cribbs et al., 2014). Further evidence shows that activation of *PRLR* mediates the demethylation of *TNF-α* in peripheral CD14+ monocytes and increases the release of *TNF-α* (Tang et al., 2014). Hypomethylation of *ZBTB38* decreases *IL1R2* expression in B cells to interfere with the anti-inflammatory pathway (Ocsko et al., 2018). Hypermethylation of the *AHR* promoter region is associated with the formation of germinal center in the B cells (Toth et al., 2019). Evidence shows that demethylation in the proximal promoter region of *ER* mediates its increased expression in peripheral blood lymphocytes of RA patients, which is found to induce the occurrence of RA (Liu et al., 2014). Hypomethylation of DNA in apoptotic CD4+ T cells upregulates the production of *IL-6* in macrophages and downregulates the production of *TGF-β* in the DCs and B cells (Notley et al., 2017). This evidence demonstrated that DNA methylation plays important roles in the pathogenesis of RA.

DNA methylation as a biomarker for rheumatoid arthritis diagnosis

At present, the serological markers used for the diagnosis of RA are anti-citrullinated protein antibodies (ACPs) and rheumatoid factor (RF). However, the sensitivity of the test is only about ~70% (Nishimura et al., 2007). It is urgent to find novel markers to increase the diagnosis accuracy, disease onset prediction and disease progression. Methylation levels of *SHROOM1* in ERA are substantially increased, which can be applied as an early diagnosis biomarker (Karouzakis et al., 2018). Also, the *MHC* region is found hypomethylated in both PBMCs and the whole blood (van Steenbergen et al., 2014). Furthermore, *CD86*, *RAB20*, *XAF1*, *FOLR3*, *LTBR*, *KCNH8*, *DOK7*, *PDGFA*, *PITPNM2*, *CELSR1* in B cells show significant methylation differences in RA (Tseng et al., 2019b). In another study, *S100A6* and *EFCAB4B* promoter regions in the whole blood, and *IFN*-related genes (*IFIT1*, *IRF7*, *MX1*, *OAS1*, *USP18*, *RSAD2*, *IFI44L*) in CD4+ T cells are hypomethylated, indicating these methylation signals might be used as biomarkers for RA diagnosis (Svendsen et al., 2016b; Chen et al., 2019). *AZU1*, *LTBR*, and *RTEL1* are hypomethylated and involved in the autoimmune signaling cascade, indicating the potential roles as epigenetic susceptibility markers (Wang et al., 2018). Hypomethylation of *CYP2E1* is associated with disease activity and can be used as a disease activity marker (Mok et al., 2018). *CD1C*, *TNFSF10*, *C6ORF10*, and *UBASH3A* have the potential to be used as RA risk markers (Julia et al., 2017; Anaparti et al., 2019; Guderud et al., 2020). Finally, except gene-based methylation biomarkers, some other pathway or genome-wide indicators also show interesting biomarker performances. For example, a recent study showed that methylation-derived neutrophil-to-lymphocyte ratio (mNLR), detected from peripheral blood DNA, is increased during RA onset (Ambatipudi et al., 2018). Overall, all these pieces of evidence demonstrate that DNA methylation could be used as a robust biomarker for disease risk assessment and progression, and we expect more future advancements in this field.

Epigenetic modules mediated by methylation are promising RA drug targets

Epigenetic modifications are dynamically variable, and their reversibility is an attractive characteristic to develop new drugs. RA is highly related to the functional defects of Tregs, and *FOXP3* stabilizes the immune regulatory

function of Tregs. A recent study showed that daurinol induces hypomethylation of *FOXP3*, promotes Tregs differentiation and stabilization, inhibits Th17 differentiation through the Nrp1-Pten-Akt-Foxp3 signaling pathway, and alleviates the severity of RA (Park et al., 2019). In another study, expansion of Tregs in vitro with rapamycin was shown to improve the function and stability of Tregs, which maintain *FOXP3* high expression and strong inhibitory ability, in which *TNFR2* maintains *FOXP3* expression by restricting DNA methylation (Rossetti et al., 2015). These pieces of evidence indicate hypomethylation of *FOXP3*, which may present an interesting drug target for the treatment of RA. Meanwhile, evidence shows that methotrexate (MTX) can restore Tregs inhibition through the demethylation of *FOXP3* upstream enhancer, and increases the expression of *FOXP3* and *CTLA-4*, providing a new mechanism for MTX (Cribbs et al., 2014). MTX can also reverse DNA hypomethylation in T cells, B cells and monocytes in patients with RA (de Andres et al., 2015). Furthermore, patients with higher baseline global DNA methylation levels in RA exhibit lower MTX response (Gosselt et al., 2019). MTX can also reduce *MTR* expression in rheumatoid nodules, affecting re-methylation mediated by *MTR* and *MTRR*, indicating the important roles of DNA methylation in RA pathogenesis and drug response mechanism (Houlder et al., 2017). Recently, methylation inhibitors (5-AzadC) showed the ability to upregulate *PTEN*, downregulate *HOTTIP*, weaken the enrichment of *DNMT3B* in the *SFRP1* promoter region, and downregulate the expression of β -catenin, TNF-a, IL-6, IL-1 β , and CCL-2 (Miao et al., 2013; Li et al., 2019b; Hu et al., 2020). These changes further regulate AKT signaling pathway and Wnt signaling pathway to aid the remission of RA. *SFRP4* is a negative regulator of the Wnt signaling pathway. Evidence shows that *miR-152* indirectly upregulates *SFRP4* by decreasing the expression of *DNMT1* and reduces FLS proliferation (Miao et al., 2014).

Immunomodulatory role of etanercept and adalimumab in mononuclear cells is demonstrated by downregulating the expression of methyltransferase and trimethylation of H3K4, H3K27, H3K36 and H3K79 at the *CCL2* promoter (Lin et al., 2017). Daphnetin reduces the expression of *DNMT1*, *DNMT3A*, and *DNMT3B* in the collagen-induced arthritis rat synovial cells, leading to demethylation of pro-apoptotic genes *DR3*, *PDCD5*, *FasL*, and *p53*, and increasing the expression of pro-apoptotic genes (Shu et al., 2014). The combination of *SSAT1* inhibitor DA and methyl donor S-adenosyl methionine can significantly improve overall DNA hypomethylation status in RA-FLS and reduce the adhesion of RA-FLS (Neidhart et al., 2014). Another interesting study shows hypermethylation of the promoters *FER1L4*, *GAS5*, and *MEG3*, leading to their downregulation, which promotes the release of pro-inflammatory factors, contributing to the pathogenesis of RA. Therefore, hypomethylation recovery of *FER1L4*, *GAS5*, and *MEG3* may be a potential therapeutic target for RA (Liu et al., 2019; Yu et al., 2019; Li et al., 2020). Finally, DNA methylation of *LBH*, *CASP8*, *OLIG3*, *IRF5*, *HLA-G*, *ELMO1*, *TRHDE*, *SLCO1C1*, *PLD4*, *AIRE*, and *HLA-DQA1* is involved in the pathogenesis of RA and is recommended as a promising novel therapeutic target (Fan et al., 2016).

In addition, methylation also provides novel biomarkers to predict drug responses. There are four CpGs within exon seven of lipoprotein receptor-associated protein 1 (*LRPAP1*) that are more methylated in non-responders than in good responders, which can be used as a response marker of etanercept (TNF-alpha inhibitor) treatment (Plant et al., 2016). Disease-modifying antirheumatic drug (DMARD) reverses the hypomethylation of *RNF5* and *AGPAT1* promoter regions, induced by smoking in patients with RA; therefore, could be considered as a therapeutic target for RA (Svendsen et al., 2016a). Meanwhile, two methylation loci (cg03018489 and cg14345882) are significantly correlated with DMARD treatment response (Glossop et al., 2017). In the good responders to MTX, methylation levels of cg23700278, cg27427581, cg04334751, cg26764200 increase significantly after MTX treatment (Nair et al., 2019). In summary, the drugs that improve the abnormal methylation could be promising for the treatment of RA and the genes involved in the epigenetic regulation of RA could be considered as novel drug targets for pharmaceutical companies and to explain novel mechanism of drug action. Meanwhile, the differential DNA methylation can be used as a promising biomarker to predict the drug responses.

The advancement of histone methylation research in rheumatoid arthritis

Histone methylation is also involved in the pathogenesis of RA. Histone H3 trimethylated at lysine 4 (H3K4me3) in SF is associated with the opening of arthritis-activated chromatin, making the promoters of pathogenic genes highly active to drive transcription (Ntougkos et al., 2017). A previous study shows that H3K4me3 is increased in the promoter region of *MMP*, which is positively correlated with the expression of MMP-1, MMP-3, MMP-9, and MMP-13 in RA-FLS (Araki et al., 2016). Peptidylarginine deiminase type-4 (PAD4) inhibits *p21* transcription by modifying histone H3 arginine at the *p21* promoter region, which protects FLS from apoptosis and promotes the pathogenesis of RA (Fan et al., 2017). The expression of Jumonji domain-containing protein 3 (JMJD3) in RA-FLS is upregulated. JMJD3 specifically demethylates trimethylated lysine, which is directly involved in the activation of *TLR2* through the demethylation of H3K27me3 promoter and promotes RA inflammation (Wu et al., 2019). Aiming at the pathogenesis of RA, caused by abnormal histone methylation, is useful in improving the inflammation in RA. For example, the application of JMJD3 inhibitor, GSK-J4, inhibits the methylation of H3K27me3 at the *TLR2* promoter, significantly relieving the destruction and inflammation of articular cartilage (Wu et al., 2019). Therefore, histone modification regulators are potential and promising drug targets for RA therapy and drug development.

Challenges and opportunities of the current epigenetics research in rheumatoid arthritis

Research on epigenetics highlights the role of methylation changes in the pathogenesis, diagnosis, treatment, and prognosis of RA. DNA and histone methylation, including *TBX5* (Karouzakis et al., 2014), *FOXP3* (Kennedy et al., 2014), *AHR* (Toth et al., 2019), *HKMT* (Araki et al., 2018) and H3K4me3 (Araki et al., 2016), affect the proliferation, migration, apoptosis and inflammation of immune cells, which explains the pathogenesis of RA. Pre-clinical differential methylation changes, like the mNLR, contribute to early diagnosis of RA (Ambatipudi et al., 2018). The identified differential methylation genes can be applied as useful biomarkers to predict RA progression, disease severity, and provide potential therapeutic targets for RA. Epigenetic modifications as drug targets could provide a new direction of pharmacological research for the development of novel drugs, which alleviate clinical pressures of high toxicity, low efficiency, and high cost of the current medicine. For example, demethylation of *FOXP3* is used as a biomarker to evaluate the therapeutic drug response, which provides a direction for the precision treatment of RA (Tabares et al., 2018). *MALAT1* promotes *CTNNB1* promoter methylation and inhibits the Wnt signaling pathway, and has been shown as an interesting potential therapeutic target for RA (Li et al., 2019a). In addition, DNA and histone methylation in individuals may change the response to drugs; identifying the drug response markers may be helpful for personalized medication development.

Although DNA methylation and histone methylation research have shown significant progress in RA, the current research present several severe concerns. For example, there is no comprehensive study to investigate the relationship between differential methylation and disease severity and inflammation indicators. Future research should also strive to extended cohort studies to improve statistical robustness. Studies of differential methylation and pathways have examined the corresponding sites, but few functional tests have been performed. Different experimental approaches should be integrated to verify the results and obtain a solid conclusion with a large sample size. Moreover, further studies are needed to reveal the functions and targets of differential methylation and illuminate RA pathogenesis and drug discovery. We expect multi-omics analyses to be conducted to illustrate the roles of the interactions between epigenetic elements (5mC and histone modification) in multiple autoimmune diseases, as well as the interaction between genetics and epigenetics for a better understanding of RA pathogenesis.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

SG, DH conceived of content. SG, LX and CC drafted the review, which was edited by RZ and YJ.

Acknowledgments

This work was funded by the National Natural Science Funds of China (81774114), Shanghai Chinese Medicine Development Office, Shanghai Chinese and Western Medicine Clinical Pilot Project (ZY(2018–2020)-FWTX-1010), Shanghai Chinese Medicine Development Office, Shanghai Traditional Chinese Medicine Specialty Alliance Project (ZY(2018-2020)-FWTX-4017), National Administration of Traditional Chinese Medicine, Regional Chinese Medicine (Specialist) Diagnosis and Treatment Center Construction Project-Rheumatology. We appreciate the IPA analysis support from Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences. The manuscript have previously appeared online, doi:10.20944 / preprints202004.0237.v1

References

Ai, R., Whitaker, J.W., Boyle, D.L., Tak, P.P., Gerlag, D.M., Wang, W., et al. (2015). DNA Methylome Signature in Synoviocytes From Patients With Early Rheumatoid Arthritis Compared to Synoviocytes From Patients With Longstanding Rheumatoid Arthritis. *Arthritis Rheumatol* 67(7), 1978-1980. doi: 10.1002/art.39123.

Ai, R.Z., Laragione, T., Hammaker, D., Boyle, D.L., Wildberg, A., Maeshima, K., et al. (2018). Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. *Nature Communications* 9. doi: Artn 1921 10.1038/S41467-018-04310-9.

Ambatipudi, S., Sharp, G.C., Clarke, S.L.N., Plant, D., Tobias, J.H., Evans, D.M., et al. (2018). Assessing the Role of DNA Methylation-Derived Neutrophil-to-Lymphocyte Ratio in Rheumatoid Arthritis. *J Immunol Res* 2018, 2624981. doi: 10.1155/2018/2624981.

Anaparti, V., Agarwal, P., Smolik, I., Mookherjee, N., and Elgabalawy, H. (2019). Whole Blood Targeted Bisulfite Sequencing Validates Differential Methylation in C6ORF10 gene of Patients with Rheumatoid Arthritis. *J Rheumatol*. doi: 10.3899/jrheum.190376.

Araki, Y., Aizaki, Y., Sato, K., Oda, H., Kurokawa, R., and Mimura, T. (2018). Altered gene expression profiles of histone lysine methyltransferases and demethylases in rheumatoid arthritis synovial fibroblasts. *Clin Exp Rheumatol* 36(2), 314-316.

Araki, Y., Tsuzuki Wada, T., Aizaki, Y., Sato, K., Yokota, K., Fujimoto, K., et al. (2016). Histone Methylation and STAT-3 Differentially Regulate Interleukin-6-Induced Matrix Metalloproteinase Gene Activation in Rheumatoid Arthritis Synovial Fibroblasts. *Arthritis Rheumatol* 68(5), 1111-1123. doi: 10.1002/art.39563.

Chen, S., Pu, W., Guo, S., Jin, L., He, D., and Wang, J. (2019). Genome-Wide DNA Methylation Profiles Reveal Common Epigenetic Patterns of Interferon-Related Genes in Multiple Autoimmune Diseases. *Front Genet* 10, 223. doi: 10.3389/fgene.2019.00223.

Cribbs, A.P., Kennedy, A., Penn, H., Read, J.E., Amjadi, P., Green, P., et al. (2014). Treg cell function in rheumatoid arthritis is compromised by cta-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. *Arthritis Rheumatol* 66(9), 2344-2354. doi: 10.1002/art.38715.

de Andres, M.C., Perez-Pampin, E., Calaza, M., Santaclara, F.J., Ortega, I., Gomez-Reino, J.J., et al. (2015). Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. *Arthritis Res Ther* 17, 233. doi: 10.1186/s13075-015-0748-5.

Ding, W., Pu, W., Wang, L., Jiang, S., Zhou, X., Tu, W., et al. (2018). Genome-Wide DNA Methylation Analysis in Systemic Sclerosis Reveals Hypomethylation of IFN-Associated Genes in CD4(+) and CD8(+) T Cells. *J Invest Dermatol* 138(5), 1069-1077. doi: 10.1016/j.jid.2017.12.003.

Dong, J., Chang, H.D., Ivascu, C., Qian, Y., Rezai, S., Okhrimenko, A., et al. (2013). Loss of methylation at the IFNG promoter and CNS-1 is associated with the development of functional IFN-gamma memory in human CD4(+) T lymphocytes. *Eur J Immunol* 43(3), 793-804. doi: 10.1002/eji.201242858.

Ekwall, A.K., Whitaker, J.W., Hammaker, D., Bugbee, W.D., Wang, W., and Firestein, G.S. (2015). The Rheumatoid Arthritis Risk Gene LBH Regulates Growth in Fibroblast-like Synoviocytes. *Arthritis Rheumatol* 67(5), 1193-1202. doi: 10.1002/art.39060.

Fan, L., Zong, M., Gong, R., He, D., Li, N., Sun, L.S., et al. (2017). PADI4 Epigenetically Suppresses p21 Transcription and Inhibits Cell Apoptosis in Fibroblast-like Synoviocytes from Rheumatoid Arthritis Patients. *Int J Biol Sci* 13(3), 358-366. doi: 10.7150/ijbs.16879.

Fan, S., Li, C., Ai, R., Wang, M., Firestein, G.S., and Wang, W. (2016). Computationally expanding infinum HumanMethylation450 BeadChip array data to reveal distinct DNA methylation patterns of rheumatoid arthritis. *Bioinformatics* 32(12), 1773-1778. doi: 10.1093/bioinformatics/btw089.

Glossop, J.R., Emes, R.D., Nixon, N.B., Haworth, K.E., Packham, J.C., Dawes, P.T., et al. (2014). Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. *Epigenetics* 9(9), 1228-1237. doi: 10.4161/epi.29718.

Glossop, J.R., Emes, R.D., Nixon, N.B., Packham, J.C., Fryer, A.A., Matthey, D.L., et al. (2016). Genome-wide profiling in treatment-naive early rheumatoid arthritis reveals DNA methylome changes in T and B lymphocytes. *Epigenomics* 8(2), 209-224. doi: 10.2217/epi.15.103.

Glossop, J.R., Haworth, K.E., Emes, R.D., Nixon, N.B., Packham, J.C., Dawes, P.T., et al. (2015). DNA methylation profiling of synovial fluid FLS in rheumatoid arthritis reveals changes common with tissue-derived FLS. *Epigenomics* 7(4), 539-551. doi: 10.2217/epi.15.15.

Glossop, J.R., Nixon, N.B., Emes, R.D., Haworth, K.E., Packham, J.C., Dawes, P.T., et al. (2013). Epigenome-wide profiling identifies significant differences in DNA methylation between matched-pairs of T- and B-lymphocytes from healthy individuals. *Epigenetics* 8(11), 1188-1197. doi: 10.4161/epi.26265.

Glossop, J.R., Nixon, N.B., Emes, R.D., Sim, J., Packham, J.C., Matthey, D.L., et al. (2017). DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis. *Epigenomics* 9(4), 419-428. doi: 10.2217/epi-2016-0042.

Gosselt, H.R., van Zelst, B.D., de Rotte, M., Hazes, J.M.W., de Jonge, R., and Heil, S.G. (2019). Higher baseline global leukocyte DNA methylation is associated with MTX non-response in early RA patients. *Arthritis Res Ther* 21(1), 157. doi: 10.1186/s13075-019-1936-5.

Guderud, K., Sunde, L.H., Flam, S.T., Maehlen, M.T., Mjaavatten, M.D., Lillegraven, S., et al. (2020). Rheumatoid Arthritis Patients, Both Newly Diagnosed and Methotrexate Treated, Show More DNA Methylation Differences in CD4(+) Memory Than in CD4(+) Naive T Cells. *Front Immunol* 11, 194. doi: 10.3389/fimmu.2020.00194.

Guo, S., Chang, C., Xu, L., Zhang, R., Jin, Y., Xiong, M., et al. (2020). Epigenetic regulation mediated by miRNA in the susceptibility and pathogenesis of rheumatoid arthritis. *Preprints*. doi: 10.20944 / preprints202004.0241.v1.

Guo, S., Liu, J., Jiang, T., Lee, D., Wang, R., Zhou, X., et al. (2019). (5R)-5-Hydroxytriptolide (LLDT-8) induces substantial epigenetic mediated immune response network changes in fibroblast-like synoviocytes from rheumatoid arthritis patients. *Sci Rep* 9(1), 11155. doi: 10.1038/s41598-019-47411-1.

Guo, S., Zhu, Q., Jiang, T., Wang, R., Shen, Y., Zhu, X., et al. (2017). Genome-wide DNA methylation patterns in CD4+ T cells from Chinese Han patients with rheumatoid arthritis. *Mod Rheumatol* 27(3), 441-447. doi: 10.1080/14397595.2016.1218595.

Ham, S., Bae, J.B., Lee, S., Kim, B.J., Han, B.G., Kwok, S.K., et al. (2019). Epigenetic analysis in rheumatoid arthritis synoviocytes. *Exp Mol Med* 51(2), 1-13. doi: 10.1038/s12276-019-0215-5.

Hammaker, D., Whitaker, J.W., Maeshima, K., Boyle, D.L., Ekwall, A.H., Wang, W., et al. (2016). LBH Gene Transcription Regulation by the Interplay of an Enhancer Risk Allele and DNA Methylation in Rheumatoid Arthritis. *Arthritis Rheumatol* 68(11), 2637-2645. doi: 10.1002/art.39746.

Houlder, E.L., Millier, M.J., Highton, J., Gwynne-Jones, D., Stamp, L.K., and Hessian, P.A. (2017). Expression of the genes facilitating methotrexate action within subcutaneous rheumatoid nodules. *Clin Exp Rheumatol* 35(6), 943-947.

Hu, X., Tang, J., Hu, X., Bao, P., Deng, W., Wu, J., et al. (2020). Silencing of Long Non-coding RNA HOTTIP Reduces Inflammation in Rheumatoid Arthritis by Demethylation of SFRP1. *Mol Ther Nucleic Acids* 19, 468-481. doi: 10.1016/j.omtn.2019.11.015.

Hudson, M., Bernatsky, S., Colmegna, I., Lora, M., Pastinen, T., Klein Oros, K., et al. (2017). Novel insights into systemic autoimmune rheumatic diseases using shared molecular signatures and an integrative analysis. *Epigenetics* 12(6), 433-440. doi: 10.1080/15592294.2017.1303581.

Julia, A., Absher, D., Lopez-Lasanta, M., Palau, N., Pluma, A., Waite Jones, L., et al. (2017). Epigenome-wide association study of rheumatoid arthritis identifies differentially methylated loci in B cells. *Hum Mol Genet* 26(14), 2803-2811. doi: 10.1093/hmg/ddx177.

Karouzakis, E., Hahnlein, J., Grasso, C., Semmelink, J.F., Tak, P.P., Gerlag, D.M., et al. (2019). Molecular Characterization of Human Lymph Node Stromal Cells During the Earliest Phases of Rheumatoid Arthritis. *Front Immunol* 10, 1863. doi: 10.3389/fimmu.2019.01863.

Karouzakis, E., Raza, K., Kolling, C., Buckley, C.D., Gay, S., Filer, A., et al. (2018). Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. *Sci Rep* 8(1), 7370. doi: 10.1038/s41598-018-24240-2.

Karouzakis, E., Trenkmann, M., Gay, R.E., Michel, B.A., Gay, S., and Neidhart, M. (2014). Epigenome analysis reveals TBX5 as a novel transcription factor involved in the activation of rheumatoid arthritis synovial fibroblasts. *J Immunol* 193(10), 4945-4951. doi: 10.4049/jimmunol.1400066.

Kennedy, A., Schmidt, E.M., Cribbs, A.P., Penn, H., Amjadi, P., Syed, K., et al. (2014). A novel upstream enhancer of FOXP3, sensitive to methylation-induced silencing, exhibits dysregulated methylation in rheumatoid arthritis Treg cells. *Eur J Immunol* 44(10), 2968-2978. doi: 10.1002/eji.201444453.

Lawrence, M., Daujat, S., and Schneider, R. (2016). Lateral Thinking: How Histone Modifications Regulate Gene Expression. *Trends in Genetics* 32(1), 42-56. doi: 10.1016/j.tig.2015.10.007.

Lee, K.A., Min, S.H., Kim, T.H., Lee, S.H., and Kim, H.R. (2017). Magnetic Resonance Imaging-Assessed Synovial and Bone Changes in Hand and Wrist Joints of Rheumatoid Arthritis Patients. *Annals of the Rheumatic Diseases* 76, 1166-1166. doi: 10.1136/annrheumdis-2017-eular.1507.

Li, G.Q., Fang, Y.X., Liu, Y., Meng, F.R., Wu, X., Zhang, C.W., et al. (2019a). MALAT1-Driven Inhibition of Wnt Signal Impedes Proliferation and Inflammation in Fibroblast-Like Synoviocytes Through CTNNB1 Promoter Methylation in Rheumatoid Arthritis. *Hum Gene Ther* 30(8), 1008-1022. doi: 10.1089/hum.2018.212.

Li, M., Wang, N., Shen, Z., and Yan, J. (2020). Long non-coding RNA growth arrest-specific transcript 5 regulates rheumatoid arthritis by targeting homeodomain-interacting protein kinase 2. *Clin Exp Rheumatol*.

Li, X.F., Chen, X., Bao, J., Xu, L., Zhang, L., Huang, C., et al. (2019b). PTEN negatively regulates the expression of pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes in adjuvant-induced arthritis. *Artif Cells Nanomed Biotechnol* 47(1), 3687-3696. doi: 10.1080/21691401.2019.1661849.

Lin, Y.C., Lin, Y.C., Huang, M.Y., Kuo, P.L., Wu, C.C., Lee, M.S., et al. (2017). Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. *Mol Immunol* 83, 82-91. doi: 10.1016/j.molimm.2017.01.009.

Liu, H.W., Lin, H.L., Yen, J.H., Tsai, W.C., Chiou, S.S., Chang, J.G., et al. (2014). Demethylation within the proximal promoter region of human estrogen receptor alpha gene correlates with its enhanced expression: Implications for female bias in lupus. *Mol Immunol* 61(1), 28-37. doi: 10.1016/j.molimm.2014.05.002.

Liu, Y.R., Yang, L., Xu, Q.Q., Lu, X.Y., Ma, T.T., Huang, C., et al. (2019). Long noncoding RNA MEG3 regulates rheumatoid arthritis by targeting NLRC5. *J Cell Physiol* 234(8), 14270-14284. doi: 10.1002/jcp.28126.

Mazzone, R., Zwergel, C., Artico, M., Taurone, S., Ralli, M., Greco, A., et al. (2019). The emerging role of epigenetics in human autoimmune disorders. *Clinical Epigenetics* 11. doi: ARTN 34

10.1186/s13148-019-0632-2.

Meng, H., Cao, Y., Qin, J.Z., Song, X.Y., Zhang, Q., Shi, Y., et al. (2015). DNA Methylation, Its Mediators and Genome Integrity. *International Journal of Biological Sciences* 11(5), 604-617. doi: 10.7150/ijbs.11218.

Meng, M., Liu, H.F., Chen, S.D., Zhao, H.J., Gao, X., Zhang, J.N., et al. (2019). Methylation of H3K27 and H3K4 in key gene promoter regions of thymus in RA mice is involved in the abnormal development and differentiation of iNKT cells. *Immunogenetics* 71(7), 489-499. doi: 10.1007/s00251-019-01124-x.

Miao, C.G., Huang, C., Huang, Y., Yang, Y.Y., He, X., Zhang, L., et al. (2013). MeCP2 modulates the canonical Wnt pathway activation by targeting SFRP4 in rheumatoid arthritis fibroblast-like synoviocytes in rats. *Cell Signal* 25(3), 598-608. doi: 10.1016/j.cellsig.2012.11.023.

Miao, C.G., Yang, Y.Y., He, X., Huang, C., Huang, Y., Qin, D., et al. (2014). MicroRNA-152 modulates the canonical Wnt pathway activation by targeting DNA methyltransferase 1 in arthritic rat model. *Biochimie* 106, 149-156. doi: 10.1016/j.biochi.2014.08.016.

Mok, A., Rhead, B., Holingue, C., Shao, X., Quach, H.L., Quach, D., et al. (2018). Hypomethylation of CYP2E1 and DUSP22 Promoters Associated With Disease Activity and Erosive Disease Among Rheumatoid Arthritis Patients. *Arthritis Rheumatol* 70(4), 528-536. doi: 10.1002/art.40408.

Nair, N., Plant, D., Verstappen, S.M., Isaacs, J.D., Morgan, A.W., Hyrich, K.L., et al. (2019). Differential DNA methylation correlates with response to methotrexate in rheumatoid arthritis. *Rheumatology (Oxford)*. doi: 10.1093/rheumatology/kez411.

Nakano, K., Boyle, D.L., and Firestein, G.S. (2013). Regulation of DNA methylation in rheumatoid arthritis synoviocytes. *J Immunol* 190(3), 1297-1303. doi: 10.4049/jimmunol.1202572.

Neidhart, M., Karouzakis, E., Jungel, A., Gay, R.E., and Gay, S. (2014). Inhibition of spermidine/spermine N1-acetyltransferase activity: a new therapeutic concept in rheumatoid arthritis. *Arthritis Rheumatol* 66(7), 1723-1733. doi: 10.1002/art.38574.

Neumann, E., Lefevre, S., Zimmermann, B., Gay, S., and Muller-Ladner, U. (2010). Rheumatoid arthritis progression mediated by activated synovial fibroblasts. *Trends in Molecular Medicine* 16(10), 458-468. doi: 10.1016/j.molmed.2010.07.004.

Nishimura, K., Sugiyama, D., Kogata, Y., Tsuji, G., Nakazawa, T., Kawano, S., et al. (2007). Meta-analysis: Diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. *Annals of Internal Medicine* 146(11), 797-808. doi: 10.7326/0003-4819-146-11-200706050-00008.

Notley, C.A., Jordan, C.K., McGovern, J.L., Brown, M.A., and Ehrenstein, M.R. (2017). DNA methylation governs the dynamic regulation of inflammation by apoptotic cells during efferocytosis. *Sci Rep* 7, 42204. doi: 10.1038/srep42204.

Ntougkos, E., Chouvardas, P., Roumelioti, F., Ospelt, C., Frank-Bertonecelj, M., Filer, A., et al. (2017). Genomic Responses of Mouse Synovial Fibroblasts During Tumor Necrosis Factor-Driven Arthritogenesis Greatly Mimic Those in Human Rheumatoid Arthritis. *Arthritis Rheumatol* 69(8), 1588-1600. doi: 10.1002/art.40128.

Ocsko, T., Toth, D.M., Hoffmann, G., Tubak, V., Glant, T.T., and Rauch, T.A. (2018). Transcription factor Zbtb38 downregulates the expression of anti-inflammatory IL1r2 in mouse model of rheumatoid arthritis. *Biochim Biophys Acta Gene Regul Mech* 1861(11), 1040-1047. doi: 10.1016/j.bbagr.2018.09.007.

Okada, Y., Eyre, S., Suzuki, A., Kochi, Y., and Yamamoto, K. (2019). Genetics of rheumatoid arthritis: 2018 status. *Ann Rheum Dis* 78(4), 446-453. doi: 10.1136/annrheumdis-2018-213678.

Okada, Y., Wu, D., Trynka, G., Raj, T., Terao, C., Ikari, K., et al. (2014). Genetics of rheumatoid arthritis contributes to biology and drug discovery. *Nature* 506(7488), 376-381. doi: 10.1038/nature12873.

Park, M.J., Moon, S.J., Lee, E.J., Kim, E.K., Baek, J.A., Kim, S.Y., et al. (2019). Daurinol Attenuates Autoimmune Arthritis via Stabilization of Nrp1-PTEN-Foxp3 Signaling in Regulatory T Cells. *Front Immunol* 10, 1526. doi: 10.3389/fimmu.2019.01526.

Park, S.H., Kim, S.K., Choe, J.Y., Moon, Y., An, S., Park, M.J., et al. (2013). Hypermethylation of EBF3 and IRX1 genes in synovial fibroblasts of patients with rheumatoid arthritis. *Mol Cells* 35(4), 298-304. doi: 10.1007/s10059-013-2302-0.

Plant, D., Webster, A., Nair, N., Oliver, J., Smith, S.L., Eyre, S., et al. (2016). Differential Methylation as a Biomarker of Response to Etanercept in Patients With Rheumatoid Arthritis. *Arthritis Rheumatol* 68(6), 1353-1360. doi: 10.1002/art.39590.

Qiu, H., Wu, H.J., Chan, V., Lau, C.S., and Lu, Q.J. (2017). Transcriptional and epigenetic regulation of follicular T-helper cells and their role in autoimmunity. *Autoimmunity* 50(2), 71-81. doi: 10.1080/08916934.2017.1284821.

Rhead, B., Holingue, C., Cole, M., Shao, X., Quach, H.L., Quach, D., et al. (2017). Rheumatoid Arthritis Naive T Cells Share Hypermethylation Sites With Synoviocytes. *Arthritis Rheumatol* 69(3), 550-559. doi: 10.1002/art.39952.

Rossetti, M., Spreafico, R., Saidin, S., Chua, C., Moshref, M., Leong, J.Y., et al. (2015). Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region. *J Immunol* 194(1), 113-124. doi: 10.4049/jimmunol.1401145.

Sekine, Y., Tsuji, S., Ikeda, O., Sato, N., Aoki, N., Aoyama, K., et al. (2006). Regulation of STAT3-mediated signaling by LMW-DSP2. *Oncogene* 25(42), 5801-5806. doi: 10.1038/sj.onc.1209578.

Shu, K., Kuang, N., Zhang, Z., Hu, Z., Zhang, Y., Fu, Y., et al. (2014). Therapeutic effect of daphnetin on the autoimmune arthritis through demethylation of proapoptotic genes in synovial cells. *J Transl Med* 12, 287. doi: 10.1186/s12967-014-0287-x.

Svendsen, A.J., Gervin, K., Lyle, R., Christiansen, L., Kyvik, K., Junker, P., et al. (2016a). Differentially Methylated DNA Regions in Monozygotic Twin Pairs Discordant for Rheumatoid Arthritis: An Epigenome-Wide Study. *Front Immunol* 7, 510. doi: 10.3389/fimmu.2016.00510.

Svendsen, A.J., Gervin, K., Lyle, R., Christiansen, L., Kyvik, K., Junker, P., et al. (2016b). Differentially Methylated DNA Regions in Monozygotic Twin Pairs Discordant for Rheumatoid Arthritis: An Epigenome-Wide study. *Frontiers in Immunology* 7. doi: Artn 510 10.3389/fimmu.2016.00510.

Tabares, P., Berr, S., Langenhorst, D., Sawitzki, B., Ten Berge, I., Tony, H.P., et al. (2018). Short-term cytokine stimulation reveals regulatory T cells with down-regulated Foxp3 expression in human peripheral blood. *Eur J Immunol* 48(2), 366-379. doi: 10.1002/eji.201747244.

Tang, C., Li, Y., Lin, X., Ye, J., Li, W., He, Z., et al. (2014). Prolactin increases tumor necrosis factor alpha expression in peripheral CD14 monocytes of patients with rheumatoid arthritis. *Cell Immunol* 290(1), 164-168. doi: 10.1016/j.cellimm.2014.06.005.

Tang, G., Pan, H., Xu, L., Feng, R., Jiang, Y., Kong, F., et al. (2018). A Comparison of Co-methylation Relationships Between Rheumatoid Arthritis and Parkinson's Disease. *Front Neurosci* 12, 1001. doi: 10.3389/fnins.2018.01001.

Toth, D.M., Ocsko, T., Balog, A., Markovics, A., Mikecz, K., Kovacs, L., et al. (2019). Amelioration of Autoimmune Arthritis in Mice Treated With the DNA Methyltransferase Inhibitor 5'-Azacytidine. *Arthritis Rheumatol* 71(8), 1265-1275. doi: 10.1002/art.40877.

Tseng, C.C., Lin, Y.Z., Lin, C.H., Li, R.N., Tsai, W.C., Ou, T.T., et al. (2019a). Genetic and epigenetic alteration of the programmed cell death 1 in rheumatoid arthritis. *European Journal of Clinical Investigation* 49(10). doi: UNSP e13094 10.1111/eci.13094.

Tseng, C.C., Lin, Y.Z., Lin, C.H., Li, R.N., Yen, C.Y., Chan, H.C., et al. (2019b). Next-Generation Sequencing Profiles of the Methylome and Transcriptome in Peripheral Blood Mononuclear Cells of Rheumatoid Arthritis. *J Clin Med* 8(9). doi: 10.3390/jcm8091284.

van Steenbergen, H.W., Luijk, R., Shoemaker, R., Heijmans, B.T., Huizinga, T.W., and van der Helm-van Mil, A.H. (2014). Differential methylation within the major histocompatibility complex region in rheumatoid arthritis: a replication study. *Rheumatology (Oxford)* 53(12), 2317-2318. doi: 10.1093/rheumatology/keu380.

Wang, J., Li, J., Gu, J., Yu, J., Guo, S., Zhu, Y., et al. (2015). Abnormal methylation status of FBXW10 and SMPD3, and associations with clinical characteristics in clear cell renal cell carcinoma. *Oncol Lett* 10(5), 3073-3080. doi: 10.3892/ol.2015.3707.

Wang, X., Lei, D., Ding, J., Liu, S., Tao, L., Zhang, F., et al. (2018). A DNA-Methylated Sight on Autoimmune Inflammation Network across RA, pSS, and SLE. *J Immunol Res* 2018, 4390789. doi: 10.1155/2018/4390789.

Wu, W., Qin, M., Jia, W., Huang, Z., Li, Z., Yang, D., et al. (2019). Cystathionine-gamma-lyase ameliorates the histone demethylase JMJD3-mediated autoimmune response in rheumatoid arthritis. *Cell Mol Immunol* 16(8), 694-705. doi: 10.1038/s41423-018-0037-8.

Yu, H., Ding, C., Dai, S., Sun, J., Wang, S., and Zhang, Z. (2019). Long noncoding RNA FER1L4 regulates rheumatoid arthritis via targeting NLRC5. *Clin Exp Rheumatol*.

Figure 1. Interaction network constructed by including all differential methylation genes reported in rheumatoid arthritis using an Ingenuity Pathway Analysis (IPA). In this Figure, we applied grow algorithm on the IPA database to connect all the differentially methylated genes with direct and indirect links according to Ingenuity Core Pathway. Gene products were arranged graphically based on the location/function of the associated proteins. Shapes and lines with different styles do not have special representation but they make different gene productions easy to be recognized.

Table S1. Pairwise interaction between differentially methylated genes reported in rheumatoid arthritis with algorithm of Ingenuity Pathway Analysis (IPA).