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Abstract: Coronaviruses (CoVs) are positive-stranded RNA viruses that infect humans and animals. 

Infection by CoVs such as HCoV-229E, -NL63, -OC43 and -HKUI1 leads to the common cold, short 

lasting rhinitis, cough, sore throat and fever. However, CoVs such as Severe Acute Respiratory 

Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), 

and the newest SARS-CoV-2 (the causative agent of COVID-19) lead to severe and deadly diseases 

with mortality rates ranging between ~1 to 35% depending on factors such as age and pre-existing 

conditions. Despite continuous global health threats to human, there are no approved vaccines or 

drugs targeting human CoVs, and the recent outbreak of COVID-19 emphasizes an urgent need for 

therapeutic interventions. Using computational and bioinformatics tools, here we present the 

feasibility of reported broad-spectrum RNA polymerase inhibitors as anti- SARS-CoV-2 drugs 

targeting its main RNA polymerase, suggesting that investigational and approved nucleoside RNA 

polymerase inhibitors have potential as anti-SARS-CoV-2 drugs. However, we note that it is also 

possible for SARS-CoV-2 to evolve and acquire drug resistance mutations against these nucleoside 

inhibitors.  

Keywords: Coronavirus; SARS-CoV; MERS-CoV; SARS-CoV-2; COVID-19; RNA polymerase;  

nsp12 

 

1. Introduction 

Human coronaviruses (CoVs) such as HCoV-229E, NL63, OC43 and HKUI1 primarily infect the 

upper respiratory and gastrointestinal tract, causing mostly mild diseases. However, some CoVs such 

as SARS-CoV and MERS-CoV cause severe respiratory diseases (SARS and MERS) that result in ~10% 

to ~35% mortality [1-5]. SARS-CoV caused a pandemic in 2003 with 774 deaths worldwide [6-8]. 

MERS-CoV was first reported in June 2012, and according to a World Health Organization (WHO) 
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report, there were 2494 laboratory-confirmed cases of MERS, including 858 associated deaths, mostly 

from Middle East countries [9]. However, current outbreak of SARS-CoV-2, the causative agent of 

Coronavirus Disease 2019 (COVID-19) has claimed thousands of lives since first reported case in Dec. 

2019 in Wuhan city, China [10-12]. To date, there are no approved vaccines or anti-SARS-CoV/MERS-

CoV drugs available. Hence, studies on the discovery of small molecule drugs against SARS-CoV, 

MERS-CoV and other related future pathogenic coronaviruses are of high importance [13]. 

CoVs belong to family Coronaviridae of Nidovirales order. CoVs have been divided into α, β, γ 

and δ groups [14]. The β CoVs have been further divided into four lineages (A – D) [15]. Phylogenic 

analysis shows that both SARS-CoV and SARS-CoV-2 belong to lineage B of β CoVs [16,17], whereas 

MERS-CoV belongs is lineage C, and the well-studied mouse hepatitis virus (MHV) is belongs to 

lineage A [18-20]. The example of lineage D is Rousettus bat coronavirus HKU9 [21]. Coronaviruses 

are the largest (26.2 to 31.7 kb) positive [or (+)] sense single stranded RNA viruses. The 

polyadenylated and capped RNA genome [5,22] has multiple open reading frames (ORFs). The 5’-

most two-third of the genome contains ORF1a and ORF1b that encode polyproteins pp1a and pp1ab 

(made through a −1 ribosomal frameshift during translation), which are cleaved to form the non-

structural proteins (nsp) [23-30]. The structural proteins are expressed as subgenomic RNAs and 

individual RNAs (genomic and subgenomic) are translated to yield only the protein encoded by the 

5'-most ORF [31]. These polyproteins are processed by coronavirus-encoded papain-like proteinases 

(PLpro; within nsp3) [32] and nsp5 (3CLpro) [5,24,25,33-36] to yield up to 16 nsps with diverse functions 

[31,37-40]). The assembled replication-transcription complex (RTC) binds at the 3’ untranslated 

region and synthesizes a negative sense (-) RNA template complementary to the genomic RNA, as 

well as subgenomic (-) strand RNAs with common 5’ ends and leader complementary sequences at 

the 3’ ends. The (-) RNAs are used as templates to synthesize full-length RNA packaged into virions 

and a nested set of (+) strand subgenomic mRNAs [31,37-40]. 

Nearly 932 amino acids long, nsp12 (RNA polymerase) of CoVs is an essential components of 

the RTC [26]. nsp12 is a product of pp1ab polyprotein, and serves as the main RNA-dependent RNA 

polymerase (RdRp) [24,41]. Approximately 500 C-terminal amino acids of nsp12 constitute the RNA 

polymerase domain. The N-terminal extension (~400 amino acids) of nsp12 is unique to nidovirales. 

This domain has been proposed to have a nucleotidyltransferase activity, and therefore has been 

termed as the nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain [42]. A cryoEM 

structure of SARS-CoV nsp12 in complex with nsp7 and nsp8 was reported in 2019 [43]. Very recently, 

a preprint describing the structure of SARS-CoV-2 nsp12 structure has appeared [44]. Apparently, 

this structure has strong similarity to that of SARS-CoV nsp12 (root-mean-square deviation (RMSD) 

of 0.82 Å  for 1,078 Cα atoms, including nsp7 and nsp8 Cα atoms) [44]. These two cryoEM structures 

reveal that the overall architecture of the nsp12 polymerase domain resembles canonical RNA 

polymerases, and assumes a right-hand conformation with structural units reminiscent to fingers, 

palm and thumb [43].  

Historically, viral polymerases have proven to be attractive targets for antiviral therapy. HIV-1 

reverse transcriptase (HIV-1 RT), hepatitis B virus (HBV) polymerase (HBV pol), and hepatitis C virus 

(HCV) replicase (NS5B) are some of the notable examples of antiviral targets. All currently 

recommended first-line antiviral therapies consist of nucleoside analogs that target these viral 

polymerases. Additionally, nucleoside analogs such as ribavirin and 5-fluorouracil (5-FU) have been 

approved as broad-spectrum antiviral drugs. Whereas ribavirin in-combination with interferon-α2b, 

has shown potential for treatment of MERS-CoV infection in rhesus macaques [45], resistance 

mutations under 5-FU pressure have been determined in MHV nsp12 [46]. Additionally, gemcitabine, 

a nucleoside analog and a well-known cancer drug has been identified to inhibit SARS and MERS-

CoVs [47].   

The emergence of recent pandemic COVID-19 has compelled researchers and clinicians to 

explore novel broad-spectrum drugs as inhibitors of SARS-CoV-2. Thus, nucleoside analogs 

favipiravir (T-705) [48,49] and remdesivir [49-52] have shown inhibitory potential against SARS-CoV-

2. Owing to the potential of remdesivir, the United States Food and Drug Administration (FDA) has 
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granted an orphan drug status on March 23, 2020 so that it can be used in clinics, and a clinical trial 

has started at the university of Nebraska medical center, Omaha, NE (NCT04280705). In order to 

explore the feasibility of broad-spectrum nucleoside inhibitors of RNA polymerases as potential 

inhibitors of SARS-CoV-2, we used comparative molecular modeling, docking and bioinformatics to 

assess these compounds as potential inhibitors of nsp12. More specifically, we present the feasibility 

of remdesivir, 5-FU, ribavirin, and favipiravir (T705) as anti-SARS-CoV-2 compounds.  

2. Results and Discussion 

2.1. Sequence conservation among SARS-CoV, MERS-CoV and SARS-CoV-2 nsp12 proteins 

Nucleoside analog inhibitors are administered as compounds containing a nucleic acid base 

with modified sugar moiety. These compounds are metabolized into their triphosphate (TP) form by 

cellular kinases, becoming the bonafide substrates of nucleic acid polymerases. The nucleic acid 

polymerases contain conserved motifs that participate in nucleoside-TP (NTP) binding [53]. First, we 

assessed sequence conservation in the NTP-binding motifs using available nsp12 sequences of SARS-

CoV, MERS-CoV and SARS-CoV-2. 

 

Figure 1. Phylogenetic analyses and sequence conservation. a. Phylogenetic analysis was 

performed by the MEGA X software using the nsp12 sequences of Bat CoV (Black), SARS-CoV 

(Orange), MERS-CoV (green) and SARS-CoV-2 (blue). The Bat CoV-RaTG13 that was proposed 

to be the origin of the SARS-CoV-2 is marked in red. The CIRCOS plot was created using Circos 

software package (v 0.69-8). The amino acid changes between consensus SARS-CoV-2 

compared to consensus SARS-CoV were identified by multiple sequence alignment and 

denoted as vertical bars on the Circos plot. b. The seven conserved RdRp motifs (A-G) are as 

denoted by the sequence logo (WebLogo v3). c. Sequence conservation of SARS-CoV-2 nsp12 

motifs are shown as sequence logos (red). 
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We then conducted a comprehensive phylogenetic analysis of nsp12 proteins using available 

sequences from SARS-CoV (n = 40), MERS-CoV (n = 14) and SARS-CoV-2 (n = 26) along with Bat CoV 

(n=31) (Fig. 1a). Our analyses showed that SARS-CoV-2 is closely related to the Bat CoV-RaTG13 

strain, which is cosistant with earlier report [8]. The majority of sequence variation was present in the 

N-terminal region of nsp12, belonging to NiRAN and Interface domains (the description of Interface 

domain in presented in the following section). The polymerase domain (amino acid residues 399 – 

932) is highly conserved among all SARS-CoV-2 nsp12 proteins with only nine substitutions (T614N, 

N650S, H742T, E743D, D746N, Y769F, N772T, A775S, A787S) with respect to the SARS-CoV (Fig 1a). 

The RdRp motifs (A to G) are highly conserved in the SARS-CoV, MERS-CoV and SARS-CoV-2 

strains (Fig. 1b). SARS-CoV-2 RdRp motifs are fully conserved within currently available strain 

sequences (n=179) (Fig. 1c). 

2.2. Structure of SARS-CoV-2 nsp12  

Based on the cryoEM structure, nsp12 has been devided into three structural regions: (i) the 

NiRAN domain (residues 117 – 250), (ii) Interface domain (residues 251 – 398), and (iii) polymerase 

domain (residues 399 – 919) [43]. The Recently reported structure of SARS-CoV-2 nsp12 showed the 

presence of a newly identified N-terminal β-hairpin, which interacts with the palm subdomain of 

nsp12 . We modeled SARS-CoV-2 nsp12 structure using the available cryoEM structure of SARS-CoV 

nsp12 (PDB file 6NUR [43]). The protein sequence of SARS-CoV nsp12 has 99.9% identity with GZ02 

isolate (GenBank accession number AAS00002). The SARS-CoV-2 nsp12 sequence that we used in 

homology modeling was taken from isolate WIV05 (GenBank accession number QHR63269). The two 

sequences (nsp12 from SARS-CoV and SARS-CoV-2) have ~94% identity with the most sequence 

variation existing in the N-terminal β-hairpin, NiRAN, and Interface domains (Fig. 1a).  

 

Figure 2. Homology-derived molecular model of SARS-CoV-2 nsp12 and the location of 

conserved RNA polymerase motifs. a. Overall folding of SARS-CoV-2 nsp12. The fingers, palm 

and thumb are colored in blue, red and green, respectively. The NiRAN and Interface domains 

are colored brown and magenta, respectively. b. The polymerase domain of nsp12. Location of 

the conserved motifs in SARS-CoV-2 conserved motifs. Motifs A and C, which harbor the 

catalytic site residues are colored dark-red and red, respectively. Motifs B, D, E, F and G are 

colored as blue, green, yellow, orange and magenta, respectively.  

The modeled structure of SARS-CoV-2 nsp12 (Fig. 2) superposed extremely well on to the 

cryoEM structure of SARS-CoV nsp12 (RMSD of <0.5 Å for 802 Cα atoms). Nine non-conserved 

residues in the polymerase domain are located at the surface of nsp12 distal to the polymerase active 

site (D621, D760 and D761). All conserved RdRp motifs (A-G) [13] were easily identifiable in the 

modeled structure of SARS-CoV-2 nsp12 (Fig. 2b). One of the unusual feature of modeled SARS-CoV-

2 nsp12 is the partial β-strand structure of motif A that contains one carboxylate (D621) of the catalytic 

triad. In fact, a similar conformation is present in the cryoEM structure of SARS-CoV nsp12 [43]. 
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Motifs A and C are known to form a three-stranded β-sheet composed of one strand from motif A 

and two strands from motif C in both RdRps and DNA-dependent DNA polymerases. However, the 

crystal structures of poliovirus RdRp (3Dpol) and enterovirus 71 RdRp (3Dpol) elongation complexes 

showed subtle conformational changes in the palm subdomain (called the ‘active site closure’) and 

that the presence of incoming substrate induces inter-β-strand hydrogen bonds required for 

classification as β-strand (reviewed by Peersen [54]). Therefore, the the partial β-strand structure of 

motif A is expected to adopt a complete β-strand conformation in the complex consisting of primer-

template (pt) and the nucleoside triphosphate (NTP). 

2.3. Nucleoside RNA polymerase inhibitors 

2.3.1. Remdesivir  

Remdesivir (GS-441524) is a 1′-cyano 4-aza-7,9-dideazaadenosine C-adenosine nucleoside 

analog. It is a broad-spectrum RNA polymerase inhibitor that has been shown to inhibit human and 

mouse CoVs [52]. More importantly, remdesivir has been shown to inhibit SARS-CoV-2 in vitro [48]. 

The antiviral activity of remdesivir against SARS-CoV-2 is not surprising as it is a nucleoside analog 

and expected to bind at the NTP-binding site, which is highly conserved among SARS-CoV, MERS-

CoV and SARS-CoV-2 nsp12 polymerases (Fig. 1b). Except motifs D and G, all other motifs either 

directly participate in NTP binding/hydrolysis or are spatially located in close vicinity of the 

remdesivir-TP binding site. A molecular model consisting of enzyme, remdesivir-TP and RNA (pt) 

is shown in Figure 3a. 
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Figure 3. Proposed binding of remdesivir-triphosphate and location of remdesivir resistance 

residues. a. molecular model of nsp12/pt/remdesivir-TP showing the proximity of conserved 

motifs to the substrate. (b) F483 forms hydrophobic interactions with motif B residues V696 

and V640, and (c) position of V560 close to the templating nucleotide.  

Motifs A and C, which harbor catalytic site carboxylates and motif B that binds the base/sugar 

moiety of the NTP. Both are close to remdesivir-TP (Fig. 3a). Motif E, which is in the vicinity of the 

NTP binding pocket is present only in RNA polymerases, and has been termed as ‘primer grip’ [6,7]. 

This motif is also in close proximity to remdesivir-TP. Motif F contains a highly conserved basic 

residue which interacts with the TP moiety of NTP. We also identified R558 in the SARS-CoV-2 

nsp12/pt/remdesivir-TP model as the conserved motif F basic residue which interacts with the β-

phosphate (Fig. 3a).  

Resistance to remdesivir has been demonstrated in in vitro passage assays [55]. Two mutations 

(F476L and V553L) in MHV nsp12 appeared after 23 passages. Amino acid residues F476 and V553 

are numbered F483 and V560, respectively in the cryoEM structure of SARS-CoV. Hence, hereafter 

we will refer to these residues according to their numbering in the cryoEM structure of SARS-CoV 

nsp12 (i.e. F483 and V560). Both F483 and V560 are absolutely conserved in α-, β-, and γ-CoVs, and 

belong to the fingers subdomain of nsp12. Their locations relative to remdesivir-TP is shown in 

Figures 3b and 3c, respectively. V560 is proximal to motif F. In our model of nsp12/pt/remdesivir-TP 

complex, V560 is close to the template nucleotide that is base-paired with remdesivir-TP (or incoming 

NTP). Topologically equivalent valine (V181) interacts with the templating base in the crystal 

structures of foot-and-mouth disease virus (FMDV) 3Dpol consisting of E/pt/ATP [56] and 

Coxsackievirus 3B 3Dpol [54]. Therefore, mutation V560L in nsp12 may alter the position of the 

template nucleotide and reduce the binding of remdesivir-TP, thereby imparting resistance to 

remdesivir.  

F483 is located adjacent to motif B and forms hydrophobic interactions with V640 and V696 of 

motif B. Mutation to L483 results in a shorter side chain yet maintains hydrophobic interactions with 

neighboring V640 and V696. It is possible that subtle changes in the hydrophobic interactions may 

assist in the known mechanism of active site closure in RdRps [29,30] to enhance fidelity of nsp12, i.e. 

preferential selection of NTP over remdesivir-TP.  

2.3.2. 5-fluorouracil (5-FU) 

 The polymerase domain of SARS-CoV nsp12 has a high structural homology with picornavirus 

3Dpol [43]. Hence, we reasoned that the nucleoside analogs, known to inhibit the well-studied FMDV 

3Dpol, might inhibit nsp12. The mechanism of inhibition of two major nucleoside analogs, 5-FU and 

ribavirin, has been structurally well studied [56-58]. Below, we discuss the feasibility of 5-FU and 

ribavirin for the inhibition SARS-CoV-2 nsp12.  

5-FU is a pyrimidine analog that has been used in clinics as an anti-cancer drug for many years 

[59,60]. Additionally, it is a mutagen for several viruses [46,61]. Incorporation of 5-FU-

monophosphate (5-FUMP) into the viral genome by RdRps leads to error catastrophe [62,63]. Efficient 

extinction of FMDV has been achieved by 5-FU in combination with guanidine hydrochloride and 

heparin [64]. Additionally, 5-FU after its conversion to 5-FU-triphosphate (5-FUTP) blocks initiation 

of FMDV RNA synthesis and therefore functions as an initiation inhibitor [65]. Mutations in RdRp 

enzymes under 5-FU pressure impart fitness loss in the absence of FU but confer a fitness gain in 

presence of FU. Most RNA viruses do not possess a proofreading activity. Therefore, these viruses 

overcome the effect of mutagens by selecting resistance mutations that enhance the fidelity RNA 

synthesis [66].  

CoVs also encode nsp14, which acts as a proofreading enzyme. Deletion of nsp14 renders 

SARS-CoV sensitive to 5-FU [67]. Furthermore, mapping the mutations affecting fidelity in 

Coxsackievirus B3 onto the MHV nsp12 molecular model, and introducing these mutations into MHV 

with [nsp14-ExoN(+)] or without [nsp14-ExoN(−)] exonuclease activity, two mutations (V560I and 
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M618F) were identified that conferred resistance to 5-FU [46]. Mutation at nsp12 codon 560 (V560L) 

has also been reported for remdesivir (discussed above). Therefore, resistance to 5-FU by mutation at 

V560 may occur through the repositioning of templating nucleotide, which, in turn may alter the 

selectivity of the enzyme for UTP over 5-FUTP.  

We have previously reported that mutation V173I in FMDV 3Dpol enhances selectivity of UTP 

over 5-FUTP [68]. Using pre-steady state kinetics, we showed that V173I mutation in FMDV 3Dpol 

enhances the selectivity of UTP over 5-FUTP by ~3.2-fold compared to the wild-type enzyme. The 

selectivity of UTP over 5-FUTP by V173I 3Dpol was primarily due to the increase in the dissociation 

of 5-FUTP from the elongation complex, which resulted in restricted 5-FUMP incorporation [68]. 

FMDV containing V173I survived the mutagenic activity of 5-FU by compensating for the increase in 

A → G and U → C transitions that the wild-type virus endures in the presence of FU [68]. 

Compensation in the mutant virus entails an increase of G → A and C → U transitions in the presence 

of FU, which approximates the mutational pattern to that of the wild-type virus replicating in the 

absence of 5-FU [68]. The fact that CoVs contain an exonuclease enzyme, the change in NTP selectivity 

may be a primary mechanism of 5-FU resistance since the misincorporation of 5-FUMP would most 

likely be corrected by the nsp14 exonuclease.  

5-FU resistance mutation position M618 belongs to the conserved motif A. As described above, 

the active site closure mechanism of RdRps serves as a fidelity control [69]. A comparison of RdRp 

palm domains suggests that all (+) strand RNA viruses use this active site closure mechanism to 

optimize the fidelity of RNA synthesis [14]. As shown in Figure 4, M618 is clustered among 

hydrophobic residues emanating from motifs A (dark red), C (red), and D (green). Mutation M618F 

will result in the introduction of a bulky side chain (phenylalanine), which is also more hydrophobic 

than methionine. This may lead to a subtle change in the palm-based closure mechanism of RdRps 

(in the case of nsp12) and therefore enhance the fidelity of RNA synthesis. M618 is topologically 

equivalent to position I230 in Coxsackievirus and F230 of poliovirus. Mutation at this position has 

been shown to affect the fidelity of the RdRp [14]. Hence, it is possible that selection of M618F in 

presence of 5-FU is related to the fidelity of nsp12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Position of 5-FU resistance mutation in CoV. M618 of SARS-CoV-2 is part of the highly 

conserved motif A. Note the hydrophobic cluster of residues around M618.  
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Ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide) is an FDA approved antiviral 

drug. It is one of the most widely used broad-spectrum inhibitors of RNA viruses. Similar to 5-FU, it 

is mutagenic for many RNA viruses [62,70-75]. Ribavirin has been in clinics for many years to treat 

HCV (in combination with pegylated interferon) [76], FMDV [77] and poliovirus [78]. Additionally, 

ribavirin in combination with interferon-α2a or α2b has been shown to inhibit MERS-CoV infection 

[79-81]. Ribavirin triphosphate (RTP) binds at the NTP binding site of FMDV 3Dpol [56]. The fact that 

NTP binding motifs are highly conserved among RdRps (Figs. 1 and 2), RTP is predicted to bind and 

exert its inhibitory effect on all CoVs, including SARS-CoV-2. 

Resistance to ribavirin in different RNA viruses is achieved by mutations in the RdRp coding 

gene. In poliovirus, FMDV and enterovirus 71, mutations in the 3Dpol (RdRp) confer resistance to 

ribavirin [82-85]. HCV developes resistance to ribavirin (when used in combination with pegylated 

interferon) by blocking downstream signaling actions of STAT1, STAT2, IRF9 and JAK-STAT 

pathways [86,87], and by mutation in the RdRp gene [88,89]. Mutations G64S and L420A in poliovirus 

3Dpol, M296I in FMDV 3Dpol, and F415Y in HCV NS5B have been reported to impart resistance to 

ribavirin. Mutations at G64 and L123 in enterovirus 71 3Dpol have also been reported to confer 

ribavirin resistance [85].  

 

Figure 5. Residue positions of two ribavirin resistance mutations (G64 and L420) in 

poliovirus 3Dpol relative to the active site residue (D328). The backbone of poliovirus 

3Dpol is rendered in green ribbon (PDB entry 3OL6 [90]). The equivalent positions in 

SARS-CoV-2 nsp12 are shown as cyan residues. 

Structurally, ribavirin resistance mutation sites in RNA polymerases do not appear to be 

absolutely equivalent positions. A structural alignment showed that G64 in poliovirus 3Dpol is ~17 

Å  away from the active site, whereas M296 in FMDV 3Dpol is part of the NTP binding site (i.e. within 

12 Å ). While Y415 in HCV NS5B and L420 in poliovirus 3Dpol are at topologically equivalent 

position, they are ~22 Å  away in the thumb subdomain. In poliovirus 3Dpol, resistance to ribavirin is 

achieved by mutations at G64 and at L420 (Fig. 5). These two mutation sites are almost posterior to 

the active site. Residue D868 of nsp12 is topologically equivalent to L420 of poliovirus 3Dpol, whereas 

N462 (nsp12) can be tentatively assigned as the equivalent to G64 (3Dpol). Both Y415 (of NS5B) and 

L420 (of poliovirus 3Dpol) interact with the RNA primer strand near the active site [90,91]. Mutation 

G64S in poliovirus 3Dpol and M296I in FMDV 3Dpol change the fidelity of the two enzymes [92,93], 

whereas mutation L420A facilitates RNA recombination [84]. These examples suggest that resistance 

to ribavirin can be achieved by more than one mechanism. It is possible that resistance to ribavirin in 

SARS-CoV, MERS-CoV and SARS-CoV-2 can develop through mutation at D868 or through yet 

another unknown mutation and/or mechanism. 

2.3.4. Favipiravir (T-705) 

Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is a broad-spectrum inhibitor 

of RNA viruses [94,95], including Ebola virus [96], Crimean-Congo Hemorrhagic Fever [97], Lassa 

L420

D868

D328

D763

G64 N462
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virus [98] and Chikungunya virus [99]. It was also approved as an anti-influenza drug in 2014 in 

Japan and more recently, Italy and China FDAs have approved its use for treatment of COVID-19.  

Favipiravir was discovered by chemical modification of a pyrazine analog (T-1106) [94]. After 

entering the cell, favipiravir is metabolized into the triphosphate form (T-705-RTP) that is recognized 

by RdRps. T-705-RTP competes with ATP and GTP [99], suggesting that it is recognized as a purine 

analogue. In contrast to many nucleoside inhibitors, favipiravir does not have a sugar moiety when 

administered. Human hypoxanthine guanine phosphoribosyltransferase converts T-705 into its 

ribose-5'-monophosphate (RMP) prior to formation of T-705-RTP [100]. Mechanisms of inhibition by 

T-705 have been demonstrated by the chain termination of nescent RNA [101] and by induction of 

lethal mutagenesis [102,103]. Currently, favipiravir is being evaluated for COVID-19 treatment and 

the results are awaited. 

Resistance to T-705 by RdRps is achieved by mutation of a conserved lysine of motif F. Thus, 

in chikungunya RdRp, K291R exerts low-level resistance to T-705 [99], and mutation K159R in 

Coxsackievirus B3 (CVB3) 3Dpol resulted in a nonviable virus [104]. The replication competance of 

K159R virus was restored by the A239G mutation. Biochemical results suggested that K159R reduced 

the processivity of CVB3 3Dpol, and the double mutatnt (K159R/A239G) had low fidelity [104]. The 

CVB3 K159 equivalent in nsp12 is K548. Currently, it is not known if the mutation of K548 will have 

effect on favipiravir. However, considering its conserved position, the resistance to favipiravir by 

SARS-CoV-2 is quite possible. 

3. Materials and Methods  

3.1. Sequence retrieval and phylogenetic analysis 

The nsp12 protein sequences of Bat CoV, SARS-CoV, MERS-CoV and SARS-CoV-2 were 

retrieved using BLASTp (protein-protein BLAST) algorithm with BLOSUM62 matrix. Multiple 

sequence analysis was performed in AliView software. The ML tree was inferred using RAxML v8.1.20 

[105]. The branch supports were computed out of 100 bootstrapped trees. The tree was visualized in 

FigTree v1.4.4 (http://tree.bio.ed.ac.uk/). The CIRCOS plot was created using Circos software package 

(v 0.69-8). Amino acid changes in SARS-CoV-2 against SARS-CoV were obtained by pairwise sequence 

alignment using AliView v1.26 [106]. 

3.2. Molecular modeling 

Homology-derived molecular model of SARS-CoV-2 nsp12 was generated using ‘Prime’ of 

Schrödinger Suite (Schrödinger LLC, NY) and the cryoEM structure of SARS-CoV [43] (PDB file 6NUR). 

To generate ternary complex containing enzyme/pt/NTP or enzyme/pt/nucleoside-TP, the pt and RTP 

from the crystal structure of FMDV 3Dpol [56] (PDB file 2E9R) were extracted and docked into the 

modeled structure of nsp12. The templating nucleotide was modified as required for the 

complementarity of the incoming substrate. All the complexes were energy minimized using the Jaguar 

program of Schrodinger Suite.  

4. Conclusions 

In conclusion, here we show that the nucleoside inhibitor binding pocket is conserved among 

diverse RNA-dependent RNA polymerases, and that the broad-spectrum nucleoside inhibitors have 

the potential for COVID-19 treatment. However, it is also possible that SARS-CoV-2 may evolve and 

acquire drug resistance mutations against these nucleoside inhibitors similar to other viruses. 

Additionally, the structures of SARS-CoV and SARS-CoV-2 nsp12 show that it is possible to design 

nucleoside inhibitors or small molecules that are specific to nsp12 and use them against current 

COVID-19 epidemic or in future CoV outbreaks.  
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