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Abstract: Triple negative breast cancers (TNBCs) are molecularly heterogeneous, and the link 

between their aggressiveness with African ancestry is not established. We investigated primary 

TNBCs for gene expression among self-reported race (SRR) groups of African American (AA, n=42) 

and European American (EA, n=33) women. Using The Cancer Genome Atlas (TCGA) approaches, 

we analyzed RNA sequencing data to measure changes in genome-wide expression and used 

logistic regressions to identify ancestry-associated gene expression signatures. To determine global 

ancestry, GATK best practices were followed for variant calling, and used the 1000 Genomes Project 
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as reference data. We identified >150 African ancestry-associated genes and found that, compared 

to SRR, quantitative genetic analysis was a more robust method to identify racial/ethnic-specific 

genes that were differentially expressed. A subset of African ancestry-specific genes that were 

upregulated in TNBCs of our AA patients were validated in TCGA data. In AA patients, there was 

a higher incidence of basal-like 2 tumors and altered TP53, NFB1, and AKT pathways. The distinct 

distribution of TNBC subtypes and altered oncologic pathways show that the ethnic variations in 

TNBCs are driven by shared genetic ancestry. Thus, to appreciate the molecular diversity of TNBCs, 

tumors from patients of various ancestral origins should be evaluated. 

Keywords: Triple Negative Breast Cancer, African Ancestry, RNAseq Analysis, Oncologic 

Pathways, Disparities 

 

1. Introduction 

According to national surveillance data for the United States (US), non-white minority 

populations suffer higher mortality rates for most cancers [1]. This has largely been considered as a 

consequence of poor health care equity and/or access [2,3] related to the prevalence of lower 

socioeconomic status (SES) for minority populations. However, European Americans (EAs) have 

historically been diagnosed with a higher incidence of breast cancer, compared to African Americans 

(AAs).  Prior to the mid-1980s, breast cancer mortality rates for these self-reported race (SRR) groups 

was essentially the same, but then diverged in subsequent years. These persistent survival disparities 

are currently about 40% [1,4] and occur independent of SES, which suggests there are additional 

factors, including biology, leading to race-group differences in mortality.  

The onset of race-group mortality rate disparities coincides with the advent of hormone-targeted 

therapies [5] that are now standard-of-care for hormone receptor-positive tumors. Compared to 

women of European descent, AA women [4,6-13] and women of African descent world-wide [9,14-

16] have a higher incidence of triple-negative breast cancer (TNBC) [17-21], which is characterized by 

the absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth 

factor receptor 2 (HER2). Therefore, in the context of standardizing ER/PR- and HER2-targeted 

therapies, the divergence of AA vs EA mortality likely unmasked population-level differences in 

tumor biology, which we have previously shown to correlate with genetic ancestry [22]. Several 

epidemiological studies suggest that genetic ancestry is a factor in the etiology of specific tumor 

phenotypes [13,23-25], with disease outcomes based upon molecular phenotype (e.g., HR status) 

directly affecting treatment decisions, regardless of SES barriers to high-quality clinical care.  

TNBC, one of the most aggressive forms of breast cancer, has limited treatment options that are 

ineffective when the cancer is diagnosed at later stages [25-29]. Since AA women tend to be diagnosed 

at later stages [30,31], at an early age [32-34], and suffer higher rates of TNBC, these factors likely 

contribute to AAs having the highest breast cancer mortality rate among all race groups. Even within 

TNBC cases, AA women have a higher mortality compared to EA women [4], and these 

race/ethnicity-associated differences in TNBC survival suggest that there is a difference in disease 

progression, which may be driven by differences in gene expression that are detectable by genomic 

investigations. Multiple lines of evidence support this theory, including differences in the prevalence 

of “Vanderbilt TNBC subtypes” [35,36] among SRR groups, in which gene expression signatures define 

these subtypes. Although this TNBC subtype classification was intended to assist with clinical 

management and identification of targetable genes in TNBCs [36], these subtypes represent a myriad 

of heterogeneity [37,38] that has yet to be fully defined for understudied/minority populations, who 

suffer most from TNBC. 

To have better representation of phenotypic variation in TNBC tumors, we report here our 

investigation of differences in TNBC primary tumor gene expression using bulk RNAseq, comparing 
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TNBCs of AAs to those of EAs. As opposed to use of traditional methods identifying differentially 

expressed genes (DEGs) between SRR groups, we quantified genetic ancestry (QGA) for individual 

patient across five human ancestry super groups, and identified the African ancestry-associated gene 

expression signatures of TNBCs. We then determined whether these racial/ethnic differences in gene 

expression reveal insights into biological pathways, and characterized the TNBC subtypes using a 

newly revised method for categorizing subtypes, building upon previously validated tools. We also 

characterized tumor-associated immune responses for each tumor. Furthermore, we determined 

whether phenotypic subtypes were associated with genetic ancestry, as well as whether there were 

biases of prevalence of TNBC phenotypes between patient SRR and ancestry groups.  

2. Results 

2.1 African ancestry-associated gene signatures in treatment-naïve and post-treatment TNBCs 

In an effort to uncover differentially expressed genes that are driven by shared ancestry, and 

therefore presumably under distinct genetic regulation, we first quantified the individual genetic 

ancestry of our cohort across five human super-groups. The initial step for this ancestry estimation 

included a characterization of SNVs from the bulk RNAseq data. These variants were compared to 

the 1000 Genomes super-group reference sets to estimate proportional ancestry and correlated to the 

1000 Genomes populations. Specifically, each individual was measured for European [39], East Asian 

(EAS), South Asian (SAS), American Native (AMR), and African (AFR) ancestry (Figure 1A). As 

expected, most genetic ancestry for EAs was European (86-99%), and most ancestry for AAs was 

African (45-98%). However, a portion of the EA patients had appreciable Asian and/or American 

Native admixture (2-15%). Similarly, most AA patients had substantial European (0-44%) or 

American Native (0-14%) ancestry. This analysis also revealed that, based on the molecular signature 

of their tumors, two patients who self-reported as EAs had more than 60% of African ancestry and 

clustered with AA patients. 

Using the QGA for each individual, we conducted gene-by-gene linear regressions, screening 

for significant associations with each of the QGA super-groups. Among all ancestry group tests, AFR 

and European ancestry estimations yielded the largest and most significant set of genes with 

ancestry-associated expression changes, compared to EAS, SAS, and AMR. For the treatment-naïve 

tumors, approximately 160 genes were significantly associated with African ancestry (adjusted p-

value <0.05). Similarly, we conducted a QGA-association analysis on 15 post-treatment tumors 

(residual tumors), but low patient numbers (11 AAs and 4 EAs) impeded our ability to reach 

statistical significance (adjusted p-value threshold < 0.05). Alternatively, we accomplished a 

traditional SRR group comparison and found 13 SRR-associated genes in residual tumors (adjusted 

p-value <0.05) (Supplemental Figure 2).  

Most ancestry-associated genes showed a negative correlation in expression (downregulation) 

for those of African ancestry patients compared to those of European ancestry (Figure 1B). In a two-

way hierarchical clustering of both gene expression and patient samples, SRR groups arbitrarily 

clustered together (Figure 1B). Further, when we investigated the phylogenic structure of the patient 

cluster nodes, we found that EA patients separated into two distinct groups (Figure 1B, red arrow). 

The separate EA groups had differences in gene expression patterns as well as genetic ancestry 

composition, with one group primarily only European and the second group containing a substantial 

amount of genetic admixture from EAS, SAS, and AMR. The gene expression patterns of the admixed 

EAs were similar to the AA group (Figure 1B), which also had substantial EAS, SAS, and AMR 

admixture. Therefore, this separation of EA patients provided further evidence of the impact of 

genetic ancestry on gene expression. Using this gene set, a principal component analysis (Figure 1C) 

with the African ancestry-associated genes completely segregated the SRR groups, suggesting that 

this gene signature from TNBCs predicts race/ancestry among TNBC patients. Because these genes 

were selected for their association with African ancestry, and ancestry estimates were highly 
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correlated with self-identity, we are confident that this set of genes is representative of genes that are 

distinctly regulated among race/ethnicity groups, due to individual-level African ancestry. 

 

Figure 1. Differentially expressed genes (DEGs) associated with quantified genetic ancestry (QGA) 

in treatment-naïve TNBC RNAseq. (A) QGA estimates for each cancer case, derived from RNAseq 

variants. Geographic ancestry super-group categories are indicated as European (EUR, light blue), 

East Asian (EAS, dark blue), American Native AMR, light green), South Asian (SAS, dark green), and 

African (AFR, pink). Samples are grouped by treatment status (treatment naïve or residual tumor) 

and self-reported race (SRR). (B) Clustergram heatmap of the 156 (p < 0.05) genes that show 

differential expression levels by QGA, where rows represent genes and columns represent 

individuals. SRR is shown in the top row of the color map (red indicating EA, and blue indicates AA); 

the remaining color map rows indicate ancestry estimations for each individual. The red box indicates 

genes that are associated with non-European admixture (EAS, SAS, and AMR). Constellation plot, 

right, representing the hierarchical structure of the individuals shown at the bottom of the heatmap. 

Red dots indicate SRR EAs; blue dots are SRR AAs. The red arrow points to the substrata of EA 

individuals with increased admixture; this corresponds to the non-European admixture genes in the 

red box of the heatmap. (C) Multidimensional analysis using 156 ancestry-associated genes indicates 

that the expression patterns separate individuals into SRR groups. Red indicates EA, and blue 

indicates AA. The blue arrow indicates an individual that self-reported as EA but has mostly AFR 

ancestry, clustering with the AA group. (D) De novo network analysis using QGA DEGs. Molecules 

in green are upregulated in individuals with increased AFR ancestry; those in blue are downregulated 

in individuals with AFR ancestry. Molecules in orange are drawn into the network and predicted to 

be activated based on the state of DEGs in the network, using published interactions from the curated 

Ingenuity Knowledge Base. Orange lines between molecules indicate relationships leading to 

activation; blue lines indicate relationships leading to inhibition. Yellow lines indicate that the 

relationship between two molecules is not in the expected direction. For example, in this network 

TP53 is known to inhibit AKT1. TP53 is activated, and so it is expected that AKT1 would be 

downregulated. However, it is not. Because of this, the line showing the interaction between these 

two molecules is shown as yellow. 

Since several EA patients had no appreciable African ancestry, we also determined the 

association of European ancestry with gene expression, using the same linear regression model used 

for the African-associated gene selection. As a way of validating the method’s capacity to identify 

ancestry-associated genes, we noted whether the genes associated with European ancestry were 

unique, compared to genes associated with African ancestry. Of the 156 African-associated genes, 153 
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overlapped with genes associated with European ancestry; 7 additional genes were European-

specific and the remaining 3 were African-specific (Supplemental Figure 1C). For the genes shared 

between African and European ancestry, trends of gene expression positively correlated with African 

ancestry, but negatively correlated with European ancestry. This contrast suggests that ancestral 

informative alleles that are population-private (i.e., existing in one ancestry group and not the other) 

are the genetic drivers regulating gene expression levels. 

We also determined differences in expression comparing SRR groups of EAs with AAs in order 

to compare the results of our genetic ancestry method to the traditional race-group comparison 

method (Supplemental Figure 3). The SRR DEG comparison yielded more than 1000 genes 

(Supplemental Figure 3A) with significant differential expression (adjusted p-value <0.05; 

upregulated genes = 297, downregulated genes = 764). However, hierarchical clustering revealed that 

the range of gene expression differences for the SRR DEGs was smaller compared to the QGA-

associated genes, translating to higher absolute fold changes in QGA-associated genes (avg∆=2.4) 

compared to SRR DEGs (avg∆=1.14) (Supplemental Figure 3C). Compared to the ancestry-associated 

genes, 81 genes were shared between SRR DEG analysis and QGA DEG analysis. This suggests that, 

when comparing SRR groups, less than 8% of the DEGs will be due to genetic ancestry; the remaining 

92% could be due to socio-clinical factors (e.g., comorbidity, environmental exposures).   

2.1 Distinct biological networks of African ancestry and differentially expressed genes 

We investigated whether genes that show expression changes associated with African ancestry 

are involved in biological pathways that could suggest distinct ancestry-specific functionality. We 

calculated the genes’ fold-change differences between the SRR race groups, EA and AA, to create a 

suitable datatype for network analysis input. Using ingenuity pathway analysis (IPA) software [40] 

(Figure 1D), we conducted a causal network analysis, which assessed known connections across all 

African-associated genes and then predicted how these interactions may have been altered, based on 

gene expression changes between the SRR groups. The most prominent network was derived from 

25 genes that were associated with African ancestry, with an additional 10 genes that were 

automatically included through knowledgebase predictions, based on previously published 

interactions. In the de novo network, canonical cancer-related pathways, including NfKB and TP53, 

were involved (Figure 1D). Several interactions within the network were designated “inconsistent” 

in the context of the established expected gene regulation effects. An example of these unexpected 

interactions is central to understanding how ancestry influences these networks (Figure 1D, red box). 

For example, TP53 is predicted to be activated in AAs based on gene expression being higher; 

however, the expected/established outcome of TP53 activation would be down-regulation of the 

AKT1 kinase and IL6 chemokine genes. However, in our ancestry-related pathway analysis, both 

genes appeared to be activated when TP53 was activated. Hence, the African-ancestry associated 

genes had altered expression that led to unexpected relationships that were inconsistent with 

previous findings. We also determined the general pathway enrichment among the African-

associated genes; the most significantly enriched pathways are shown in Supplemental Figure 1D.  

An additional pathway analysis, utilizing DEGs from the SRR comparison (Supplemental 

Figure 2), also revealed involvement of canonical cancer-related pathways. As seen in Supplemental 

Figure 1E, the top gene ontology diseases and functions in the de novo system were behavior, cellular 

assembly and organization, and connective tissue disorders. A canonical cancer pathway involving 

the NFkB complex is central to this network (Supplemental Figure 1E), which is predicted to activate 

(denoted by orange relationship lines) various genes upregulated in the dataset, including the 

transcription regulator CITED4, peptidase ADAMTS9, and kinase PIM3.  

2.3 Prevalence of TNBC subtypes across race and ancestry groups 
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 A caveat to treating TNBC is the manner in which it is characterized in clinic, as simply lacking 

hormone receptor expression, which indicates that the most effective hormone-targeted therapy 

would not be beneficial. Genomic expression signatures have allowed researchers to categorize 

TNBC into subtypes that indicate distinct molecular tumor phenotypes [41]. The initial TNBC 

subtypes were determined using the Vanderbilt TNBC subtype tool, a useful bioinformatics platform, 

which correlates specific gene expression patterns for a TNBC tumor with the pre-determined gene 

signatures discovered in the initial tumor training set used to develop the platform [42]. The original 

six subtypes included mesenchymal (M), immunomodulatory (IM), luminal androgen receptor 

positive (LAR), basal-like 1 (BL1), basal-like 2 (BL2), and mesenchymal stem-cell like (MSL). Since the 

debut of this tool, two of these VandyTNBC categories (IM and MSL) have been retired from use [43]; 

however, the tool still calculates and designates all six categories when applied to user data. If the 

tool assigns IM or MSL for a given tumor, the suggested fix to this issue requires the user to identify 

the second-highest correlated subtype and to reassign an acceptable category. Because we sought to 

categorize our TNBC tumors into appropriate subtypes, we first used this ‘reassignment’ (Figure 2A) 

that collapses the subtypes into four categories. These categories are presumably heterogeneous 

given the tumors show high correlation with multiple subtypes, which enables the use of ‘second-

highest correlation’ assignment. Comparing distributions of reassigned categories between SRR 

groups indicated that AAs had the highest proportions of M and BL1, whereas EAs had primarily 

BL2 (Figure 2A). This distribution was different from our previous findings [14], likely because the 

previously all six TNBC subtype categories were included. Specifically, reassignment to remove the 

IM and MSL retired subtypes resulted in redistribution of tumors as there are forced into sub-optimal 

categories, shifting the observed proportions of subtypes in SRR from our previous studies (Figure 

2A). This contradiction compelled us to ensure that the categorization of subtypes was an accurate 

interpretation of the biological variation across TNBC tumors, and not just a reflection of an 

improperly stratified training set. Therefore, we sought to create a tool that incorporates the 

heterogeneity of TNBC subtypes within a tumor, called the Triple Negative Hetero-Fluid (TNHF) 

tool (described in Methods). As a pilot application of our classification scheme we measured the 

relatedness of our TNHF tool correlations, compared with VandyTNBC tool correlations using 

unsupervised clustering (with correlation scores from only the valid categories; BL1, BL2, M, and 

LAR) (Figure 2B). Based on the pattern of correlation scores amoung subtypes, the tumors separated 

into six cluster nodes, as opposed to the four prescribed tool categories. Tumors within each of the 

six new TNHF groups shared substantial similarity in scores, indicating shared heterogeneity traits 

of specific subtype combinations. The subtype correlation patterns of each node reveal a heterogenic 

tumor phenotype, which indicates presence or absence of the particular molecular TNBC subtypes, 

shown as a positive or negative status for the relevant subtype categories (Figure 2C). Therefore, we 

used a positive/negative status nomenclature to describe the heterogeneity and/or uncertainty of the 

phenotypes in each cluster node. Specifically, we designated heterogeneous categories as: 1. 

LAR+/BL1-, 2. M-, 3. M+, 4. BL2+/BL1-, 5. BL1+/BL2-, and 6. Indistinct (IND), which were determined 

by their negative or positive correlations (Supplemental Figure 4B). These designations allowed us 

to stay within the framework of the original TNBC subtypes yet capture the breadth of heterogeneity 

within the naturally occurring phenotypes. Among the SRR categories, AAs had the highest 

occurrence of BL2+/BL1-, and EAs had the highest occurrence of M-. This change in distributions 

indicated that using the secondary calls from the original tool was likely not the optimal resolution. 

As we tracked how the subtype designations changed from the original tool, through reassignment, 

ending with the final cluster node TNHF categories (Figure 2D), we noted that secondary 

assignments led to a collapse of options that mis-categorized certain tumors, which were 

redistributed into related cluster nodes that shared heterogeneous mixture. For instance, in the 

reassignment, the tumors designated in the original IM category were separated between LAR and 

BL2; however, they were reconnected into the M- cluster node, which represents multiple subtype 

negative correlations (Supplemental Figure 4B), indicating a lack of homogenous cell types that 

would fit into any of the acceptable Vanderbilt categories. Further investigation of the expression 
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signatures in the M- tumor subtypes, perhaps in a single-cell fashion, is necessary to determine the 

true biological definition of this tumor subtype. 

 

Figure 2. TNBC subtyping and distribution among SRR and treatment groups. (A) Distribution of 

re-assigned TNBC subtype calls across SRR race groups using the Vanderbilt calling method. (B) 

Clustergram heatmap of TNBCType call correlations for BL1, BL2, LAR, and M subtypes from use of 

the Vanderbilt tool with TPM (transcripts per million) and FPKM (fragments per kilobase of exon 

model per million reads mapped) values as input and our TNBC subtyping method (TNHF mean and 

median). Rows represent the different subtype correlations for the tools, and columns represent 

individuals. Using these correlations, our samples separate into 6 clusters, numbered at the bottom. 

Color map columns of the call reassignments removing IM and MSL are shown at the top of the 

heatmap (key to the upper right). Sample names are colored based on their cluster assignment. 

Reassignment of TNBC subtypes based on a dual-tool reduction method. Cluster Nodes: 1 = 

LAR+/BL1-, 2= M-, 3= M+, 4= BL2+/BL1-, 5= BL1+/BL2-, 6= Indistinct (IND). (C) Parallel plots for each 

of the 6 clusters showing the correlation for the samples within the cluster to a given TNBC subtyping 

call/method (bottom). Cluster coloring matches that in panel 2B. (D) Sankey plot showing how 

samples reassign from the original TPM call, to the second most correlated call (for re-assignment of 

IM, MSL, and UNS samples) and their cluster assignment from panel B. (E) TNBC clusters (from panel 

B) and their distribution among SRR. (F) Total abundance of tumor-associated leukocytes estimated 

using CIBERSORT deconvolution methods is shown in comparison to SRR and treatment groups. 

2.4 Differences in immune responses by RNAseq deconvolution 

 To investigate immunological differences in our AA-enriched TNBC cohort, we used 

CIBERSORT [44], an in silico deconvolution method, to determine the estimated prevalence of 

specific immune cell types across the TNBC tumors. We compared proportions of immune cells 

across patient strata (SRR, ancestry) (Figure 2E and Supplemental Figure 5), treatment status 

(treatment naïve vs residual) (Figure 2E), and our six TNBC subtype clusters (Supplemental Figure 

5). There were distinctions of immune responses, defined by the absolute tumor-associated leukocyte 

(TAL) score (Supplemental Figure 5A). When comparing high vs low overall TAL scores (adjusted 

p-value <0.05), 832 genes showed significant differential expression. Hierarchical clustering of the top 

50 genes associated with the TAL score indicated a contrast of expression of these genes between TAL 

high vs low scores (Supplemental Figure 5A). At the individual level, there was variation of immune 

cell infiltration; however, the low numbers of individuals in each patient strata precluded our ability 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2020                   doi:10.20944/preprints202004.0178.v1

Peer-reviewed version available at Cancers 2020, 12, 1220; doi:10.3390/cancers12051220

https://doi.org/10.20944/preprints202004.0178.v1
https://doi.org/10.3390/cancers12051220


 8 of 21 

 

to find significant differences, despite trends such as higher TAL scores for EAs and lower TAL scores 

for treated, residual tumors (Figure 2F). 

2.5 Potential druggable targets from ancestry-associated gene signatures 

As a clinical follow-up to our ancestry-associated gene expression differences, including key 

biological distinctions in canonical cancer-related networks across both treatment-naïve and treated 

TNBC tumors, we investigated if these genes are potential drug/treatment targets. Specifically, we 

performed a search of the literature and www.clinicaltrials.gov to determine if the African ancestry-

associated genes we identified have FDA-targeted therapeutics available or are being studied in 

clinical trials for use in any cancer type. We found more than a dozen African ancestry genes that are 

currently targeted with FDA-approved drugs, and most of these genes had multiple drug options 

(Table 1). To determine if these genes are indeed targets for African American TNBC patients, we 

first verified that they were differentially expressed between SRR groups (Figure 3A) and found they 

were all significantly different between AA and EA patients. Next, we utilized the TCGA cohort to 

validate, independently, if the TNBC-specific expression differences were replicated in an additional 

cohort of patients (Figure 3B). Most of the candidate target genes maintained the same trend; 

however, statistical significance was lost for most genes, likely due to the lack of ancestry estimation 

in TCGA tumors, thus the confounding impact of mixed ancestry because of possible discordance 

between SRR and QGA. However, from our cohort, PIM3, PPP2R4, and ZBTB22 retained significant 

upregulation in the TCGA data (p= 0.0018, 0.0229, and 0.0230, respectively) (Figure 3B), suggesting 

that they have the most robust association with African ancestry that transcends admixture in races. 

We further investigated the clinical association of the most significant candidate gene, PIM3, by 

evaluating its association with survival, race, and subtype (Figure 3C-F). Higher expression of PIM3 

was protective for AAs and in the basal-like 1 subtype of TNBC. This paradox in expression vs. 

survival for PIM3 underscores the need additional biological validations and contextual information 

to determine genetic ancestry in addition to molecular TNBC subtyping. 
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Table 1. African ancestry-associated genes are potential therapeutic/disease management targets with currently utilized treatments.  

Gene Name Drugs Tested in Cancer Disease (Cancer or Other) Organism  
Pubmed ID 

(PMID) 

AKT1 AKT Serine/Threonine Kinase 1 Arsenic Trioxide, Carboplatin, Everolimus, Cisplatin, Nelfinavir Various Cancers Human 12480548 

CCND1 Cyclin D1 Arsenic Trioxide, Cetuximab, Aspirin, Trametinib, Palbociclib Various Cancers and other diseases Human 12480548 

SLC12A2 Solute Carrier Family 12 Member 2 Bumetanide and Furosemide Neonatal Seizures, Autism, Heart Failure Human 11698253 

PPP2R4 Protein Phosphatase 2 Phosphatase Activator Ceramide Breast Cancer, Diabetes, Obesity Human  29261144 

RELA RELA Proto-Oncogene, NF-KB Subunit Dimethyl fumarate Multiple Sclerosis Human 26683377 

CITED4 
Cbp/P300 Interacting Transactivator With 

Glu/Asp Rich Carboxy-Terminal Domain 4 
Fluorouracil Cardiac ischaemia/reperfusion (I/R) injury Mouse 28304151 

PIM3 Pim-3 Proto-Oncogene, Serine/Threonine Kinase Fostamatinib, Gefitinib, Sunitinib, Ruboxistaurin Cancer and others Human 26516587 

EGFR Epidermal Growth Factor Receptor Gefitinib, Erlotinib, Lapatinib and Cetuximab NSCLC Human 15118073 

LPL Lipoprotein Lipase Orlistat, Fenofibrate Obesity and Diabetes Human 24016212 

NUDC 
Nuclear Distribution C, Dynein Complex 

Regulator 
Phenethyl Isothiocyanate Various Cancers and Cardiovascular Disease Human 21838287 

MEPCE Methylphosphate Capping Enzyme S-Adenosyl methionine Various Human 23985780 

IL6 Interleukin 6 Siltuximab, Vitamin C and E, Adalimumab Various Human 8823310 

NFKB1 Nuclear Factor Kappa B Subunit 1 Thalidomide, Donepezil, Glycyrrhizin, Triflusal Various Human 15723633 

ADAMTS4 
ADAM Metallopeptidase with Thrombospondin 

Type 1 Motif 4 
Tinzaparin Brain Tumors, Thromboembolism, Thrombosis Human 15723278 

TP53 Tumor Protein P53 Venetoclax, Cyclophosphamide, Fluorouracil, Cisplatin Various Human 27069256 
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Figure 3. African ancestry-associated genes that are current drug targets in cancer treatments show 

different survival outcomes between SRR groups and breast cancer subtypes. (A) Gene expression 

levels between QGA differentially expressed genes identified as drug targets between SRR CAs and 

AAs in our TNBC dataset. (B) Gene expression levels between QGA differentially expressed genes in 

Figure 3A, but from the TCGA cohort. (C) Relapse-free survival curve of PIM3 for SRR AAs shows 

that higher expression of PIM3 is associated with higher probability of relapse-free survival (p = 0.051). 

(D) Relapse-free survival curve for PIM3 for SRR CAs shows that higher expression of PIM3 is 

associated with lower probability of relapse-free survival (p = 0.11). (E) Relapse-free survival curve of 

PIM3 for TNBC basal-like1 tumors shows that higher expression of PIM3 is associated with higher 

probability of relapse-free survival (p = 0.0051). (F) Relapse-free survival curve of PIM3 for TNBC 

mesenchymal tumors shows that higher expression of PIM3 is associated with lower probability of 

relapse-free survival (p = 0.24). 

3. Discussion 

TNBC, the most aggressive form of breast cancer, has limited treatment options. It is 

characterized by poor overall survival, with recurrent, distant metastatic disease common within the 

first 3 years after aggressive chemotherapy treatment. TNBC disproportionally affects young AA 

women, and there is increasing evidence that this disparity cannot be attributed to solely to SES and 

lack of access to care. Our previous studies [14,45,46] and others [47] have demonstrated differences 

in gene expression based upon race. However, since SRR does not allow more than correlation with 

African ancestry, Quantified Genetic Ancestry (QGA) analyses are needed to understand the shared 

genetic drivers of TNBC observed across the modern African Diaspora[6,48]. Furthermore, due to the 

heterogenicity of TNBC, additional tools are required to define TNBC subtypes and ancestry-related 

differences within TNBC subtypes. Herein, we used two newly developed tools to evaluate the 

heterogeneity of TNBC for patients with African ancestry.  

Prior studies that compare SRR groups for differential gene expression in breast and other 

cancers have revealed significant differences between AA and EA race groups [14,45-47]; however, 

many of these changes are confounded by genetic admixture and non-genetic factors that prevent 

clear interpretation of genetic contributions to SRR differences in tumor biology. By use of QGA, we 

identified ancestry-related differential expression of genes in treatment-naïve and residual TNBC 

tumors which were involved in canonical cancer pathways, but had predictions of modified 

functional activity. This deconvolution of ancestry has also been employed in prostate cancers, also 
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revealing gene expression correlated with specific West African ancestry [49]. We observed that 

specific psuedogenes that showed reduced levels of expression associated with African ancestry, are 

located in regions of the genome that are frequently deleted in sporadic breast and prostate tumors 

derived from AA patients[50]. An example of this expression/deletion effect involves a pseudogene, 

RNU2-6p, which is downregulated in AA TNBCs (Supplemental Figure 6). According to GTEx data, 

this gene is not typically expressed in normal breast tissue; however, it is highly expressed in breast 

tumors within our cohort, but with significantly reduced expression in untreated TNBC tumor of 

patients with significant African ancestry. The functional relevance of this distinction, based on in 

silico analyses and previously published findings [51,52], is that RNU2-6p appears to be a non-coding 

nuclear RNA that has a secondary structure resembling splicing machinery. This ancestry-associated 

pseudogene may affect exon usage and/or isoform splicing, which may contribute to unique 

molecular signatures in gene expression, translating into disease progression in African Americans 

with breast cancer, as has been previously shown in prostate cancer [53,54]. 

When we compared the differential genes identified by QGA with those identified by SRR, we 

found a 51% overlap of ancestry-associated genes in the race-associated category. This indicates that 

using SRR categories for differential gene expression can diminish ancestry-related expression, given 

the convolution of admixture in race groups, and SRR categories will incorporate additional factors 

that drive differences in gene expression that are independent of genetic ancestry. This also explains 

the relatively larger number of differentially expressed genes associated with SRR, as opposed to 

genetic ancestry, and provides additional opportunities to discern the multiple factors connected to 

race/ethnicity that contribute to differential gene expression among race groups. 

Additionally, despite the limited number of residual tumors in our cohort, we also observed a 

robust 13-gene expression pattern upregulated in AAs but not in EAs with residual tumors. Of note, 

EGFR, which is upregulated in African American breast and prostate cancers [55,56], appears to be a 

driver within this gene signature. Additionally, genes that are downregulated in AAs had a strong 

expression in EA patients. These differences did not correlate with TNBC subtypes as determined by 

use of either the Vanderbilt or TNHF subtyping tools, suggesting that these genes are likely due to 

genetic ancestry. Furthermore, in the TNHF analysis, there were fewer unclassified AA patients. This 

has prognostic implications, since, for TNBCs, residual disease after neoadjuvant chemotherapy is 

associated with worse overall survival relative to that for non-TNBC patients, which is not the 

situation when patients achieve a complete pathologic response [57-59]. Thus, identification of genes 

that are drivers in residual tumors can help in developing targeted adjuvant therapies that could 

improve survival in this patient population, for which there currently exists no effective standard of 

care.   

Our pilot utilization of the novel TNHF tool, an augmented extension of the Vanderbilt tool, is 

distinctive in various ways. First, TNHF reports only the correlation scores for valid TNBC categories. 

Second, TNBC categories from TNHF are assigned as a semi-quantified ‘status’, which represents the 

presence/absence of a mixture of valid Vanderbilt TNBC subtypes within tumors, which corresponds 

to heterogeneity observed in TNBC tumors. Because this TNHF method allows us to account for 

subtype heterogeneity within a tumor – denoted as positive or negative annotations, a dynamic 

output allows a comprehensive account of proportions of TNBC subtype signatures that may be more 

informative for clinical management of breast tumors. This can be transformative in TNBC disease 

outcomes, as certain TNBC subtypes exhibit a higher risk of recurrence and/or drug resistance. 

Therefore, information of mixed tumor types may help predict adverse outcomes or limited treatment 

response and tumor evolution in the context of residual tumor behavior. In our cohort, African 

ancestry patients had a higher rate of basal-like 2 positive/basal-like 1 negative (BL2+/BL1-) TNBC 

subtypes, which is similar to previous findings for AA patients [14,47]. This positive/negative 

integration of all potential TNBC categories, which have prognostic value, has added clinical utility, 

particularly for making treatment decisions. The capacity of gene expression profiles to predict 

treatment response is supported by clinical trial data showing differences in pathological complete 
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responses based upon Vanderbilt TNBC subtypes [60-62]. For example, in the GEICAM/2006-03 

TNBC neoadjuvant chemotherapy clinical trial, the best responders were in the BL1 group, with 60% 

of patients achieving a pathologic complete response compared to 20% in the LAR and IM groups 

[60]. Thus, use of the more refined TNHF subtyping tool, which can provide information such that a 

tumor is equally BL2+ and M+, can have a greater impact on neoadjuvant treatment decisions and 

can inform subsequent choices if standard treatments fail. 

Both BL2/BL1 subtypes are also associated with immune gene signatures for AA TNBC patients 

[14,63,64], which appears to be driven by IL-6 and TP53 signaling as determined by IPA. Both IL-6 

[65] and p53 activation [66-70] are associated with African American tumors, validating the 

robustness of our analysis tools. Although we found no significant associations with Tumor 

Associated Leukocyte (TAL) scores, most likely due to samples being isolated from macro-dissected 

regions enriched for tumor cells and depleted of stromal and/or highly infiltrated regions, tumors of 

patients with significant African ancestry corresponded with lower TAL score compared to patients 

with predominantly European ancestry among treatment-naïve patients. In the tumor 

microenvironment, various genes, including immunological genes, are differentially expressed by 

race/ethnicity [46,71]. However, some studies that utilize public datasets that have low representation 

of ethnic groups indicate that immunological differences in TNBCs are relatively small [72]. Although, 

at the individual level, we found a difference in lymphocytic infiltration, it was not obvious at the 

race/ethic group level, may be due to small sample numbers in each race/ethnic group. However, 

higher TAL scores for EAs and lower TAL scores for treated, residual tumors were noted. A TNBC 

study of south Asian patients has reported increased infiltration of T-lymphocytes [73] and suggest 

that TNBCs with higher immunogenicity may be candidates for immunotherapy [74]. Thus, higher 

TAL scores observed in our EA TNBC patient cohorts could be exploited to select the relevant 

immunotherapies. 

4. Materials and Methods  

4.1 TNBC patient cohort and sample collection  

To identify molecular signatures that differ between TNBCs of AA women and EA women, we 

performed RNA sequencing (RNAseq) on a TNBC cohort. A retrospective convenient formalin-fixed, 

paraffin-embedded (FFPE) archival tissue cohort from the Division of Anatomic Pathology of 

University of Alabama at Birmingham (UAB) consisting of 104 AA and EA women diagnosed with 

TNBC between 2000-2012 was selected for this study (Supplemental Figure 1A). All samples were 

collected and utilized in this study with the prior approval of the UAB Institutional Review Board 

(IRB number: 060911009). Personal medical history and clinical records were limited for this cohort. 

Following quality control screening, a final set of 75 cases remained (42 AAs and 33 EAs). Of these, 

samples were separated by treatment status treatment-naïve (n=60) or residual tumors (n=15). Of the 

treatment-naïve cases, there was a near equal distribution of race categories (31 AAs and 29 EAs). Of 

the residual tumor cases, the representation of AAs was more than twice that of EA (11 AAs and 4 

EAs). All tumors and corresponding normal regions were macro-dissected by pathologists prior to 

RNA extraction. Stage and grade distribution were similar between race groups (Supplemental Table 

1).  

4.2 RNA extraction, library preparation, and primary analysis 

RNA was extracted from macro-dissected samples using standard RNA extraction kits. The 

concentration and integrity of the RNA was estimated by a Qubit®  2.0 Fluorometer (Invitrogen, 

Carlsbad, California) and an Agilent 2100 Bioanalyzer (Applied Biosystems, Carlsbad, CA), 

respectively. Total RNA from each sample was taken into RNAseq applications. First, ribosomal RNA 

(rRNA) was removed with Ribo-Zero™ Gold kits (Epicenter, Madison, WI) by the manufacturer's 

recommended protocol. Then, the RNA was fragmented and primed for the first-strand synthesis 
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using the NEBnext First Strand synthesis module (New England BioLabs Inc., Ipswich, MA). Second-

strand synthesis was then performed with the NEBnext Second Strand synthesis module. Following 

this, the samples were taken into a standard library preparation protocol using NEBNext®  DNA 

Library Prep MasterMix Set for Illumina®  with slight modifications. Briefly, end-repair was 

accomplished, followed by A-tailing and custom adapter ligation. Post-ligated materials were 

individually barcoded with unique in-house Genomics Service Laboratory (GSL) primers. Library 

quantity was assessed with a Qubit 2.0 Fluorometer, and the library quality was estimated by 

utilizing a DNA 1000 chip on an Agilent 2100 Bioanalyzer. Quantification of the final libraries for 

sequencing applications was determined using qPCR-based KAPA Biosystems Library 

Quantification kits (Kapa Biosystems, Inc., Woburn, MA). Paired-end sequencing was performed 

with an Illumina HiSeq2500 sequencer (Illumina, Inc., San Diego, CA, USA).  

4.3. Quality control and sequence alignment.  

Fast QC (version 0.11.8) was used to perform quality control on the raw sequencing reads [75]. 

To proceed through the analysis with high-quality reads, adapters and low-quality sequences were 

trimmed from the raw reads using Trimmomatic (version 0.36) [76]. These reads were then aligned 

to the reference genome (GRCh37 assembly) using HISAT2 (version 2.0.4) [77]. Although rRNA 

reduction steps were taken during library preparation, we removed any remaining rRNA 

contamination in the samples using the Bed-tools (version 2.26.0) intersect function against a bed file 

of annotated rRNA sequences [78]. Following quality assessment of sequence data, 28 cases were 

excluded due to sequencing artifacts (Supplemental Figure 1B).  

4.4. Gene expression quantification and differential gene expression analyses 

After alignment and rRNA gene reads removal, RNAseq alignments were assembled into 

potential transcripts, and gene expression levels were quantified using Stringtie (version 1.3.3) [77]. 

All comparative analyses for differential gene expression were conducted within the respective 

treatment groups, treatment-naïve or residual tumors. To identify genes that were ancestry-

associated, we used JMP®  Version 14.0 (SAS Institute Inc. Cary, NC) to conduct a gene-by-gene linear 

regression model, testing the quantified (continuous) measurements of African and/or European 

genetic ancestry against the gene expression levels.  False-discovery Rate (FDR) adjusted p-values 

were used to determine significant associations. DESeq2 was then used to validate whether genetic 

ancestry-associated genes were differentially expressed between self-reported AA and EA 

individuals [79]. Fold-change values from both the ancestry-associated gene lists and SRR gene lists 

were used in IPA (see below). 

4.5. TNHF TNBC subtyping 

To determine the prevalence of TNBC subtypes in the cohort, we first utilized the Vanderbilt 

TNBC subtyping tool to identify basal-like 1 and 2 (BL1 and BL2), immunomodulary (IM), luminal 

androgen receptor (LAR), mesenchymal (M), and mesenchymal stem-like (MSL) tumor samples 

[41,42]. These six subtypes were further refined to four TNBC subtypes, with re-assignment of IM 

and MSL subtypes, as these are primarily composed of immune and stromal cell populations, 

respectively [43]. To address this in our variant calls from the Vanderbilt TNBC type tool, samples 

that were assigned IM or MSL were re-assigned to their second most correlated TNBC subtype. As a 

supplementary validation method to the Vanderbilt TNBC classification tool, a summarized ranks 

measure was computed using the original TNBC subtype signatures for all samples using normalized 

RNAseq expression data. TNBC subtype signatures were obtained from Lehmann et al. [41]. Across 

all samples, genes were ranked from low to high expression using the rank function in R statistical 

software with the minimum rank method used to resolve duplicate expression ties. For each sample, 

ranks for each gene in the given subtype signature were extracted, and a representative median or 

mean of ranks for the gene signature was calculated to estimate the overall regulation of the signature 
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with respect to the total expression. The TNBC subtype signature with max median or mean signature 

rank per sample was the assigned TNBC subtype for the sample. Where max median or mean rank 

was used, it is denoted in figures as TNHF-Median or TNHF-Mean, respectively. 

4.6. Genetic ancestry and admixture estimations from RNAseq single nucleotide variants (SNV) 

Genetic ancestry was determined using Admixture (version 1.3.0) [80], which provides a 

maximum likelihood estimation of individual ancestries from multi-locus SNVs. Prior to admixture 

analysis, 1) RNAseq reads were aligned to hg19 using STAR (version 2.5.2b) [81], 2) variants were 

called using GATK (version 3.8) HaplotypeCaller [82,83], and 3) variants were filtered to exclude rare 

variants (i.e., <5% across all phase 3 1000 genomes), all INDELs, and any SNPs that were not biallelic. 

Ancestral reference populations were based on the 1000 Genomes Project phase 3 superpopulations 

[84]. 

4.7. Gene network analyses 

To complete in silico analysis of predicted gene interactions and enrichment of functional 

pathways, we utilized IPA software (version 01-16) (QIAGEN Inc., 

https://www.qiagenbioinformatics.com) to analyze the ancestry-associated and SRR differentially 

expressed gene lists [40]. After uploading each respective dataset, we filtered out any differentially 

expressed gene that was not significant at a threshold of P < 0.05. In the core analysis, IPA takes in 

the differential expression data and uses the log-fold expression change values in coordination with 

the curated Ingenuity Knowledge Base to identify top signaling and metabolic pathways, upstream 

regulator molecules, and associations with various diseases and bio-functions. Significance of 

networks was based on the score (where a score of ≥3 indicates with > 99% confidence that the 

network was not generated by random chance). 

4.8. Estimation of tumor-associated leukocyte populations 

The CIBERSORT [44] online platform was used to determine the estimated abundance of tumor-

associated immune cells in our tumor samples. The analysis was completed with 500 permutations, 

and quantile normalization was disabled, as recommended for RNAseq data input. 

4.9. Survival analyses 

Kaplan–Meier plotter [85] was used to determine survival outcomes based on gene expression 

of PIM3. With the Kaplan–Meier plotter pan-cancer breast cohort platform, relapse-free survival 

curves comparing low versus high PIM3 expression was assessed among AA (n= 153) and EA (n= 658) 

groups. With this platform, relapse-free survival curves comparing low versus high PIM3 expression 

was assessed among BL1 (n= 105) and M (n= 101) TNBC cases. Hazard ratios and p-values are 

reported in the figure panels for each survival analysis. 

5. Conclusions 

Genes that exhibit ancestry-specific regulation, particularly those with cancer-related function, 

are a valuable resource from our findings. Pointedly, targeted therapeutics that are presently 

undergoing clinical trials or have received FDA approval match several of our ancestry-associated 

genes that were differentially expressed in our cohort. Further validation of these genes’ differential 

expression between race groups in the Breast Cancer TCGA RNAseq cohort demonstrates the 

reliability of our findings and the likelihood of translational impact. Of note, in both cohorts we found 

higher levels of PIM3 and PPP2RA in TNBC tumors from African-American patients. However, in 

independent validation cohorts from GEO, survival analyses indicated high expression correlated 

with divergent clinical outcomes between race groups, as high PIM3 and PPP2RA expression 

correlated with better survival for patients of African ancestry, compared with a worse overall 
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survival for the EA patients. Limitations to stratify public data with correlated demographic data and 

missing survival data in our cohort preclude definitive actionable clinical conclusions at this time. 

Although there are ongoing efforts to recruit minorities into existing clinical trials [86,87], these 

findings highlight the impactful possibilities of utilizing genetic ancestry in multi-ethnic cohorts and 

the need to demonstrate that variation within and among TNBC subtypes and how genetic ancestry 

may impact tumor biology, which in could guide treatment decisions. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/sx.  

• Supplemental Figure 1: Cohort sample description and primary quality control (QC).  

• Supplemental Figure 2: Differential gene expression analysis of treatment-naïve tumors using self-

reported race (SRR) 

• Supplemental Figure 3: Differential gene expression analysis of residual, post-treatment tumors using 

SRR reveals 13 race-specific genes distinct from treatment-naïve tumors. 

• Supplemental Figure 4: TNBC subtyping methods and distribution. 

• Supplemental Figure 5: CIBERSORT deconvolution of TNBC tumor samples. 

• Supplemental Figure 6: RNU2-6P is significantly downregulated in AA tumors compared to EA, but is 

not typically expressed in normal breast tissue. 

• Supplemental Table 1: Top differentially expressed genes from SRR treatment-naïve analysis. 

• Supplemental Table 2: Top differentially expressed genes from SRR residual tumor analysis. 

• Supplemental Table 3: Cohort Clinical Attributes 
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