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Abstract: The reliability analysis allows to estimate the system’s probability of detecting and
identifying outlier. Failure to identify an outlier can jeopardise the reliability level of a system.
Due to its importance, outliers must be appropriately treated to ensure the normal operation of a
system. The system models are usually developed from certain constraints. Constraints play a central
role in model precision and validity. In this work, we present a detailed optical investigation of
the effects of the hard and soft constraints on the reliability of a measurement system model. Hard
constraints represent a case in which there exist known functional relations between the unknown
model parameters, whereas the soft constraints are employed for the case where such functional
relations can slightly be violated depending on their uncertainty. The results highlighted that the
success rate of identifying an outlier for the case of hard constraints is larger than soft constraints. This
suggested that hard constraints should be used in the stage of pre-processing data for the purpose of
identifying and removing possible outlying measurements. After identifying and removing possible
outliers, one should set up the soft constraints to propagate the uncertainties of the constraints during
the data processing. This recommendation is valid for outlier detection and identification purpose.

Keywords: Constraints; Hypothesis Testing; Outlier Detection; Monte Carlo; Quality Control;
Geodesy.

1. Introduction

It is very common to build models (i.e. the equation systems) based on some initial knowledge
about a given problem. In other words, models are often set up in a way that the model parameters
need to fulfil certain constraints. Such constraints are a prior knowledge embedded into a model to
avoid a trivial solution; to guarantee the stability of estimates; to improve the precision and accuracy
of the results by reducing the number of unknown parameters or accordingly by increasing the
redundancy of the system; and to mitigate (or even estimate) a possible systematic effect [1–3]. For
example, [4] adopted constraints to determine the transponder coordinates in a problem of combining
satellite positioning (GNSS) of a surface platform with acoustic ranging to seafloor transponders; [5–10]
have used constraints to model the atmospheric effects on GNSS signals; and [11] have imposed the
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constraints of predicted satellite clocks to improve the precise orbit determination (POD) processing
during maneuvers.

The models are usually formulated with minimal constraint or extra (redundant) constraints. In
that case, we are referring to the so-called equality constraints which are usually incorporated into a
system of equations in order to try to have a model well posed [12].

For the most part, minimal constraints are introduced to solve to the problem of rank deficiency
in linear systems. The rank deficiency is often caused by the lack (or insufficient) information about
a problem. In the field of geodesy, for example, minimal constraints are external information whose
primary role is to specify the coordinate system to which the network station positions will be
estimated by least-squares method (LS). This problem is known as datum definition (or also zero-order
design or datum choice problem) [13–18]. Several works have been investigated in the sense of
minimum-constrained adjustment and the datum choice problem in the geodetic literature, focusing
on topics like free-adjustment and the role of inner constraints (see e.g. [19–22]).

If the number of constraints exceeds the minimum needed to solve the rank deficiency of the
equation systems, we say that we have redundant (or extra) constraints. Extra constraints have also
been used to check the stability of points in geodetic deformation analysis (see e.g [23–25]), to test the
compatibility of constraints with the observations and the rest of the constraints [1,14,26,27]. So far we
have only distinguished the constraints in terms of numerical quantity.

The model can also be subject to a hard and soft (or weighted) constraints. Hard constraints
can often represent a case in which there exist known functional relations between the unknown
parameters. Soft constraints (or looser constraints) are, however, for which such functional relations
can slightly be violated depending on their uncertainty [3,27]. Soft constraints may also be referred to
as a pseudo-observation model [28].

The well-known least-squares (LS) has been widely used as a standard method of model
parameters estimation in geodetic applications and many others branches of modern science [29–42].
This is due to the flexibility of the LS, since no concepts from probability theory are used in formulating
the least-squares minimisation problem.

LS has the property of being a linear unbiased estimator (LUE), and some special cases it coincides
with the best linear unbiased estimator (BLUE). The estimator which has the smallest variance of
all LUEs is called the best linear unbiased estimator (BLUE). If we have the full knowledge of the
probability density function (PDF) of the measurements, the method of maximum likelihood estimation
(MLE) can also be applied. In case of normally distributed measurements (Gauss-Markov model),
the MLE estimators are identical to the BLUE ones, and therefore the LS and MLE principles provide
identical results [32,43].

However, the presence of undesirable outliers in dataset makes LS no longer unbiased and it
does not coincides with MLE. Here, we assume that an outlier is a measurement that is so probably
caused by a blunder that it is better not used or not used as it is [44]. Failure to identify an outlier
can jeopardise the reliability level of a system. Due to its importance, outliers must be appropriately
treated to ensure the quality of data analysis [45].

In this paper, we employ the iterative data snooping (IDS), which is hypothesis test-based outlier.
Important to mention that IDS is not restrict to the field of geodetic statistics, but it is a generally
applicable method [46,47].

IDS is an iterative outlier elimination procedure, which combines estimation, testing and a
corrective action [45,48]. Parameter estimation is often conducted in the sense of the LS. Then,
hypothesis testing is performed with the aim to identify any outlier that may be present in dataset.
After identification, the suspected outlier is then excluded from the dataset as a corrective action
(i.e. adaptation), and the LS is restarted without the rejected measurement. If the model redundancy
permits, this procedure is repeated until no more (possible) outliers can be identified (see e.g. [31], pp.
135). Although here we restrict ourselves to the case of one outlier at a time, IDS can also be applied
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for the case of multiples (simultaneous) outliers [49]. For more details about multiples (simultaneous)
outlier refers to [50–52].

There are chances of correct and false decisions of IDS, because these procedure is based on
statistical hypothesis testing. Recently, Rofatto et al. [45] have provided an algorithm based on
Monte Carlo to determine the probability levels associated with IDS. In that case, they described six
classes of decisions for IDS, namely probability of correct identification (PCI), probability of missed
detection (PMD), probability of wrong exclusion (PWE), probability of over-identification positive
(Pover+), probability of over-identification negative (Pover−) and probability of statistical overlap (Pol),
as follows:

• PCI : Probability of identifying and removing correctly an outlying measurement;
• PMD: Probability of not detecting the outlier (i.e. Type II decision error for IDS);
• PWE: Probability of identifying and removing a non-outlying measurement while the ‘true’ outlier

remains in the dataset (i.e. Type III decision error [53] for IDS);
• Pover+: Probability of identifying and removing correctly the outlying measurement and others;
• Pover−: Probability of identifying and removing more than one non-outlying measurement,

whereas the ‘true outlier’ remains in the dataset;
• Pol : occurs in cases where one alternative hypothesis has the same distribution as the another one.

These hypotheses cannot be distinguished, because their test statistics are numerically the same,
violating the IDS rule of one outlier at a time. In that case, they are nonseparable and an outlier
cannot be identified. In other words, it corresponds to the probability of flagging simultaneously
two (or more) measurements as outliers.

Based on the probability of correct detection (PCD) and probability of correct identification
(PCI), the minimal biases, MDB (Minimal Detectable Bias) and MIB (Minimal Identifiable Bias), can
be computed as sensitivity indicators for outlier detection and identification, respectively. "Outlier
detection" only informs whether or not there might have been at least one outlier. However, the
detection does not tell us which measurement is an outlier. The localization of the outlier is a problem
of "outlier identification", i.e. "outlier identification" implies the execution of a search among the
measurements for the most likely outlier [45]. Therefore, the smallest value of an outlier that can be
detected given a certain PCD defines the MDB. On the other hand, the smallest value of an outlier that
can be identified given a certain PCI defines the MIB.

In this paper, we investigate the effects of models subject to constraints (minimum, redundant,
hard and soft) on the probability levels associated with IDS. It is important to emphasised that if a
standard-deviation of a constraint (or a set of a constraint) is changed from zero to a nonzero value, it
is called “relaxation” of the constraint [28]. Here, we also evaluate the effect of relaxing constraints
on the MIB and MDB. This kind of assessment is a kind of sensitivity analysis. We also highlight that
the task of clustering a set of geodetic measurements is applied for the first time in this study. We
show that the clusters can be defined according to two deterministic parameters: local redundancy
and correlation between the outlier test statistics. Moreover, critical values optimized by Monte Carlo
method were used here [45,46] in order to compute the decision classes associated with IDS, i.e. PCI ,
PMD, PWE, Pover+, Pover− and Pol .

The rest of the paper is organised as follows: the elements involved with IDS are provided in
Section 2. Next, the method used to compute the probabilities is given in Section 3. The results for a
case study are showed in Section 4 and their discussion are emphasised in Section 5. Finally, the main
highlights of this research are provided in Section 6.

2. Theoretical Framework

The IDS is an important case of multiple hypothesis testing. In this section, therefore, we briefly
present the principal elements involved for the case of multiple testing.
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First, the null hypothesis, denoted byH0, is formulated under the condition that random errors
are normally distributed with expectation zero, i.e. in the absence of outliers. Thus, the null hypothesis
H0 of the standard Gauss–Markov model in the linear or linearised form is given by [33]:

H0 : E{y} = Ax +E{e} = Ax; D{y} = Qe (1)

where E{.} is the expectation operator, D{.} is the dispersion operator, y ∈ Rn×1 is the vector of
measurements, A ∈ Rn×u is the coefficient matrix, x ∈ Ru×1 is the unknown parameter vector,
e ∈ Rn×1 is the unknown vector of measurement errors and Qe ∈ Rn×n is the positive-definite
covariance matrix of the measurements y.

Under normal working conditions (i.e.,H0), the measurement error model is then given by

e ∼ N(0, Qe), (2)

First, we assume that the coefficient matrix A suffers from a rank deficiency, i.e. u− rank(A) > 0.
In that case, minimal constraints are added to solve the problem of the rank-deficient system. An
example of how to handle the problem of the rank-deficient will be given in the section 4.1, where a
minimal constraint in Equation 51 has been added to the matrix A in Equation 50. This means that the
columns of the design matrix A in Equation 1 become linearly independent, i.e. the matrix A become
full rank, such that u− rank(A) = 0.

The best linear unbiased estimator (BLUE) of e underH0 is the well-known estimated least-squares
residual vector ê ∈ Rn×1, which is given by

ê = y− Ax̂

= y− A(ATW A)−1(ATWy)

= Ax + e− A(ATW A)−1(ATW(Ax + e))

= e− A(ATW A)−1(ATWe)

= (I− A(ATW A)−1 ATW)e

= Re,

(3)

with x̂ ∈ Ru×1 being the BLUE of x under H0; W ∈ Rn×n is the known matrix of weights, taken as
W = σ0

2Q−1
e , where σ2

0 is the variance factor, I ∈ Rn×n is the identity matrix and R ∈ Rn×n is known
as the redundancy matrix. The R matrix is an orthogonal projector that projects onto the orthogonal
complement of the range space of A. The main diagonal elements of matrix R are known as local
redundancy numbers (denoted by ri of the the system. The larger the number of local redundancy for
a given measurement, the larger the degree of importance of that measurement for the model, i.e. the
larger the absorption of a possible error of that measurement into their corresponding least-squares
residual.

The degrees of freedom r (i.e. the overall redundancy) of the model underH0 (Equation (1)) is

r = rank(Qê) = n− rank(A) = n− u, where (4)

Qê = Qe − σ0
2 A(ATW A)−1 AT (5)

On the other hand, an alternative model is proposed when there are doubts about the reliability
level of the model underH0. Here, we assume that the validity of the null hypothesisH0 in Equation (1)
can be violated if the dataset is contaminated by outliers. The model in an alternative hypothesis,
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denoted by HA, is to oppose Equation (1) by an extended model that includes the unknown vector
∇ ∈ Rq×1 of deterministic bias parameters as follows ([29,31]):

HA : y = Ax + C∇+ e =
(

A C
)( x

∇

)
+ e, (6)

where C ∈ Rn×q is the matrix that relates bias parameters, i.e., the values of the outliers to observations.
We restrict ourselves to the matrix (A C) having full column rank, such that

r = rank
(

A C
)
= u + q ≤ n (7)

One of the most used procedures based on hypothesis testing for outliers in linear (or linearised)
models is the well-known data snooping method [29,54]. This procedure consists of screening each
individual measurement for the presence of an outlier [49]. In that case, data snooping is based on a
local model test, such that q = 1, and therefore, the n alternative hypothesis is expressed as

H(i)
A : y = Ax + ci∇i + e =

(
A ci

)( x
∇i

)
+ e, ∀i = 1, · · · , n (8)

Now, matrix C in Equation (6) is reduced to a canonical unit vector ci, which consists exclusively
of elements with values of 0 and 1, where 1 means that the ith bias parameter of magnitude ∇i affects
the ith measurement, and 0 means otherwise. In that case, the rank of (A ci) ∈ Rn×(u+1) and the vector

∇ in Equation (6) reduces to a scalar ∇i in Equation (8), i.e., ci=
(

0 0 0 · · · 1ith 0 · · · 0
)T

.
When q = n− u, an overall model test is performed. For more details about the overall model test, see,
for example, [55,56].

Note that the alternative hypothesisH(i)
A in Equation (8) is formulated under the condition that

the outlier acts as a systematic effect by shifting the random error distribution underH0 by its own
value [44]. In other words, the presence of an outlier in a dataset can cause a shift of the expectation
underH0 to a nonzero value. Therefore, hypothesis testing is often employed to check whether the
possible shifting of the random error distribution under H0 by an outlier is, in fact, a systematic
effect (bias) or merely a random effect. This hypothesis test-based approach is called the mean-shift
model (see, e.g., [18,23,29,46,47,52,54,57–65].

In the context of the mean-shift model, the test statistic involved in data snooping is given by the
normalised least-squares residual, denoted by wi. This test statistic, also known as Baarda’s w-test,
is given as follows:

wi =
ci

TQ−1
e ê√

ciTQ−1
e QêQ−1

e ci

, ∀i = 1, · · · , n (9)

The alternative hypothesis in Equation (8) is formulated in the sense that "There is at least one
outlier in the vector of measurements yi” [46]. In that case, we are interested in knowing which of the
alternative hypotheses may lead to the rejection of the null hypothesis with a certain probability. This
means testingH0 againstH(1)

A ,H(2)
A ,H(3)

A , . . . ,H(n)
A . This is known as multiple hypothesis testing (see,

e.g., [47,48,53,55,57,58,66–70]). In that case, the test statistic coming into effect is the maximum absolute
Baarda’s w-test value (denoted by max-w), which is computed as [47]

max-w = max
i∈{1,··· ,n}

|wi| (10)
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The decision rule for this case is given by

Accept H0 i f max-w ≤ k̂

Otherwise,

Accept H(i)
A i f max-w > k̂

(11)

The decision rule in Equation 11 says that if none of the n w-tests get rejected, then we accept the
null hypothesisH0. If the null hypothesisH0 is rejected in any of the n tests, then one can only assume
that detection occurred. In other words, if the max-w is larger than some percentile of its probability
distribution (i.e., some critical value k̂), then there is evidence that there is an outlier in the dataset.
Therefore, "outlier detection" only informs us whether the null hypothesisH0 is accepted or not [45].

However, the detection does not tell us which alternative hypothesisH(i)
A would have led to the

rejection of the null hypothesisH0. The localisation of the alternative hypothesis, which would have
rejected the null hypothesis, is a problem of "outlier identification". Outlier identification implies the
execution of a search among the measurements for the most likely outlier. In other words, one seeks to
find which of Baarda’s w-test is the maximum absolute value max-w and if that max-w is greater than
some critical value k̂.

Therefore, the data snooping procedure of screening measurements for possible outliers is actually
an important case of multiple hypothesis testing and not single hypothesis testing. Moreover, note that
outlier identification only happens when outlier detection necessarily exists; i.e., “outlier identification”
only occurs when the null hypothesisH0 is rejected. However, correct detection does not necessarily
imply correct identification [47,55,68].

In a special case of having only one single alternative hypothesis, one should decide between
the null hypothesis H0 and only one single alternative hypothesis H(i)

A of Equation (8). In that case,
the false decisions are restricted to Type I error and Type II error. The probability of a Type I Error
α0 is the probability of rejecting the null hypothesis H0 when it is true, whereas the probability of a
Type II error β0 is the probability of failing to reject the null hypothesisH0 when it is false (note: the
index ‘0’ represents the case in which a single hypothesis is tested). Instead of α0 and β0, there is the
confidence level CL = 1− α0 and the power of the test γ0 = 1− β0, respectively. The first deals with
the probability of accepting a true null hypothesisH0; the second addresses the probability of correctly
accepting the alternative hypothesisH(i)

A . In that case, given a probability of a Type I decision error α0,
we find the critical value k0 as follows:

k0 = Φ−1
(

1− α0

2

)
(12)

where Φ−1 denotes the inverse of the cumulative distribution function (cdf) of the two-tailed standard
normal distribution N(0, 1).

The normalised least-squares residual wi follows a standard normal distribution with the
expectation that E{wi} = 0 if H0 holds true (there is no outlier). On the other hand, if the system
is contaminated with a single outlier at the ith location of the dataset (i.e., under H(i)

A ), then the
expectation of wi is

E{wi} =
√

λ0 =
√

ciTQ−1
e QêQ−1

e ci∇2
i (13)

where λ0 is the non-centrality parameter for q = 1. Note, therefore, that there is an outlier that
causes the expectation of wi to become

√
λ0. The square-root of the non-centrality parameter

√
λ0

in Equation (13) represents the expected mean shift of a specific w-test. In such a case, the term
ci

TQ−1
e QêQ−1

e ci in Equation (13) is a scalar, and therefore, it can be rewritten as follows [71]:

|∇i| = MDB0(i) =

√
λ0

ciTQ−1
e QêQ−1

e ci
, ∀i = 1, · · · , n (14)
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where |∇i| is the Minimal Detectable Bias (MDB0(i) ) for the case in which there is only one single
alternative hypothesis, which can be computed for each individual alternative hypothesis according to
Equation (8).

For a single outlier, the variance of an estimated outlier, denoted by σ2
∇i

, is

σ2
∇i

=
(

ci
TQ−1

e QêQ−1
e ci

)−1
, ∀i = 1, · · · , n (15)

Thus, the MDB can also be written as

MDB0(i) = σ∇i

√
λ0, ∀i = 1, · · · , n (16)

where σ∇i =
√

σ2
∇i

is the standard deviation of estimated outlier ∇i.
The MDB in Equations (14) or (16) of an alternative hypothesis is the smallest-magnitude outlier

that can lead to the rejection of the null hypothesisH0 for a given α0 and β0. Thus, for each model of
the alternative hypothesisH(i)

A , the corresponding MDB can be computed [47,72,73]. The limitation of
this MDB is that it was initially developed for the binary hypothesis testing case. In that case, the MDB
is a sensitivity indicator of Baarda’s w-test when only one single alternative hypothesis is taken into
account. In this article, we are confined to multiple alternative hypotheses. Therefore, both the MDB
and MIB are computed by considering the case of multiple hypothesis testing.

For a scenario coinciding with the null hypothesisH0 under multiple testing hypothesis, there
is the probability of incorrectly identifying at least one alternative hypothesis. This type of wrong
decision is known as the family-wise error rate (FWE). The FWE is defined as

FWE = α′ =≤ 1− (1− α0)
n (17)

which is approximately
FWE = α′ ≤ n× α0 (18)

where α0 is the significance level for an individual test. The quantity in Equation (18) is just equal to
the upper bound of the Bonferroni inequality, i.e., α′ ≤ nα [74]. For example, if the FWE level (α′) is
0.05 and one is running 5 tests, then each test will have an α0 of 0.05/5 = 0.01. In other words, one uses
a global Type I Error rate α′ that combines all tests under consideration instead of an individual error
rate α0 that only considers one test at a time time [70]. In that case, the critical value kbon f is computed
as

kbon f = Φ−1
(

1− α′

2n

)
(19)

The Bonferroni in Equation (18) is a good approximation for the case in which alternative
hypotheses are independent. In practice, however, the test results always depend on each other
to some degree because we always have a correlation between w-tests. The correlation coefficient
between any Baarda’s w-test statistic (denoted by ρwi ,wj ), such as wi and wj, is given by [57]

ρwi ,wj =
ci

TQ−1
e QêQ−1

e cj√
ciTQ−1

e QêQ−1
e ci

√
cjTQ−1

e QêQ−1
e cj

, ∀(i 6= j) (20)

The correlation coefficient ρwi ,wj can assume values within the range [−1, 1].
Here, the extreme normalised residuals max-w (i.e., maximum absolute) in Equation (10) are

treated directly as a test statistic. Note that when using Equation (10) as a test statistic, the decision
rule is based on a one-sided test of the form max-w ≤ k̂. However, the distributions of max-w cannot
be derived from well-known test distributions (e.g., normal distribution). The procedure to compute
the critical value of max-w is given step-by-step by Rofatto et al. [45].
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The other side of the multiple testing problem is the situation in which there is an outlier in the
dataset. In that case, apart from Type I and Type II errors, there is a third type of wrong decision
associated with Baarda’s w-test. Baarda’s w-test can also flag a non-outlying observation while
the ‘true’ outlier remains in the dataset. We are referring to the Type III error [53], also referred to
as the probability of wrong identification (PWI). The description of the Type III error involves a
separability analysis between alternative hypotheses [57,66,68,69]. Therefore, we are now interested in
the identification of the correct alternative hypothesis. In that case, the non-centrality parameter in
Equation (13) is not only related to the sizes of Type I and Type II decision errors but also dependent
on the correlation coefficient ρwi ,wj given by Equation (20).

On the basis of the assumption that one outlier is in the ith position of the dataset (i.e., H(i)
A is

’true’), the probability of a Type II error (also referenced as the probability of “missed detection”, denoted
by PMD) for multiple testing is

PMD = P
(⋂n

i=1
|wi| ≤ k̂

∣∣∣ H(i)
A : true

)
, (21)

and the size of a Type III wrong decision (also called “misidentification”, denoted by PWI) is given by

PWI =
n

∑
i=1
P
(
|wj| > |wi| ∀i, |wj| > k̂(i 6= j)

∣∣∣ H(i)
A : true

)
(22)

On the other hand, the probability of correct identification (denoted by PCI) is

PCI = P
(
|wi| > |wj| ∀j, |wi| > k̂(i 6= j)

∣∣∣ H(i)
A : true

)
(23)

with
1−PCI = 1−PCD + PWI = PMD + PWI (24)

Note that the three probabilities of missed detection PMD, wrong identification PWI and correct
identification PCI sum up to unity: i.e., PMD + PWI + PCI = 1.

The probability of correct detection PCD is the sum of the probability of correct identification PCI
(selecting a correct alternative hypothesis) and the probability of misidentification PWI (selecting one
of the n-1 other hypotheses), i.e.,

PCD = PCI + PWI (25)

The probability of wrong identification PWI is identically zero, PWI = 0, when the correlation
coefficient is exactly zero, ρwi ,wj = 0. In that case, we have

PCD = PCI = 1−PMD (26)

The relationship given in Equation (26) would only happen if one neglected the nature of the
dependence between alternative hypotheses. In other words, this relationship is valid for the special
case of testing the null hypothesisH0 against only one single alternative hypothesisH(i)

A .
Since the critical region in multiple hypothesis testing is larger than that in single hypothesis

testing, the Type II decision error (i.e., PMD) for the multiple test becomes smaller [47]. This means
that the correct detection in binary hypothesis testing (γ0) is smaller than the correct detection PCD
under multiple hypothesis testing, i.e.,

PCD > γ0 (27)

Detection is easier in the case of multiple hypothesis testing than single hypothesis testing.
However, the probability of correct detection PCD under multiple testing is spread out over all
alternative hypotheses, and therefore, identifying is harder than detecting. From Equation (25), it is
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also noted that detection does not depend on identification. However, outlier identification depends
on correct outlier detection. Therefore, we have the following inequality:

PCI ≤ PCD (28)

Note that the probability of correct identification PCI depends on the probability of missed
detection PMD and wrong identification PWI for the case in which data snooping is run only once, i.e.,
a single round of estimation and testing. However, in this paper, we deal with data snooping in its
iterative form (i.e., IDS), and therefore, the probability of correct identification PCI depends on other
decision rules.

In contrast to the data snooping single run, the success rate of correct detection PCD for
IDS depends on the sum of the probabilities of correct identification PCI , wrong exclusion (PWE),
over-identification cases (Pover+ and Pover−), and statistical overlap (Pol), i.e.,

PCD = 1−PMD = PCI + PWE + Pover+ + Pover− + Pol (29)

It is important to mention that the probability of correct detection is the complement of the
probability of missed detection. Note from Equation (29) that the probability of correct detection PCD
is available even for cases in which the identification rate is null, PCI = 0. However, the probability
of correct identification (PCI) necessarily requires that the probability of correct detection PCD be
greater than zero. For the same reasons given for the data snooping single run in the previous section,
detecting is easier than identifying. In that case, we have the following relationship for the success rate
of correct outlier identification PCI :

PCI = PCD − (PWE + Pover+ + Pover− + Pol), (30)

such as
∃(PCI) ∈ [0, 1] ⇐⇒ (PCD) > 0 (31)

It is important to mention that the wrong exclusion PWE describes the probability of identifying
and removing a non-outlying measurement while the ‘true’ outlier remains in the dataset. In other
words, PWE is the Type III decision error for IDS). The overall wrong exclusion PWE is the result of the
sum of each individual contribution to PWE, i.e.,

PWE =
n−1

∑
i=1
PWE(i) (32)

On the basis of the probability levels of correct detection PCD and correct identification PCI ,
the sensitivity indicators of minimal biases—Minimal Detectable Bias (MDB) and Minimal Identifiable
Bias (MIB)—for a given α′ can be computed as follows:

MDB = arg min
∇i
PCD(∇i) > P̃CD, ∀i = 1, · · · , n (33)

MIB = arg min
∇i
PCI(∇i) > P̃CI , ∀i = 1, · · · , n (34)

Equation (33) gives the smallest outlier ∇i that leads to its detection for a user-defined correct
detection rate P̃CD, whereas (34) provides the smallest outlier ∇i that leads to its identification for a
user-defined correct identification rate P̃CI .

As a consequence of the inequality in (28), the MIB will be larger than MDB, i.e., MIB ≥ MDB.
For the special case of having only one single alternative hypothesis, there is no difference between the
MDB and MIB [55]. The computation of MDB0 is easily performed by Equations (14) or (16), whereas
the computation of the MDB in Equation (33) and the MIB in Equation (34) must be computed using
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Monte Carlo because the acceptance region (as well as the critical region) for the case of multiple
alternative hypotheses is analytically intractable.

3. Material and Methods

Here, we use the procedure provided by Rofatto et al. [45] to compute the probability levels
associated with IDS, as well as to estimate the minimal biases — Minimal Detectable Bias(MDB) and
Minimal Identifiable Bias (MIB). The procedure is summarised in Figure 1.

The procedure to compute the critical value of max-w (k̂) is given step-by-step as follows:

1. Specify the probability density function (pdf) of the w-test statistics. The pdf assigned to the
w-test statistics under anH0-distribution is

(w1, w2, w3, · · · , wn)
T ∼ N (0,Rw) (35)

where Rw ∈ Rn×n is the correlation matrix with the main diagonal elements equal to 1, and the
off-diagonal elements are the correlation between the w-test statistics computed by Equation (20).

2. In order to have w-test statistics under H0, uniformly distributed random number sequences
are produced by the Mersenne Twister algorithm, and then they are transformed into a normal
distribution by using the Box–Muller transformation [75]. Box–Muller has already been used
in geodesy for Monte Carlo experiments [46,76,77]. Therefore, a sequence of m random vectors
from the pdf assigned to the w-test statistics is generated according to Equation (35). In that case,
we have a sequence of m vectors of the w-test statistics as follows:[

(w1, w2, w3, · · · , wn)
T(1)

, (w1, w2, w3, · · · , wn)
T(2)

, · · · , (w1, w2, w3, · · · , wn)
T(m)

]
(36)

3. Compute the test statistic by Equation (10) for each sequence of w-test statistics. Thus, we have(
max

i∈{1,··· ,n}
|wi|(1), max

i∈{1,··· ,n}
|wi|(2), · · · , max

i∈{1,··· ,n}
|wi|(m)

)
(37)

4. Sort in ascending order the maximum test statistic in Equation (37), getting a sorted vector w̃,
such that

w̃(1) < w̃(2), w̃(3), · · · ,< w̃(m) (38)

The sorted values w̃ in Equation (38) provide a discrete representation of the cumulative density
function (cdf) of the maximum test statistic max-w.

5. Determine the critical value k̂ as follows:

k̂ = w̃[(1−α′)×m] (39)

where [.] denotes rounding down to the next integer that indicates the position of the selected
elements in the ascending order of w̃. This position corresponds to a critical value for a stipulated
overall false alarm probability α′. This can be done for a sequence of values α′ in parallel.

It is important to mention that the probability of a Type I decision error for multiple testing α′ is
larger than that of Type I for single testing α0. This is because the critical region in multiple testing is
larger than that in single hypothesis testing.

After finding the critical value k̂, the procedure based on Monte Carlo is also applied to compute
the probability levels of IDS when there is an outlier in the dataset. The overview of of the main
elements involved with the IDS was detailed in Section 2. The flowchart is displayed in Figure 1.
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Figure 1. Flowchart of the algorithm to compute the probability levels of Iterative Data Snooping (IDS)
for each measurement in the presence of an outlier [45].

The steps displayed in Figure 1 are detailed as follows:

1. First, random error vectors are synthetically generated on the basis of a multivariate normal
distribution because the assumed stochastic model for random errors is based on the matrix
covariance of the observations. Here, we use the Mersenne Twister algorithm [78] to generate a
sequence of random numbers and Box–Muller [75] to transform it into a normal distribution.

2. The total error (ε) is a combination of random errors, and its corresponding outlier is given as
follows:

ε = e + ci∇i (40)

The magnitude intervals of simulated outliers are user-defined. The magnitude intervals are
based on the standard deviation of the observation (σ), e.g., |3σ| to |6σ|. Since the outlier can be
positive or negative, the proposed algorithm randomly selects the signal of the outlier (for q = 1).
Here, we use the discrete uniform distribution to select the signal of the outlier.
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In Equation (40), e is the random error generated from the normal distribution according to
Equation (2), and the second part ci∇i is the additional parameter that describes the alternative
model according to Equation (40).

3. Next, we compute the least-squares residuals vector according to Equation (3), but now we use
the total error (ε) in Equation 40 as follows:

ê = Rε (41)

4. Run the IDS. In this step, the test statistic is computed according to (9). Then, the maximum
test statistic value is obtained according to Equation (10). Now, the decision rule is based on the
critical value k̂ computed by Monte Carlo in previous stage. After identifying the measurement
suspected to be the most likely outlier, it is excluded from the model, and least-squares estimation
and data snooping are applied iteratively until there are no further outliers identified in the
dataset. If two or more observations are simultaneously detected (i.e. if max−w > k̂ and the size
of max−w > 1, then the IDS is ended). Furthermore, every time that a measurement suspected
to be the most likely outlier is removed from the model, we check whether the normal matrix
ATW A is invertible or not. If the determinant of ATW A is 0, det|ATW A| = 0, then there is
a necessary and sufficient condition for a square matrix ATW A to be non-invertible. In other
words, the IDS is ended when det|ATW A| = 0. If no outlier is detected (i.e. max−w < k̂), then
the IDS is also ended.

The IDS procedure is performed for m experiments of random error vectors for each experiment
contaminated by an outlier in the ith measurement. Therefore, for each measurement
contaminated by an outlier, there are υ = 1, . . . , m experiments.

5. After running m=200,000 experiments [47], the probabilities associated with IDS are computed
(note: m refers to the total number of Monte Carlo experiments). The probability of correct
identification (PCI) is the ratio between the number of times that the outlier is correctly identified
(denoted as nCI) and m experiments, i.e.:

PCI =
nCI
m

(42)

Similar to Equation (42), the wrong decisions are computed as

PMD =
nMD

m
(43)

where nMD is the number of experiments in which IDS does not detect the outlier (PMD
corresponds to the rate of missed detection).

PWE =
nWE

m
(44)

where nWE is the number of experiments in which the IDS procedure flags and removes only
one single non-outlying measurement while the ‘true’ outlier remains in the dataset (PWE is the
wrong exclusion rate).

Pover+ =
nover+

m
(45)

where nover+ is the number of experiments in which IDS correctly identifies and removes the
outlying measurement and others, and Pover+ corresponds to its probability.

Pover− =
nover−

m
(46)
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where nover− represents the number of experiments in which IDS identifies and removes more
than one non-outlying measurement, whereas the ‘true outlier’ remains in the dataset (Pover− is
the probability corresponding to this error probability class).

Pol =
nol
m

(47)

where nol is the number of experiments in which the detector in Equation (10) flags two (or more)
measurements simultaneously during a given iteration of IDS. Here, this is referred to as the
number of statistical overlap nol , and Pol corresponds to its probability.

6. Finally, the sensitivity indicators (MDB and MIB) are computed based on Equation 33 and
Equation 34, respectively.

In this paper, the probability levels associated with IDS were computed for each observation
individually and for each outlier magnitude. However, they were grouped into clusters based on
number of local redundancy (ri) and maximum absolute correlation between the w-test statistics
(ρwi ,wj ). Furthermore, we take care to control the family-wise error rate.

4. Case study of Levelling Geodetic Network

The analyse of the constraints effects on the probability levels of IDS are performed by an example
of a levelling geodetic network.

A levelling geodetic network is a set of points located on the Earth’s surface or near it and
interconnected by height difference measurements. Some of these points are associated with a vertical
height reference system (i.e. some points have known height), whereas others are parameters (unknown
heights). The term "known" here means that those points with known heights are constraints necessary
to ensure that parameters (unknown heights) are sufficiently estimable. In the sense of modern geodetic
reference systems, realisation and unification of a vertical height system consists of a combination of
GNSS (Global Navigation Satellite System) and spirit levelling with geoid models. We will not go
into the details about height geodetic reference system and frame. (Readers who wish to have further
details on that issue please see e.g. [79]).

The mathematical model associated with a geodetic levelling network is linear (i.e. the levelling
measurements bear a known linear relationship with the unknown heights). Geodetic networks
usually has more measurements than parameters (i.e. n > u), i.e. we have a redundant measurement
system. However, due to intrinsic random errors in a system, redundant measurements often lead
to an inconsistent system of equations. To make the system consistent we have to introduce the
information about the random measurement errors. The stochastical properties of the measurement
errors are directly associated with the assumption of the probability distribution of these errors. In
geodesy and many other scientific branches the well-known normal distribution is one of the most
used as measurement error model [80]. Because of this, the model ceases to be purely mathematical
and becomes a statistical model with functional and stochastic part.

In the absence of outliers, i.e. under null hypothesisH0 in Equation (1), the model for levelling
geodetic network can be written as follows:

∆hi−j + e∆hi−j
= hj − hi, (48)

where ∆hi−j is the height difference measured from point i to j and e∆hi−j
is the random error associated

with the levelling measurement. For a only one single levelling line, one of these points is the constraint
(known height), from which the height of another point is determined. The point with known height is
also referred to as control point or benchmark. In a geodetic network, on the other hand, we have a set
of levelling lines that connect both from points of unknown height and from points of known height
(constraints). Under normal working conditions (i.e. H0), the measurement errors model is then given
by Equation (2).
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In this case study, we demonstrate the application of the proposed algorithm by [45] subject to a
different constraints scenarios for that levelling geodetic network.

Recent work has been focused on non-stochastic constraints (hard constraints). Here, we also
consider cases where constraints are subject to a random errors (i.e. soft constraints). That soft
constraints are non-deterministic, and therefore they are measured model elements that can be
designated as a priori information. The approach of this example can be applied in the design
stage of geodetic network analysis [62,65]. Furthermore, the experiments performed here can also be
extended to geodetic deformation analysis when the deformation effects are unmodelled in the sense
of deterministic form [28].

4.1. Problem description

To analyse the constraints effects on the IDS, an example is taken from a geodetic levelling
network with 12 height differences between the points. The equipment used to measure the level
difference can be an electronic digital level. In that case, the levelling measurement system comprises
of a special bar-coded staff (also called barcode rod) and a digital level (instrument). A digital level is
basically a telescope that enables a horizontal line of sight. Digital levels consist of additional electronic
image processing components to automatically read and analyse digital (bar coded) levelling staffs,
where the graduation is replaced by a manufacturer dependent code pattern. Generally, the result is
automatically stored in the data collector of the digital level. An example of a "digital level – bar-code
staff " system is displayed in the Figure 2. For more details about digital level see e.g. [81–84].

Figure 2. Example of a digital level – bar-code staff system [45].

The standard-deviation of the uncorrelated measurements were the same and taken equal to
σ = 1mm. The points are indicated as A to G. The eight network configuration are displayed in Figure
3(a, b, c, d, and e) and their details are given as follows:

1. Figure 3(a): Network with 1 hard constraint (i.e. network minimally constrained). Since the
dimension of the network is 1D, the minimum information necessary to estimate the unknown
heights is one. The height of G was fixed as control point (hard constraint), and 6 unknown heights
(A,B,C,D,E,F) were minimally constrained. Therefore, the redundancy of the system (or overall
degrees of freedom) was r = n− rank(A) = n− u = 12− 6 = 6.

2. Figure 3(b): Network with one extra hard constraint (i.e. two hard constraints). The heights A and
D were taken as hard constraints (i.e. heights A and D were fixed). The redundancy of the system
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in that case was r = 12− 5 = 7 with 5 unknown heights (B,C,E,F,G) over-constrained.

3. Figure 3(c): Network with two extra hard constraints (i.e. three hard constraints).The heights A, D
and G were taken as hard constraints. In that case, the redundancy of the system was r = 12− 4 = 8.

4. Figure 3(d): Network with two soft constraints (A and D). In that case, a standard-deviation larger
than zero was assigned to both constraints (i.e. σc > 0. In other words, A and D were processed
as being both observations and unknown parameters, i.e. A and D were pseudo-observations.
Here, the both constraints were simultaneously relaxed by considering their uncertainties 10 times
worse than measurements (i.e. σc = 10× σ = 10mm); 10 times better than measurements (i.e.
σc = 0.1mm); and their uncertainties equal to the measurements (σc = 1mm). In that case, the
redundancy of the system was r = 14− 7 = 7.

5. Figure 3(e): Network processed with A, D and G as pseudo-observations. Those three constraints
were simultaneously relaxed by considering their standard-deviations equal to σc = 10mm (10 times
worse than measurements); σc = 0.1mm (10 times better than measurements); and σc = 1mm (the
same as the measurements). In that case, the redundancy of the system was r = 15− 7 = 8.
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Figure 3. Levelling Geodetic Network subject to different constraint scenarios.

The following system of equations for that problem is given by:
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y1 + e1 = hB − hA

y2 + e2 = hC − hB

y3 + e3 = hD − hC

...

y7 + e7 = hB − hG

y8 + e8 = hC − hG

...

y11 + e11 = hB − hF

y12 + e12 = hC − hE

(49)

The functional model (A) for the system of equations in 49 is given by:

A =



−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
0 0 0 0 −1 1 0
1 0 0 0 0 −1 0
0 1 0 0 0 0 −1
0 0 1 0 0 0 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 1 0 0 0 −1 0
0 0 1 0 −1 0 0



(50)

Note that the rank defect of the matrix A is u− rank(A) = 7− 6 = 1. In that case, there is needed
to add at least one constraint in order to avoid rank deficiency of the matrix A. This is guaranteed
when we take one height as known. For example, from the network in Figure 3(a), we have added the
height G as known (i.e. as a hard constraint). In that case, the constraint equation should be added
into the system in 49, i.e.:

y13 = hG with σy13 = 0, (51)

noticing that because the standard deviation is zero, the observation is non-stochastic (hard constraint)
and the residual ey13 = 0. This can generate problems in the inversion of the covariance matrix of the
observations Qe for the calculation of the weight matrix W , because the weight for that constraint
would be 1

0 = ∞. In order to avoid that problem, we have eliminated the rank deficiency of matrix
A by removing the seventh column of matrix A in 50 associated with the height G. Now, we have
u− rank(A) = 6− 6 = 0.

The constraint defines the geodetic datum, i.e. the S-system ([85],p.41). Another approach to
solving the system of equations in 2 could be based on generalised (pseudo) inverses (see e.g. [86]).

The location of the constraints can be chosen in some circumstances, for example during the
design stage of a geodetic network. For the special case of having a minimally constrained system,
the location of the constraint will not influence the w-test statistics and the sensitivity indicators (MIB
and MDB) [18]. However, more constraints than the minimum necessary to have a solution (i.e. extra
constraints or redundant constraints) can change the least-squares residuals and hence w-test statistics
and the minimal biases.

From the network with one extra constraint (2 constraints) in Figure 3(b), for example, the both
first (height A) and fourth column (height D) of matrix A in 50 were eliminated in the case of having
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the two heights as hard constraints. For the case where these two heights (A and D) were taken as soft
constraints, however, two observation equations were added to Equation 49, i.e.:

y13 + e13 = hA, σy13 > 0

y14 + e14 = hD, σy14 > 0
(52)

In the case of soft constraints in Equation 52, two lines were added in matrix A. In other words,
A and D were taken as pseudo-observations. In that case, the rank deficiency was also null (i.e.
u− rank(A) = 7− 7 = 0), the redundancy of the system was r = n− rank(A) = n− u = 7 and the
matrix A was given as follows:

A =



−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
0 0 0 0 −1 1 0
1 0 0 0 0 −1 0
0 1 0 0 0 0 −1
0 0 1 0 0 0 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 1 0 0 0 −1 0
0 0 1 0 −1 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0



(53)

For this example of two soft constraints, and by considering the both soft constraints with
standard-deviation σc = 10mm, the symmetric and positive semi-definite covariance matrix of the
observations (Qe) was given as follows:

Qe =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 100 0
0 0 0 · · · 0 100


(54)

The last two rows and columns of the matrix Qe in Equation 54 refer to the variances (σc
2 =

(10mm)2 = 100mm2) of the heights constraints A and D, respectively.
Similarly, matrices A and Qe were constructed for the other cases studied here.
Although other measurements are able to identify an outlier for the case of having only one single

soft constraint, the pseudo-observation (constraint) is not. In that case, the defect configuration
is associated with the additional parameter in the constraint (i.e. the presence of an outlier in
the constraint). In other words, an additional parameter on the soft constraint will not estimable.
For example, if the height point G was taken as a soft constraint, the presence of an outlier in
pseudo-observation G would lead to rank deficiency of matrix A, i.e. u − rank(A) = 8 − 7 = 1.
Therefore, the case of having only one single soft constraint was not considered here.

4.2. Result of the Hard Constraint Effects on the Iterative Outlier Elimination Procedure

In this section, we present the results of the effects of the hard constraint on the IDS. The scenarios
in Figure 3(a) (network minimally constrained), Figure 3(b) (two hard constraints) and Figure 3(c)
(three hard constraints) were considered for the analysis.
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The correlation coefficient between w-test statistics (ρwi ,wj ) were computed for the three scenarios,
according to Equation(20). Table 1 provides that correlation for that network minimally constrained,
Table 2 for that network over-constrained with two hard constraints and Table 3 for that network
over-constrained with three hard constraints.

Table 1. Correlation matrix of w-test statistics for the levelling network minimally constrained in Figure
3(a).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12

wy1 1.0 0.2 0.1 0.1 0.2 1.0 -0.2 0.0 0.0 0.2 -0.4 -0.1
wy2 1.0 0.2 0.2 0.3 0.2 0.5 -0.5 -0.2 0.2 0.3 -0.3
wy3 1.0 1.0 0.2 0.1 0.0 0.2 -0.2 0.0 0.1 0.4
wy4 1.0 0.2 0.1 0.0 0.2 -0.2 0.0 0.1 0.4
wy5 1.0 0.2 -0.2 0.2 0.5 -0.5 0.3 -0.3
wy6 1.0 -0.2 0.0 0.0 0.2 -0.4 -0.1
wy7 1.0 -0.3 -0.3 -0.4 -0.4 -0.1
wy8 1.0 -0.4 -0.3 -0.1 -0.4
wy9 1.0 -0.3 0.1 0.4
wy10 1.0 0.4 0.1
wy11 1.0 -0.1
wy12 1.00

Table 2. Correlation matrix of w-test statistics for the levelling network with two hard constraints in
Figure 3(b).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12

wy1 1.0 0.4 0.4 -0.3 -0.1 0.4 -0.3 0.1 0.1 0.1 -0.4 -0.1
wy2 1.0 0.4 -0.1 0.1 -0.1 0.4 -0.4 -0.1 0.1 0.3 -0.3
wy3 1.0 0.4 -0.1 -0.3 -0.1 0.3 -0.1 -0.1 0.1 0.4
wy4 1.0 0.4 0.4 0.1 0.1 -0.3 0.1 0.1 0.4
wy5 1.0 0.4 -0.1 0.1 0.4 -0.4 0.3 -0.3
wy6 1.0 -0.1 -0.1 -0.1 0.3 -0.4 -0.1
wy7 1.0 -0.4 -0.3 -0.4 -0.4 -0.1
wy8 1.0 -0.4 -0.3 -0.1 -0.4
wy9 1.0 -0.4 0.1 0.4
wy10 1.0 0.4 0.1
wy11 1.0 -0.1
wy12 1.0

Table 3. Correlation matrix of w-test statistics for the levelling network with three hard constraints in
Figure 3(c).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12

wy1 1.0 0.3 0.1 -0.1 -0.1 0.1 -0.4 -0.1 -0.1 -0.1 -0.3 -0.1
wy2 1.0 0.3 -0.1 0.1 -0.1 0.3 -0.3 -0.1 0.1 0.3 -0.3
wy3 1.0 0.1 -0.1 -0.1 0.1 0.4 0.1 0.1 0.1 0.3
wy4 1.0 0.3 0.1 -0.1 -0.1 -0.4 -0.1 0.1 0.3
wy5 1.0 0.3 -0.1 0.1 0.3 -0.3 0.3 -0.3
wy6 1.0 0.1 0.1 0.1 0.4 -0.3 -0.1
wy7 1.0 -0.1 -0.1 -0.1 -0.3 -0.1
wy8 1.0 -0.1 -0.1 -0.1 -0.3
wy9 1.0 -0.1 0.1 0.3
wy10 1.0 0.3 0.1
wy11 1.0 -0.1
wy12 1.0
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Table 4 gives the local redundancy (ri), the standard-deviation of the LS-estimated outlier σ∇i and
the maximum absolute correlation (maxρwi ,wj

) for each scenario of hard constraint set out of in this
study, i.e. Figure 3(a,b and c).

Table 4. Local redundancy (ri), standard-deviation of the LS-estimated outlier σ∇i and the maximum
absolute correlation (maxρwi ,wj

) for each scenario of hard constraint.

1 hard constraint 2 hard constraints 3 hard constraints
Measurement ri σ∇i maxρwi ,wj

ri σ∇i maxρwi ,wj
ri σ∇i maxρwi ,wj

y1 0.396 1.589 1.00 0.583 1.309 0.36 0.708 1.188 0.41
y2 0.500 1.414 0.47 0.583 1.309 0.36 0.583 1.309 0.32
y3 0.396 1.589 1.00 0.583 1.309 0.36 0.708 1.188 0.41
y4 0.396 1.589 1.00 0.583 1.309 0.36 0.708 1.188 0.41
y5 0.500 1.414 0.47 0.583 1.309 0.36 0.583 1.309 0.32
y6 0.396 1.589 1.00 0.583 1.309 0.36 0.708 1.188 0.41
y7 0.563 1.333 0.47 0.583 1.309 0.36 0.708 1.188 0.41
y8 0.563 1.333 0.47 0.583 1.309 0.36 0.708 1.188 0.41
y9 0.563 1.333 0.47 0.583 1.309 0.36 0.708 1.188 0.41
y10 0.563 1.333 0.47 0.583 1.309 0.36 0.708 1.188 0.41
y11 0.583 1.309 0.43 0.583 1.309 0.36 0.583 1.309 0.32
y12 0.583 1.309 0.43 0.583 1.309 0.36 0.583 1.309 0.32

Here, the twelve levelling measurements were clustered into four clusters. The clustering was
defined according to the local redundancy (ri) and the maximum absolute correlation (maxρwi ,wj

) in
Table 4. This is the first time that a clustering technique based on the similarity of local redundancy
and the maximum absolute correlation between w-test statistics is applied to a problem of geodetic
networks. Similarly, this has been done in [45]. The four cluster were defined as follows:

• Cluster 1: y1, y3, y4 and y6.
• Cluster 2: y2 and y5.
• Cluster 3: y7, y8, y9 and y10.
• Cluster 4: y11 and y12.

The probability levels associated with IDS were averaged for each of these clusters. Here, we compute
the probability levels of the IDS based on the procedure in Section (3) [45]. The critical values were
k̂ = 3.89, k̂ = 3.93 and k̂ = 3.93 for 1 hard constraint, 2 hard constraints and 3 hard constraints,
respectively. These critical values were found for α′ = 0.001 according to the procedure described in
Appendix ??. The probability of correct identification (PCI) and correct detection (PCD = 1−PMD)
are displayed in Figure 4 for each number of hard constraint (denoted by h.c.).
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                         (c)                                                   (d) 

                         (e)                                                   (f) 

                         (g)                                                   (h) 

                         (a)                                                   (b) 

Figure 4. Probability of correct identification (PCI) and Probability of correct detection (PCD) for the
case of hard constraints and for α′ = 0.001: Cluster 1(a,b), Cluster 2(c,d), Cluster 3(e,f) and Cluster
4(g,h).
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The outlier magnitude were defined from |5σ| to |9σ|. The outlier of |5σ| was chosen because it
is approximately the lowest MDB0(i) of the network when a single hypothesis testing is in play, as
can be seen in Equation (14) or Equation (16). That MDB0(i) of |5σ| was computed for significance
level of α′ = 0.001 and a power of the test γ0 = 0.8. This strategy reduces the search space for a MIB
(Minimal Identifiable Bias), because we will always have the following inequality MIB ≥ MDB0(i)
[47,55]. Remember that the IDS procedure is an example of multiple hypothesis testing (see 2).

The sensitivity indicators MDB and MIB for IDS were also computed according to Equation (33)
and (34), respectively. The success rate for outlier detection and outlier identification were taken as
being P̃CD = P̃CI = 0.8, respectively. Table 5 provides the values of MDB and MIB for that case of
hard constraints.

Table 5. MDB and MIB for the case of hard constraints based on α′ = 0.001 and P̃CD = P̃CI = 0.8.

1 hard constraint 2 hard constraints 3 hard constraints
Cluster MDB (σ) MIB (σ) MDB (σ) MIB (σ) MDB (σ) MIB (σ)

1 7.5 - 6.3 6.3 5.7 5.7
2 6.7 6.8 6.3 6.4 6.3 6.4
3 6.4 6.4 6.3 6.3 5.8 5.8
4 6.4 6.4 6.4 6.4 6.4 6.4

Figure 5 shows the probability of wrong exclusion (PWE). The over-identification cases (Pover+

and Pover−) were smaller than 0.001 (i.e. they were practically null). There were not statistical overlap
(Pol) for clusters 2, 3 and 4. We will discuss more about statistical overlap (Pol) later.

                         (c)                                                  (d) 

                         (a)                                                  (b) 

Figure 5. Probability of wrong exclusion (PWE) for the case of hard constraints and for α′ = 0.001:
Cluster 1(a), Cluster 2(b), Cluster 3(c) and Cluster 4(d).
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4.3. Result of the Soft Constraint Effects on the Iterative Outlier Elimination Procedure

The both configuration in Figure 3(d) and Figure 3(e) were analysed in terms of soft constraints.
In that case, the critical values were k̂ = 3.95, k̂ = 3.95 and k̂ = 3.92 for two soft constraints with
σc = 0.1mm, σc = 1mm and σc = 10mm, respectively. In the case of three soft constraints, the critical
values found were k̂ = 3.99, k̂ = 3.99 and k̂ = 3.96 for σc = 0.1mm, σc = 1mm and σc = 10mm,
respectively. All these critical values were computed for α′ = 0.001.

The correlation coefficient between w-test statistics (ρwi ,wj ) are displayed in Table 6, Table 7
and Table 8 for two soft constraints with standard-deviation 10 times larger than measurements
(i.e. σc = 10× σ = 10mm); 10 times better than measurements (i.e. σc = 0.1mm); and equal to the
measurements (σc = 1mm), respectively.

Table 6. Correlation matrix of w-test statistics for the levelling network with two soft constraints with
σc = 10mm in Figure 3(d).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12 wy13 wy14

wy1 1.0 0.2 0.1 0.1 0.2 1.0 -0.2 0.0 0.0 0.2 -0.4 -0.1 0.06 -0.1
wy2 1.0 0.2 0.2 0.3 0.2 0.5 -0.5 -0.2 0.2 0.3 -0.3 0.03 0.0
wy3 1.0 1.0 0.2 0.1 0.0 0.2 -0.2 0.0 0.1 0.4 0.1 -0.1
wy4 1.0 0.2 0.1 0.0 0.2 -0.2 0.0 0.1 0.4 -0.1 0.1
wy5 1.0 0.2 -0.2 0.2 0.5 -0.5 0.3 -0.3 0.0 0.0
wy6 1.0 -0.2 0.0 0.0 0.2 -0.4 -0.1 -0.1 0.1
wy7 1.0 -0.3 -0.3 -0.4 -0.4 -0.1 0.0 0.0
wy8 1.0 -0.4 -0.3 -0.1 -0.4 0.0 0.0
wy9 1.0 -0.3 0.1 0.4 0.0 0.0
wy10 1.0 0.4 0.1 0.0 0.0
wy11 1.0 -0.1 0.0 0.0
wy12 1.0 0.0 0.0
wy13 1.0 -1.0
wy14 1.0

Table 7. Correlation matrix of w-test statistics for the levelling network with two soft constraints with
σc = 0.1mm in Figure 3(d).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12 wy13 wy14

wy1 1.0 0.4 0.4 -0.3 -0.1 0.4 -0.3 0.1 0.1 0.1 -0.4 -0.1 0.6 -0.6
wy2 1.0 0.4 -0.1 0.2 -0.1 0.4 -0.4 -0.1 0.1 0.3 -0.3 0.4 -0.4
wy3 1.0 0.4 -0.1 -0.3 -0.1 0.3 -0.1 -0.1 0.1 0.4 0.6 -0.6
wy4 1.0 0.4 0.4 0.1 0.1 -0.3 0.1 0.1 0.4 -0.6 0.6
wy5 1.0 0.4 -0.1 0.1 0.4 -0.4 0.3 -0.3 -0.4 0.4
wy6 1.0 -0.1 -0.1 -0.1 0.3 -0.4 -0.1 -0.6 0.6
wy7 1.0 -0.4 -0.3 -0.4 -0.4 -0.1 -0.2 0.2
wy8 1.0 -0.4 -0.3 -0.1 -0.4 0.2 -0.2
wy9 1.0 -0.4 0.1 0.4 0.2 -0.2
wy10 1.0 0.4 0.1 -0.2 0.2
wy11 1.0 -0.1 0.0 0.0
wy12 1.0 0.0 0.0
wy13 1.0 -1.0
wy14 1.0

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2020                   doi:10.20944/preprints202004.0119.v1

https://doi.org/10.20944/preprints202004.0119.v1


23 of 40

Table 8. Correlation matrix of w-test statistics for the levelling network with two soft constraints with
σc = 1mm in Figure 3(d).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12 wy13 wy14

wy1 1.0 0.3 0.2 -0.1 0.1 0.7 -0.3 0.0 0.1 0.2 -0.4 -0.1 0.4 -0.4
wy2 1.0 0.3 0.1 0.3 0.1 0.4 -0.4 -0.1 0.1 0.3 -0.3 0.3 -0.3
wy3 1.0 0.7 0.1 -0.1 0.0 0.3 -0.2 -0.1 0.1 0.4 0.4 -0.4
wy4 1.0 0.3 0.2 0.1 0.2 -0.3 0.0 0.1 0.4 -0.4 0.4
wy5 1.0 0.3 -0.1 0.1 0.4 -0.4 0.3 -0.3 -0.3 0.3
wy6 1.0 -0.2 -0.1 0.0 0.3 -0.4 -0.1 -0.4 0.4
wy7 1.0 -0.3 -0.3 -0.4 -0.4 -0.1 -0.1 0.1
wy8 1.0 -0.4 -0.3 -0.1 -0.4 0.1 -0.1
wy9 1.0 -0.3 0.1 0.4 0.1 -0.1
wy10 1.0 0.4 0.1 -0.1 0.1
wy11 1.0 -0.1 0.0 0.0
wy12 1.0 0.0 0.0
wy13 1.0 -1.0
wy14 1.0

Table 9 gives the local redundancy (ri), the standard-deviation of the LS-estimated outlier σ∇i and
the maximum absolute correlation (maxρwi ,wj

) for the scenarios of two constraints.

Table 9. Local redundancy (ri), standard-deviation of the LS-estimated outlier σ∇i (mm) and the
maximum absolute correlation (maxρwi ,wj

) for each scenario of two soft constraints.

σc = 0.1mm σc = 1mm σc = 10mm
Measurement ri σ∇i maxρwi ,wj

ri σ∇i maxρwi ,wj
ri σ∇i maxρwi ,wj

y1 0.581 1.312 0.564 0.471 1.457 0.681 0.397 1.587 0.994
y2 0.582 1.311 0.376 0.533 1.369 0.423 0.501 1.413 0.471
y3 0.581 1.312 0.564 0.471 1.457 0.681 0.397 1.587 0.994
y4 0.581 1.312 0.564 0.471 1.457 0.681 0.397 1.587 0.994
y5 0.582 1.311 0.376 0.533 1.369 0.423 0.501 1.413 0.471
y6 0.581 1.312 0.564 0.471 1.457 0.681 0.397 1.587 0.994
y7 0.583 1.310 0.359 0.571 1.324 0.423 0.563 1.333 0.471
y8 0.583 1.310 0.359 0.571 1.324 0.423 0.563 1.333 0.471
y9 0.583 1.310 0.359 0.571 1.324 0.423 0.563 1.333 0.471
y10 0.583 1.310 0.359 0.571 1.324 0.423 0.563 1.333 0.471
y11 0.583 1.309 0.358 0.583 1.309 0.398 0.583 1.309 0.433
y12 0.583 1.309 0.358 0.583 1.309 0.398 0.583 1.309 0.433
y13 0.007 1.163 1.000 0.300 1.826 1.000 0.497 14.189 1.000
y14 0.007 1.163 1.000 0.300 1.826 1.000 0.497 14.189 1.000

From Table 9, five clusters were defined for each case of two soft constraints, i.e. for the case
where heights A and D were given as soft constraints in Figure 3(d), as follows:

• Cluster 1: y1, y3, y4 and y6.
• Cluster 2: y2 and y5.
• Cluster 3: y7, y8, y9 and y10.
• Cluster 4: y11 and y12.
• Cluster 5: y13 and y14.

The probabilities of correct identification (PCI) and correct detection (PCD) for the measurements
(Cluster 1 to Cluster 4) subject to the scenarios of two soft constraints (heights A and D) are displayed
in Figure 6.
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                         (c)                                                   (d) 

                         (e)                                                   (f) 

                         (g)                                                   (h) 

                         (a)                                                   (b) 

Figure 6. Probability of correct identification (PCI) and Probability of correct detection (PCD) for the
measurements subject to the scenarios of two soft constraints for α′ = 0.001: Cluster 1(a,b), Cluster
2(c,d), Cluster 3(e,f) and Cluster 4(g,h).
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Note that the Cluster 5 is associated with the two soft constraints (i.e. y13 and y14). The probability
of correct identification (PCI) for these both soft constraints were null. However, the probability of
correct detection were not. Figure 7 shows the probability of correct detection (PCD) for these two soft
constraints (i.e. heights A and D).

Figure 7. Probability of correct detection PCD for the two soft constraints (Cluster 5: heights A and D)
and for α′ = 0.001.

The probability of wrong exclusion PWE for the measurements (Cluster 1 to Cluster 4) subject to
the scenarios of two soft constraints (heights A and D) are displayed in Figure 8. Figure 9 gives the the
probability of wrong exclusion PWE for that two constraints (i.e. heights A and D).

                         (c)                                                   (d) 

                         (a)                                                   (b) 

Figure 8. Probability of wrong exclusion PWE for the measurements subject to the scenarios of two soft
constraints for α′ = 0.001: Cluster 1(a), Cluster 2(b), Cluster 3(c) and Cluster 4(d).
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Figure 9. Probability of wrong exclusion PWE for the two soft constraints (Cluster 5: heights A and D)
and for α′ = 0.001.

The over-identification cases (Pover+ and Pover−) and the statistical overlap (Pol) were practically
null for that case.

The sensitivity indicators (MDB and MIB) for each scenario of two soft constraints are displayed
in Table 10.

Table 10. MDB and MIB for the case of two soft constraints based on α′ = 0.001 and P̃CD = P̃CI = 0.8.

σc = 10mm σc = 1mm σc = 0.1mm
Cluster MDB (σ) MIB (σ) MDB (σ) MIB (σ) MDB (σ) MIB (σ)

1 7.5 25 7 7.1 6.3 6.3
2 6.8 6.8 6.6 6.6 6.3 6.3
3 6.4 6.4 6.4 6.4 6.3 6.3
4 6.3 6.3 6.3 6.3 6.3 6.3
5 6.8 - 8.8 - 57 -

As with the case of two soft constraints, Tables 11,12 and 13 show the correlations (ρwi ,wj ) for the
case where there were three soft constraints, i.e. for the network configuration in Figure 3(e).

Table 11. Correlation matrix of w-test statistics for the levelling network with three soft constraints
with σc = 10mm in Figure 3(e).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12 wy13 wy14 wy15

wy1 1.0 0.2 0.1 0.1 0.2 1.0 -0.2 0.0 0.0 0.2 -0.4 -0.1 0.1 0.0 0.0
wy2 1.0 0.2 0.2 0.3 0.2 0.5 -0.5 -0.2 0.2 0.3 -0.3 0.0 0.0 0.0
wy3 1.0 1.0 0.2 0.1 0.0 0.2 -0.2 0.0 0.1 0.4 0.0 -0.1 0.0
wy4 1.0 0.2 0.1 0.0 0.2 -0.2 0.0 0.1 0.4 0.0 0.1 0.0
wy5 1.0 0.2 -0.2 0.2 0.5 -0.5 0.3 -0.3 0.0 0.0 0.0
wy6 1.0 -0.2 0.0 0.0 0.2 -0.4 -0.1 -0.1 0.0 0.0
wy7 1.0 -0.3 -0.3 -0.4 -0.4 -0.1 0.0 0.0 0.0
wy8 1.0 -0.4 -0.3 -0.1 -0.4 0.0 0.0 0.0
wy9 1.0 -0.3 0.1 0.4 0.0 0.0 0.0
wy10 1.0 0.4 0.1 0.0 0.0 0.0
wy11 1.0 -0.1 0.0 0.0 0.0
wy12 1.0 0.0 0.0 0.0
wy13 1.0 -0.5 -0.5
wy14 1.0 -0.5
wy15 1.0
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Table 12. Correlation matrix of w-test statistics for the levelling network with three soft constraints
with σc = 0.1mm in Figure 3(e).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12 wy13 wy14 wy15

wy1 1.0 0.3 0.1 -0.1 -0.1 0.1 -0.4 -0.1 -0.1 -0.1 -0.3 -0.1 0.7 -0.1 -0.4
wy2 1.0 0.3 -0.1 0.1 -0.1 0.3 -0.3 -0.1 0.1 0.3 -0.3 0.3 -0.3 0.0
wy3 1.0 0.1 -0.1 -0.1 0.1 0.4 0.1 0.1 0.1 0.3 0.1 -0.7 0.4
wy4 1.0 0.3 0.1 -0.1 -0.1 -0.4 -0.1 0.1 0.3 -0.1 0.7 -0.4
wy5 1.0 0.3 -0.1 0.1 0.3 -0.3 0.3 -0.3 -0.3 0.3 0.0
wy6 1.0 0.1 0.1 0.1 0.4 -0.3 -0.1 -0.7 0.1 0.4
wy7 1.0 -0.1 -0.1 -0.1 -0.3 -0.1 -0.4 -0.1 0.4
wy8 1.0 -0.1 -0.1 -0.1 -0.3 -0.1 -0.4 0.4
wy9 1.0 -0.1 0.1 0.3 -0.1 -0.4 0.4
wy10 1.0 0.3 0.1 -0.4 -0.1 0.4
wy11 1.0 -0.1 0.0 0.0 0.0
wy12 1.0 0.0 0.0 0.0
wy13 1.0 -0.2 -0.6
wy14 1.0 -0.6
wy15 1.0

Table 13. Correlation matrix of w-test statistics for the levelling network with three soft constraints
with σc = 1mm in Figure 3(e).

wy1 wy2 wy3 wy4 wy5 wy6 wy7 wy8 wy9 wy10 wy11 wy12 wy13 wy14 wy15

wy1 1.0 0.3 0.1 0.0 0.1 0.6 -0.3 0.0 0.0 0.1 -0.4 -0.1 0.5 -0.2 -0.2
wy2 1.0 0.3 0.1 0.3 0.1 0.4 -0.4 -0.1 0.1 0.3 -0.3 0.2 -0.2 0.0
wy3 1.0 0.6 0.1 0.0 0.0 0.3 -0.1 0.0 0.1 0.4 0.2 -0.5 0.2
wy4 1.0 0.3 0.1 0.0 0.1 -0.3 0.0 0.1 0.4 -0.2 0.5 -0.2
wy5 1.0 0.3 -0.1 0.1 0.4 -0.4 0.3 -0.3 -0.2 0.2 0.0
wy6 1.0 -0.1 0.0 0.0 0.3 -0.4 -0.1 -0.5 0.2 0.2
wy7 1.0 -0.3 -0.2 -0.3 -0.4 -0.1 -0.2 0.0 0.2
wy8 1.0 -0.3 -0.2 -0.1 -0.4 0.0 -0.2 0.2
wy9 1.0 -0.3 0.1 0.4 0.0 -0.2 0.2
wy10 1.0 0.4 0.1 -0.2 0.0 0.2
wy11 1.0 -0.1 0.0 0.0 0.0
wy12 1.0 0.0 0.0 0.0
wy13 1.0 -0.4 -0.5
wy14 1.0 -0.5
wy15 1.0

Table 14. Local redundancy (ri), standard-deviation of the LS-estimated outlier σ∇i (mm) and the
maximum absolute correlation (maxρwi ,wj

) for each scenario of three soft constraints.

σc = 0.1mm σc = 1mm σc = 10mm
Measurement ri σ∇i maxρwi ,wj

ri σ∇i maxρwi ,wj
ri σ∇i maxρwi ,wj

y1 0.702 1.194 0.660 0.502 1.411 0.577 0.398 1.586 0.992
y2 0.582 1.311 0.326 0.533 1.369 0.412 0.501 1.413 0.470
y3 0.702 1.194 0.660 0.502 1.411 0.577 0.398 1.586 0.992
y4 0.702 1.194 0.660 0.502 1.411 0.577 0.398 1.586 0.992
y5 0.582 1.311 0.326 0.533 1.369 0.412 0.501 1.413 0.470
y6 0.702 1.194 0.660 0.502 1.411 0.577 0.398 1.586 0.992
y7 0.704 1.192 0.415 0.602 1.289 0.412 0.563 1.333 0.470
y8 0.704 1.192 0.415 0.602 1.289 0.412 0.563 1.333 0.470
y9 0.704 1.192 0.415 0.602 1.289 0.412 0.563 1.333 0.470
y10 0.704 1.192 0.415 0.602 1.289 0.412 0.563 1.333 0.470
y11 0.583 1.309 0.326 0.583 1.309 0.385 0.583 1.309 0.433
y12 0.583 1.309 0.326 0.583 1.309 0.385 0.583 1.309 0.433
y13 0.012 0.904 0.660 0.425 1.534 0.542 0.663 12.283 0.501
y14 0.012 0.904 0.660 0.425 1.534 0.542 0.663 12.283 0.501
y15 0.019 0.718 0.63 0.5 1.414 0.542 0.665 12.268 0.501

The probabilities of correct identification (PCI) and correct detection PCD for the measurements
(Cluster 1 to Cluster 4) subject to the scenarios of three soft constraints (heights A, D and G) are
displayed in Figure 10.
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                         (c)                                                   (d) 

                         (e)                                                   (f) 

                         (g)                                                   (h) 

                         (a)                                                   (b) 

Figure 10. Probability of correct identification (PCI) and Probability of correct detection (PCD) for the
measurements subject to the scenarios of three soft constraints for α′ = 0.001: Cluster 1(a,b), Cluster
2(c,d), Cluster 3(e,f) and Cluster 4(g,h).

The probabilities of correct identification (PCI) and correct detection (PCD) in Figure 8 were
computed for the clusters based on Table 14, as follows:
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• Cluster 1: y1, y3, y4 and y6.
• Cluster 2: y2 and y5.
• Cluster 3: y7, y8, y9 and y10.
• Cluster 4: y11 and y12.
• Cluster 5: y13 and y14.
• Cluster 6: y15.

Figure 11 shows the probabilities of correct identification PCI and correct detection PCD for the
three soft constraints, i.e. for Cluster 5 (heights A and D) and Cluster 6 (height G) in Figure 3(e).

                         (c)                                                   (d) 

                         (a)                                                   (b) 

Figure 11. Probability of correct identification (PCI) and Probability of correct detection (PCD) for the
three constraints and for α′ = 0.001: Cluster 5(a,b) and Cluster 6(c,d).

The probability of wrong exclusion PWE for the measurements (Cluster 1 to Cluster 4) subject to
the scenarios of three soft constraints (heights A, D and G) are displayed in Figure 12. Figure 13 gives
the the probability of wrong exclusion PWE for that three constraints (i.e. heights A, D and G).
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                         (c)                                                   (d) 

                         (a)                                                   (b) 

Figure 12. Probability of wrong exclusion PWE for the measurements subject to the scenarios of three
soft constraints and for α′ = 0.001: Cluster 1(a), Cluster 2(b), Cluster 3(c) and Cluster 4(d).

                         (a)                                                   (b) 

Figure 13. Probability of wrong exclusion (PWE) for the three constraints and for α′ = 0.001: Cluster
5(a) and Cluster 6(b).

The over-identification cases (Pover+ and Pover−) and the statistical overlap (Pol) were also
practically null for that case of three soft constraints.
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The sensitivity indicators (MDB and MIB) for each scenario of three soft constraints are displayed
in Table 15.

Table 15. MDB and MIB for the case of three soft constraints based on α′ = 0.001 and P̃CD = P̃CI = 0.8.

σc = 10mm σc = 1mm σc = 0.1mm
Cluster MDB (σ) MIB (σ) MDB (σ) MIB (σ) MDB (σ) MIB (σ)

1 7.5 22 6.8 6.9 5.8 5.9
2 6.8 6.9 6.6 6.7 6.4 6.4
3 6.4 6.4 6.3 6.3 5.8 5.8
4 6.3 6.3 6.3 6.3 6.3 6.3
5 5.9 6.0 7.4 7.5 43.5 45
6 5.9 5.9 6.9 6.9 34.6 35.5

5. Discussion

We start from the scenario of one hard constraint in Figure 3(a). Table 4 reveal that the maximum
correlation between w-test statistics for the measurements constituting Cluster 1 is exactly equal to
1.00 (i.e. maxρwi ,wj

= 1.00). This means that the measurements belonging to Cluster 1 are those that
are connected with unknown heights whose connections are limited to only two. The both unknown
heights A and D are tied only to two measurements (i.e. y1 and y6 linked to A, and y3 and y4 linked to
D), therefore if an outlier occurred in one of these measurements, we would only be able to analyse the
consistency between them, but we would not be able to distinguish which of them was contaminated
by an outlier. This means that we would only be able to detect, because the w-test statistics could be
larger than a critical value k̂, however, in that case, the values of w-test statistics would be the same, and
therefore we would not have only one unique maximum w-test statistics, but actually would have four
maximum w-test statistics. In other words, the equation systems associated with the measurements of
Cluster 1 are linearly dependent [87]. Therefore, there is no reliability in terms of outlier identification
for the Cluster 1, as can be seen in Figure 3(a).

From Figure 3(b), we can note that there is reliability in terms of outlier detection for Cluster 1,
and it is caused by overlapping w-test statistics. The probability of statistics overlap Pol for Cluster 1
in this scenario of minimally constrained network is displayed in Figure 14.

Figure 14. Probability of correct detection PCD and statistical overlap (Pol) for the Cluster 1 subject to
one hard constraint and for α′ = 0.001.

The problem of not having more connections (i.e. more measurements) for the unknown heights
A and D in the case of one hard constraint with G fixed is overcome when these heights (A and D) are
taken as hard constraints in 3(b) or when the heights A, D and G are hard constraints in figure 3(c).
Figure 3(a, b) show that the measurements of Cluster 1 are now able to identify an outlier when two
hard constraints (A and D fixed) are in play. It is also verified to the case of three hard constraints (A, D
and G fixes) in Figure 3(e, f), i.e. there is reliability in terms of both outlier detection and identification
for these measurements in those conditions.
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One can argue that the more constraints, the larger the probability of correct identification (PCI)
and correct detection (PCD). This claim is not entirely correct. This may be true in case where all points
on the network have the same number of connections. However, in the example given, if both heights
B and G were selected as hard constraints, the measurements of the Cluster 1 (i.e. y1, y6, y3 and y4)
would still have their least-squares residuals fully correlated (i.e. ρwy1 ,wy6

= 1.00 and ρwy3 ,wy4
= 1.00),

and therefore there would be no reliability in terms of outlier identification for these measurements.
From Table 5, we observe different behaviour for the clusters as follows:

• Cluster 1: there was no MIB for the case of having only one single hard constraint, whereas
MDB = MIB for the other cases. However, both MDB and MIB decrease significantly with the
increase in the number of hard constraints.

• Cluster 2: MDB slightly smaller than MIB. Both MDB and MIB were practically the same for the
case of having two or three hard constraints.

• Cluster 3: MDB = MIB for all cases of hard constraints, however both MDB and MIB decrease
significantly with the increase in the number of hard constraints.

• Cluster 4: MDB e MIB were equal for all cases.

In terms of outlier detection and identification, therefore, Cluster 1 was more sensitive to
constraints, Cluster 3 relatively sensitive to constraints, whereas the Cluster 4 completely insensitive
to constraints and Cluster 2 relatively insensitive to constraints. This is also can be seen in Figure 4.
The reason for this is that the local redundancy (ri) of the Cluster 1 increased with the increase of the
number of hard constraints, whereas the Cluster 4 have remained the same, as can be seen in Table 4.

Leaving aside the cases of statistical overlap (Pol), the network presents low least-squares residuals
correlation (ρwi ,wj < 0.5) and high local redundancy (ri > 0.5). Because of this, the probabilities of
wrong exclusion (PWE) were less than 1%, as can be seen in Figure 5. The over-identification cases
(Pover+ and Pover−) were practically null. Consequently, PCI ≈ PCD. Due of this fact, the family-wise
error rate (α′) should be increased in order to have more success rate in the outlier detection and
identification [45].

From Figure 15, we observe that increasing the α′ increases the both probabilities of correct
identification (PCI) and correct detection (PCD) for outlier magnitude from 5σ to 6σ in the case of
three hard constraints and from 5σ to 6.8σ in the case of two hard constraints. Although the rates of
Pover+ and PWE also increase, they are not significant when compared to the improvement of correct
identification (PCI) and detection (PCD). This same analysis can be done for the other clusters.

In terms of soft constraints for the cases of two constraints in Figure 3(d), we observe from Table 9
that the larger the relaxation of the constraint (i.e. the larger the standard-deviation of the constraint
σc), the larger the residuals correlation (ρwi ,wj ) and the standard-deviation of the outlier σ∇i , and the
smaller the local redundancy (ri). Consequently, the probabilities of correct identification (PCI) and
detection (PCD) get smaller and smaller with the relaxation of the constraints, whereas the probability
of wrong exclusion gets larger (PWE). This can be more clearly verified in Figure 6(a, b) and Figure
8(a) for Cluster 1, whose measurements are connected with the constraints A and D (i.e. y13 and y14 in
Table 9, respectively).
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                              (a)                                                                  (b) 

                                 (c)                                                                 (d)  

Figure 15. Probabilities of correct identification PCI (a), correct detection PCD (b), over-identification
positive Pover+ (c) and wrong exclusion PWE for the Cluster 1 subject to two and three hard constraints
and for α′ = 0.001 and α′ = 0.1.

Note from Figure 8(a) that the probability of wrong exclusion (PWE) increases as the magnitude of
the outlier (∇i) increases. However, this is true up to a certain limit of outlier magnitude. The effect of
residuals correlation ρwi ,wj on the rates of wrong exclusion (PWE) and correct identification (PCI) tends
to decrease with the increase in the magnitude of the outlier ∇i. This effect is more clearly verified for
Cluster 1 in case where the precision of the constraints are ten times worse than the measurements
σc = 10σ = 10mm.

Note from Figure 6 that identifying an outlier in the Cluster 1 (i.e. y1, y3, y4 and y6) when
σc = 10mm is more difficult than the other clusters. This is due to the fact the Cluster 1 has a higher
residuals correlation ρwi ,wj = 0.994 than other clusters. In general, therefore, we observe that the larger
the relaxation of the constraints, the larger is the effect of the correlation ρwi ,wj on the success rate of
outlier identification (PCI). Consequently, the higher the sensitivity indicator for outlier identification
(MIB). Table 10 reveals that the ratio between MIB and MDB for the Cluster 1 and for the scenario
where the standard-deviations of that two soft constraints are σc = 10mm is MIB/MDB=25/7.5=3.3.
On the other hand, the relationship between MIB and MDB is practically one (i.e. MIB/MDB=1.0) for
the others scenarios.

If the FWE rate (α′) were increased for the case where the two soft constraints of σc = 10mm
are in play, we would not have great advantages for Cluster 1, due to its high residuals correlation
(ρwi ,wj = 99.4%). From Figure 16, we can observe that the probability of correct identification (PCI)
for outlier magnitudes from 5σ to 8σ is effectively larger to a user-defined α′ = 0.1 than α′ = 0.001.
However, the success rate is still less than 80%, i.e. PCI < 0.8. Note, for example, the correct

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2020                   doi:10.20944/preprints202004.0119.v1

https://doi.org/10.20944/preprints202004.0119.v1


34 of 40

identification rate is PCI = 56% for an outlier magnitude of ∇i = 8σ and α′ = 0.1. For α′ = 0.1 the
MIB = 33.5σ = 33.5mm, whereas for α′ = 0.001 is MIB = 25σ = 25mm. Therefore, in that case, the
MIB for P̃CI = 0.8(80%) and α′ = 0.1 would be 34% larger than user-defined α′ = 0.001.

Figure 16. Probabilities of correct identification (PCI) for the Cluster 1 subject to two soft constraints (2
s.c.) A and D for α′ = 0.001 and α′ = 0.1.

The soft constraints A and D were grouped in the Cluster 5 (i.e. A and D were treated as
pseudo-observations in the model). There is no reliability in terms of outlier identification for the
constraints, because the residual correlation between them is ρwi ,wj = 100%, as can be seen in Table 9
for y13 and y14. However, these soft constraints are able to detect an outlier. In that case, the probability
of correct detection PCD in Figure 7 is mainly caused by the statistical overlap Pol , as can be seen in the
example of the case of σc = 10mm in Figure 17. From Table 10, we observe that the larger the relaxation
of the constraints, the larger the MDB. Note that the values of MDB are given in σ, and therefore the
MDB for σc = 10mm is larger than σc = 1mm and σc = 0.1mm, i.e. we had the following inequality:
MDB = 6.8σc = 6.8× 10mm = 68mm > MDB = 8.8σc = 8.8× 1mm = 8.8mm > MDB = 57σc =

57× 0.1mm = 5.7mm. In that case, if the FWE (α′) were increased, the rate of outlier detection by the
Cluster 4 (i.e. by the soft constraints) would increase.

Figure 17. Probabilities of correct detection PCD and statistical overlap Pol for the two soft constraints
A and D (Cluster 5) with σc = 10mm and for α′ = 0.001.
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Similar effects of the relaxation of the constraints on the performance of the IDS in case of two soft
constraints are verified in case of three soft constraints, as can be seen in the Figures 10, 11, 12 and 13.

In case of having three soft constraints in Figure 3(e), there is reliability in terms of outlier
identification for the three pseudo-observations y13, y14 and y15 (i.e. for A,D and G), as can be seen in
Figure 10 and Table 15. In that case, we also observe that the probabilities of correct detection PCD of
the soft constraints A and D (i.e. Cluster 5) were approximately 13% for σc = 10mm, 16% for σc = 1mm
and 24% for σc = 0.1mm larger than the scenario of the network subject to two soft constraints. Table
15 reveals that the advantage of having three soft constraints instead of two constraints is that the
constraints become identifiable in the presence of an outlier. The behaviour of the probabilities of
correct detection (PCD), correct identification (PCI) and wrong exclusion (PWE) was similar to the case
of the two soft constraints.

Furthermore, the larger the relaxation of the constraints, the smaller the residuals correlation
between the measurements and the soft constraints and the larger the residuals correlation among
the measurements. This effect can be verified in Tables 6, 7 and 8 for two soft constraints as well as in
Tables 11, 12 and 13 for three soft constraints.

In general, we observe that the case of two soft constraints for σc = 0.1mm was comparable
with two hard constraints (see e.g. Table 5 and Table 10) in terms of the probability levels associated
with IDS for the measurements (i.e. clusters 1, 2, 3 and 4). In the same way for the case of two
soft constraints with σc = 1mm or σc = 10mm, the probabilities levels were similar to the one hard
constraint for that measurements, with the benefit of two soft constraints having reliability in terms of
outlier identification for the Cluster 1. Finally, the three soft constraints with σc = 1mm and σc = 10mm
were comparable to the two soft constraints for that scenario of constraints relaxation, wheres the
three soft constraints for σc = 0.1mm showed similar outcomes with three hard constraints for the
measurements (see e.g. Table 5 and Table 15). In that case, however, an advantage of the three soft
constraints on the three hard constraints is the possibility of analysing the sensitivity of the constraints.
It is important to emphasised that the stochastic models of the measurements and constraints were
assumed well-known and defined for the analyzes performed here.

6. Conclusions

In general, the probability of correct identification (PCI) for the case of hard constraints is larger
than soft constraints. It can be verified in Figure 4, Figure 6 and Figure 10. Therefore, hard constraints
should be used in the stage of pre-processing data for the purpose of identifying and removing possible
outlying measurements. In that process, one should opt to set out the redundant hard constraints at
points in the network where the smallest connections exist. After identifying and removing possible
outliers, the soft constraints should be employed to propagate the uncertainties of the constraints
(pseudobservations) to the model parameters during the process of least-squares estimation. This
recommendation is valid for outlier detection and identification purpose.

We highlight the main findings of this research as follows:

• Under a system of a high local redundancy ri > 0.5 and low residuals correlation (ρwi ,wj < 0.5), if
one increase the family-wise error rate (FWE) of the test statistic, the performance of the procedure
will be improved for both scenarios of hard constraints and soft constraints.
• The larger the relaxation of the constraints, the larger is the effect of the residuals correlation

(ρwi ,wj ) on the success rate of outlier identification (PCI). Consequently, the higher the sensitivity
indicator for outlier identification (MIB), and therefore more difficult it becomes to identify an
outlier.

• Under a scenario of soft constraints, one should set out at least three soft constraints in order to
identify an outlier in the constraints.

In other types of analysis, for example, deformation analysis of geodetic networks one should
formulated the constraints as pseudo-observations with σc > 0 in an adjustment model of system
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equations. In other words, the relaxation of constraints makes it possible to estimate deformation
effects that are unmodelled in the deterministic model matrix, for example, deformations which have a
spatial and temporal variations. In that case, the deformation can be modelled by covariance functions
that determine the cofactors between constraints [28]. This should be applied to control points located
in the structure, but not to control points located outside the structure. The control points located
outside the structure should be hard constraints and have their stability verified by an independent
process in order to analyse the deformation of the structure. So, one will be also able to analyse the
sensitivity in terms of minimal detectable deformations and/or minimal identifiable deformations [23].
Future researches will be addressed to sensitivity analysis for deformation monitoring networks.
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