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Abstract 

Convalescent blood product therapy has been introduced since early 1900s to treat emerging infectious 

disease based on the evidence that polyclonal neutralizing antibodies can reduce duration of viremia. 

Recent large outbreaks of viral diseases for whom effective antivirals or vaccines are still lacking has 

revamped the interest in convalescent plasma as life-saving treatments. This review summarizes historical 

settings of application, and surveys current technologies for collection, manufacturing, pathogen 

inactivation, and banking, with a focus on COVID-19. 
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Introduction 

Emerging viruses rarely provide time to develop vaccines, and prophylactic vaccines are rarely effective in 

therapeutic setting. Antivirals are currently available only for selected viral families, are often not 

affordable to developing countries, and their manufacturing is hard to scale up in short times.  

Recent viruses with pandemic potential include flaviviruses (e.g. West Nile virus (WNV), dengue virus, Zika 

virus (1)), chikungunya virus (2), influenzaviruses A, e.g. A(H1N1), A(H5N1) (3), Ebola virus (EBOV) (4), and 

respiratory betacoronaviruses (SARS-CoV (5), MERS-CoV (6), and SARS-CoV2 (7)). 

Transfusion of convalescent blood products (CBP), especially convalescent plasma (CP), are useful against 

emerging infectious agents if the latter induces neutralizing antibodies (8). CBPs are manufactured by 

sampling whole blood or apheresis plasma from a convalescent donor: donor selection should be based 

according to neutralizing antibody titer, but in resource-poor settings, ELISA or no selection at all has often 

been implemented. The donor should preferably live in the same area as the intended recipient(s) to 

consider mutations of the target viral antigens, even if in areas epidemic for other infectious diseases (e.g. 

malaria) this could represent a contraindication. Although the recipient is already infected, theoretically 

transmission of more infectious particles could worsen clinical conditions. For this reason, the right timing 

of collection is fundamental to ensure no transmission of the pathogen to the recipient. Nevertheless, such 

concern can be somewhat reduced by treatment with modern pathogen inactivation (PI) techniques. 

The main accepted mechanism of action for CBP therapy is clearance of viraemia, which typically happens 

10–14 after infection (9). So CBP has been typically administered after early symptoms to maximize 

efficacy. Concurrent treatments might synergize or antagonize CP efficacy (e.g. polyclonal intravenous 

immunoglobulins or steroids) (10).  

In the setting of respiratory viral infections, secretory IgA, which are the main immunoglobulin isotype on 

mucosal surfaces, are key players. They are made of 2 IgA molecules (dimers), a joining protein (J chain), 

and a secretory component. IgM and IgA are actively transported across epithelia by the polymeric Ig 
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receptor (pIgR) or by neonatal Fc receptor (FcRn), while IgG can passively trasudate into alveolar fluids (11). 

The lung requires specific antiviral IgG2a for protection in terminal bronchioles and alveoli (12, 13). 

Given the emergency related to the COVID-19 pandemic, this review summarized historical settings of 

application, and surveys current technologies for collection, manufacturing, pathogen inactivation, and 

banking, of convalescent blood products, with a specific focus on possible applications for COVID-19.  

Convalescent plasma and pathogen inactivation 

Convalescent whole blood (CWB), in addition to antibodies, provides control of hemorrhagic events, as in 

Ebolavirus disease, if transfusion occurs within 24 hours in order to keep viable platelets and clotting 

factors. Nevertheless, convalescent plasma (CP) best fits developed countries standards and settings where 

antibodies only required. CP should be collected by apheresis in order to ensure larger volumes, more 

frequent donations, and do not cause unnecessary anemia in the donor. 

Technologies to virally reduce plasma (pathogen inactivation) 

 

In several settings donor screening and conventional NAT viral testing (i.e. HIV, HCV and HBV NAT) could 

not be enough to ensure CP safety. In those scenario, pathogen reduction technologies (PRT) should be 

used. Several technologies have been approved and are currently marketed. 

Solvent/detergent (S/D)-filtered plasma provides quick > 4 logs inactivation of most enveloped viruses: 

although the technology was developed and is massively used for large plasma pools, small scale reduction 

have been reported. The technology relies over 1% tri (n-butyl) phosphate/1% Triton X-45, elimination of 

solvent and detervent via oil extraction and filtration, and finally sterile filtration (14). Filtration across 75–

35 nm hollow fibers could remove large viruses while preserving IgG [48], but has not been implemented 

yet. 

In recent years photo-inactivation in the presence of a photosensitizer has become the standard for single 

unit inactivation : approved technologies include combination of methylene blue + visible light (15) 
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(Theraflex®), amotosalen (S-59) + ultraviolet A  (16) (Intercept®), and riboflavin + ultraviolet B (17) 

(Mirasol®). These methods do not to affect immunoglobulin activity. 

Fatty acids are also an option. In 2002 it was reported that caprylic acid (18) and octanoic acid (19) were as 

effective as S/D at inactivating enveloped viruses. 

Heat-treatment of plasma has been used in the past (20, 21) but goes with the risk of aggregation of 

immunoglobulins (22, 23). 

Pooling 

Large-pool products 

Pharmaceutical-grade facilities typically pool 100/2500 donors to manufacture S/D-inactivated plasma 

Intravenous immunoglobulins (IVIGs) are similarly prepared from pools of 2000–4000 L of plasma (or 100-

1000 L in the case of hyperimmune IVIG) (24) (25). Such size can be hardly matched from CP donors and 

facilities rearrangement poses hard GMP issues (25). 

Mini-pool fractionation scale (MPFS) into immunoglobulins 

In order to be economically sustainable contract fractionation typically requires well over 10 000 liters of 

plasma per year, and domestic fractionation typically over 100 000–200 000 liters per year in addition to 

start-up a fractionation facility. A “on the bench” MPFS process (5-10 liters of plasma, i.e. approximately 20 

recovered plasma units) using disposable devices and based on caprylic acid precipitation is under 

development in Egypt since 2003, and has been proven effective at purifying coagulation factors (26) and 

immunoglobulins (6-fold enrichment) (27). The same disposable bag system has also been combined with 

S/D reduction (14). 

Lessons from SARS 

SARS-specific antibodies usually persist for 2 years, and decline in prevalence and titers occurs in the third 

year (28). Convalescent anti-SARS immunoglobulins were manufactured on a small scale (8, 29). Three 
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infected healthcare workers with SARS progression despite treatment survived after transfusion with 500 

ml CP : viral load dropped to zero one day after transfusion (30). SARS-CoV RNA was found in respiratory 

specimens from one third of patients for up to 4 weeks following symptoms (31). Amotosalen 

photochemical inactivation of apheresis platelet concentrates demonstrated a >6.2 log10 mean reduction 

of SARS-CoV (32). Theraflex˚ reduces infectivity of SARS-CoV in plasma (33). Heating at 60°C for 15-30 

minutes reduces SARS-CoV from plasma without cells (34), while 60°C for 10 hours is required for plasma 

products (35). In addition, SARS-CoV was found to be sensitive to S/D, (34, 36). 

Lessons from MERS 

Antibody responses to MERS persist for less than 1 year and magnitude correlates with the duration of viral 

RNA shedding in sputum (but not with viral load). Mild patients have very low titers, making CP collection 

challenging in MERS convalescents (37). A study reported that only 2.7% (12 out of 443) exposed cases 

tested positive with ELISA, and only 75% of them had reactive microneutralization assay titers (38). CP with 

a PRNT titre ≥1:80 provide clinical benefit in MERS (39). A case of TRALI following CP transfusion in a patient 

with MERS was reported (40, 41).  MERS-CoV load in plasma was reduced by Theraflex® (42), Intercept® 

(43), Mirasol® (44), and 56°C heating for 25 minutes (45) : in all cases passaging of inactivated plasma in 

replication-competent cells showed no viral replication. 

Convalescent plasma for COVID-19 

As soon as the COVID-19 pandemic appeared (7, 46), several authors suggested CP as a potential 

therapeutic (47, 48). Of interest, the most critically ill patients show prolonged viremia (strongly correlated 

with serum IL-6 levels) (49), which leaves room for therapeutic intervention with antivirals and 

immunoglobulins even in late stages. Viral shedding in survivors can be as long as 37 days (46), mandating 

SARS-CoV2 RNA screening in CP donors. Appearance of serum IgM and IgA antibody in COVID-19 occurs 

since day 5 after symptom onset, while IgG is detected since day 14 (50, 51). IgG are universally detected 

since day 20 (52). Severe female patients generate IgG earlier and higher titers (53). Duration of anti-SARS-

CoV2 antibodies in plasma remains unknown, though for other betacoronaviruses immunity typically lasts 
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6-12 months (54). So a suitable donor could donate 600 ml plasma (equivalent to 3 therapeutic doses) 

every 14 days for a minimum of 6 months. In contrast to EVD, SARS, and MERS, most COVID-19 patients 

exhibit few or no symptoms and do not require hospitalization, suggesting that the majority of 

convalescent donors are best sought after in the general population.  

In a first case series from China, 5 patients under mechanical ventilation (4 of 5 with no preexisting medical 

conditions) received transfusion with CP with a ELISA IgG titer > 1:1000 and a neutralization titer > 40 t day 

10-22 after admission. 4 patients recovered from ARDS and 3 were weaned from mechanical ventilation 

within 2 weeks of treatment, the remaining being stable(55).  

Another Chinese pilot study (ChiCTR2000030046) on 10 critically ill patients showed that one dose of 200 

mL CP with neutralizing antibody titers > 1:640 resulted in an undetectable viral load (70%), radiological 

and clinical improvement (56).  

Table 1 lists the other ongoing CP trials in COVID-19 patients listed in World Health Organization 

International Clinical Trial Registry Platform (ICTRP) database. The US have developed a specific platforms 

for facilitating clinical trials (https://ccpp19.org/), while the International Society for Blood Transfusion 

created a resource library (https://isbtweb.org/coronaoutbreak/covid-19-convalescent-plasma-document-

library/) . Unfortunately, most trial in Westernized countries (on the contrary of the ones ongoing in China) 

seem to no have no control arm, which will impair efficacy interpretation. 

 Notably, several plasma manufacturers are attempting to develop SARS-CoV2-specific hyperimmune sera, 

(e.g. Takeda’s TAK-888 merge with Biotest, BPL, LFB, Octpharma and CSL Behring into the “Convalescent 

Plasma Coalition” (57), or Kamada’s anti-COVID19 IgG (56)), while other companies are investing on genetic 

engineering (e.g. CSL Behring on SAB Biotherapeutics DiversitAb™ platform). 

CP donor recruitment strategies 

As previously proofed, donor testing for neutralizing antibodies is mandatory in upstream donor selection. 

Three approaches are theoretically available to recruit CP donors, everyone having pros and cons. The least 

cost-effective approach is screening the general periodic donor population for presence of anti-SARS-CoV2 
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antibodies. In endemic areas, this strategy provides many fit donors with the additional benefit of a 

seroprevalence study in the general population (80% of cases being asymptomatic), but requires a high 

budget. On the other side of the coin, recruitment of hospital discharged patients is highly cost-effective 

(patients can be easily tested before discharge and tracked), but patients who have required hospitalization 

are highly likely to be elderlies with comorbidities, and hence unfit to donate. The intermediate approach is 

deploying calls to donate to positive cases under home-based quarantine: given the huge numbers, some of 

them are likely to be periodic donors, and home-based convalescence suggests they are fit enough to 

donate. Nevertheless, lessons from MERS suggest that patients with mild symptoms could have developed 

low-titer antibodies (38), making antibody titration even more important in the population-wide and home-

based approaches.  

 

CP banking 

CP is typically used as a fresh product. Aliquots can be easily achieved with modern PI kits. Banking at 

temperature below -25˚C (according to EDQM guidelines for ordinary plasma for clinical use (58)) is 

encouraged in order to translate CP in an off-the-shelf, ready-to-use product. Most regulatory system 

require that CP is tracked informatically as a blood component different from ordinary plasma for clinical 

use. The final validation label should report that the donor has tested negative at PCR for the convalescent 

disorder and additional microbiological tests, and describe the inactivation method. There is no evidence 

that a single cycle of freezing and thawing significatively affects quantity or function of immunoglobulins. 

 

Monitoring response to treatment 

CP is considered an experimental therapy, and as such phase 3 randomized controlled trials should be 

encouraged. Despite this recommendation, in emergency settings phase 2 trials are usually started, 

hampering efficacy analysis. Response in published trials is generally measured clinically or radiologically 

according to target organs. Nevertheless, surrogate endpoints can include antibody titer rise in recipient’s 
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plasma and drops in recipient’s viral load. Whenever quantitative PCR is not available, cycle threshold (Ct) 

value increases in qualitative PCR after transfusion could be a proxy for reduced viral load. 

 

Side benefits from CP in COVID-19 

Obviously, patients with humoral immune deficiencies can benefit from polyclonal antibodies contained in 

CP, and patients with hemorrhagic diathesis can benefit from clotting factors. After demonstration that 

group 0 healthcare workers were less likely to become infected with SARS-CoV (59), a research group 

proved that anti-A blood group natural isoagglutinins (which can be also found in CP plasma from blood 

group 0 and B donors) inhibit SARS-CoV entry into competent cells (60). Such binding could opsonize 

virions and induce complement-mediated neutralization (61). Since SARS-CoV2 uses the same receptor 

as SARS-CoV, anti-A isoagglutinins are expected to have similar effects against SARS-CoV2: accordingly 

clusters of glycosylation sites exist proximal to the receptor-binding motif of the SARS-CoV (62) and 

SARS-CoV2 (63) S protein.  

A recent publication showed that the odds ratio for acquiring COVID-19 is higher in blood group A than in 

blood group 0 (64). COVID-19 has more severe clinical presentations and outcome in elderlies and in males 

: intriguingly, elderly males are known to experience reductions in isoagglutinin titers (65, 66). Studies are 

hence ongoing to evaluate correlations between isoagglutinin titers and outcome in blood group 0 and B 

patients. In the meanwhile, while preserving ABO match compatibility, it could be wise to prefer blood 

group 0 and B donors for CP in COVID-19, and to titre their anti-A isoagglutinins. 

Concerns 

The main contraindications to CP therapy are allergy to plasma protein or sodium citrate, or selective IgA 

deficiency (< 70 mg/dl in patients 4 years old or greater). As in many other trial settings, concurrent viral or 

bacterial infections, thrombosis, poor compliance, short life expectancy (e.g. multiple organ failure), as well 

as pregnant or breastfeeding women. are also contraindications. Nevertheless, additional concerns apply. 
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The first concern is transfusion-transmitted infection (TTI). Modern PI technologies, combined with NAT, 

reduces the risk for contracting additional TTIs. Most regulatory systems require additional tests (e.g. HAV 

RNA, HEV RNA, parvovirus B19 DNA) to be performed on CP for additional transfusion safety. CBP obtained 

from donors in the UK may be problematic for a couple of reasons. Currently CBP obtained from individuals 

who lived for at least 6 months in the UK during 1980-1996 ‘mad cow disease (bovine spongiform 

encephalopathy – BSE)’ outbreak may not be acceptable in some countries (67) – or by some individuals. In 

addition, there is a now a recognized risk of hepatitis E the within UK blood donor population (68), most 

likely due to the consumption of poorly cooked pork products (69, 70), for which screening has only 

relatively recently been initiated(71). Although this does not preclude such SARS-CoV-2 convalescent 

plasma/sera being used therapeutically within the UK, these other risks should be considered during larger 

clinical trial or individual patient compassionate use. As per the risk of worsening the clinical picture by 

delivering more viral particles of the targeted virus, it is generally unlikely to worsen the underlying 

scenario. Respiratory betacoronaviruses produce only a mild and transient viremia. With SARS-CoV, limited 

replication in lymphocytes(72) leads to significant risk only for recipients of blood products with high 

concentrations of donor lymphocytes (peripheral blood stem cells, bone marrow, granulocyte 

concentrates, etc). With SARS-CoV2, viremia has been shown persists only in critically ill patients (49). 

The second concern is TRALI, which can be life-threatening in patients who already are suffering from ALI. 

Male donors are usually preferred in order to avoid the risk of transfusing anti-HLA antibodies from parous 

women. In the case of COVID-19, where female patients have been shown to have higher IgG levels, this 

could be detrimental, and anti-HLA antibody screening could be implemented. 

Antibody-dependent enhancement (ADE) due to passive or active antibodies facilitating coated virions 

entry into cells via Fc receptors (73, 74) is also a theoretical concern, but its clinical relevance remains 

unproven (75).  

Conclusions 
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CP manufacturing should be considered among the first responding actions during a pandemic in the 

meanwhile antivirals and vaccines are tested. Despite huge competition from trials employing small 

chemicals, multicentre randomized controlled trials should be encouraged in order to establish efficacy and 

provide hints about the most effective schedule (timing and dose).  
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Figure 1. Summary of possible convalescent blood products (CBP). Reproduced from ref  (76) under STM 

Permissions Guidelines as of 26 March 2020 (https://www.stm-assoc.org/intellectual-

property/permissions/permissions-guidelines/). 
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Table 1. Ongoing interventional clinical trials of convalescent plasma in COVID-19 patients listed in World Health Organization International Clinical Trial 1 

Registry Platform (ICTRP) databases (accessed online at https://www.who.int/docs/default-source/coronaviruse/covid-19-trials.xls on April 6, 2020) 2 

Trial number Title (country) Study 

population 

Schedule Donor 

Titer 

Indication 

ChiCTR2000029850 Study on convalescent plasma treatment for 

severe patients with novel coronavirus 

pneumonia (COVID-19) (China) 

Exp:10 

Ctr:10 

NA NA Clinical deterioration despite 

conventional treatment that 

required intensive care 

ChiCTR2000030179 Experimental study of novel coronavirus 

pneumonia rehabilitation plasma therapy 

severe novel coronavirus pneumonia (COVID-

19) (China) 

Exp:50 

Ctr:50 

NA NA Critically ill patients 

ChiCTR2000030010 A randomized, double-blind, parallel-

controlled, trial to evaluate the efficacy and 

safety of anti-SARS-CoV-2 virus inactivated 

plasma in the treatment of severe novel 

coronavirus pneumonia patients (COVID-19) 

(China) 

Exp:50 

Ctr:50 

NA NA Non critically ill patients 
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ChiCTR2000030039 Clinical study for infusing convalescent plasma 

to treat patients with new coronavirus 

pneumonia (COVID-19) (China) 

Exp:30 

Ctr:60 

2 units of plasma  

(200/500 mL/24h) vs BSC 

NA All patients  

ChiCTR2000030627 Study for using the healed novel coronavirus 

pneumonia (COVID-19) patients plasma in the 

treatment of severe critical cases (China) 

Exp:15 

Ctr:15 

NA NA Severe or critically ill patients 

ChiCTR2000029757 Convalescent plasma for the treatment of 

severe and critical novel coronavirus 

pneumonia (COVID-19): a prospective 

randomized controlled trial (China) 

Exp:100 

Ctr:100 

NA NA Severe or critically ill patients 

NCT04292340 Anti-SARS-CoV-2 Inactivated Convalescent 

Plasma in the Treatment of COVID-19 (China) 

15 NA NA All patients with Covid-19 

ChiCTR2000030702 Plasma of the convalescent in the treatment of 

novel coronavirus pneumonia (COVID-19) 

common patient: a prospective clinical trial 

(China) 

Exp:25 

Ctr:25 

NA NA Non critically ill patients 

ChiCTR2000030929 A randomized, double-blind, parallel- Exp:30 NA NA Non critically ill patients 
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controlled trial to evaluate the efficacy and 

safety of anti-SARS-CoV-2 virus inactivated 

plasma in the treatment of severe novel 

coronavirus pneumonia (COVID-19) (China) 

Ctr:30 

NCT04321421 Hyperimmune Plasma for Critical Patients 

With COVID-19 (COV19-PLASMA) (Italy) 

49 3 units of plasma (250-300 

mL/48h) 

NA Moderate to severe ARDS 

under mechanical ventilation 

NCT04323800 Efficacy and Safety Human Coronavirus 

Immune Plasma (HCIP) vs. Control (SARS-CoV-

2 Non-immune Plasma) Among Adults 

Exposed to COVID-19 (CSSC-001) (USA) 

150 1 unit of plasma 

(200/250mL) 

>1:64 Exposed to the contagion 

(within 96 hours of enrollment 

and 120 hours of receipt of 

plasma) 

NCT04325672 Convalescent Plasma to Limit Coronavirus 

Associated Complications: An Open Label, 

Phase 2A Study of High-Titer Anti-SARS-CoV-2 

Plasma in Hospitalized Patients With COVID-19 

(USA) 

20 1-2 units of plasma (300 

mL/24h) 

>1:64 Severe or critically ill patients 

NCT04333251 Evaluating Convalescent Plasma to Decrease 

Coronavirus Associated Complications. A 

115 

Exp: NA 

 1-2 units of plasma (250 

mL/24h) vs BSC 

>1:64 All patients with COVID-19 
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Phase I Study Comparing the Efficacy and 

Safety of High-titer Anti-Sars-CoV-2 Plasma vs 

Best Supportive Care in Hospitalized Patients 

With Interstitial Pneumonia Due to COVID-19 

(USA) 

Ctr: NA 

NCT04338360 Expanded Access to Convalescent Plasma for 

the Treatment of Patients With COVID-19 

(USA) 

NA 1 unit of plasma (200/250 

mL) 

NA Critically ill patients  

NCT04332380 Convalescent Plasma for Patients With COVID-

19: A Pilot Study (CP-COVID-19) (Colombia) 

10 2 units of plasma  

(250 mL/24h) 

NA Non critically ill patients. 250 ml 

day 1 + 250 ml day 2 

NCT04332835 Convalescent Plasma for Patients With COVID-

19: A Randomized, Open Label, Parallel, 

Controlled Clinical Study (Colombia) 

40 

Exp: NA 

Ctr: NA 

2 units of plasma (250 

mL/24h) vs BSC 

NA Non critically ill patients 

NCT04327349 Investigating Effect of Convalescent Plasma on 

COVID-19 Patients Outcome: A Clinical Trial 

(Iran) 

30 NA NA Non critically ill patients 

NCT04333355 Phase 1 Study to Evaluate the Safety of 20 1-2 units of plasma (250 NA Severe or critically ill patients 
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Convalescent Plasma as an Adjuvant Therapy 

in Patients With SARS-CoV-2 Infection 

(Mexico) 

ml/24h) 

NCT04340050 COVID-19 Convalescent Plasma (USA) 10 1 unit (300 ml) NA Severe or critically ill patients < 

21 days from the start of illness 

NCT04342182 Convalescent Plasma Therapy From Recovered 

Patients to Treat Severe SARS-CoV-2 Disease 

(CONCOVID Study) (The Netherlands) 

426 

Exp : NA 

Ctr: NA 

1 unit (250 ml) NA All patients with COVID-19 

BSC: best supportive care; NA: not available; Exp: experimental group; Ctr: control group 
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