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Abstract 

Deforestation and associated changing landscapes are major components of environmental 

changes, with important implications for ecosystem functioning and biodiversity conservation. 

Tropical forests are hot spots of biodiversity and provide multiple goods and ecosystem services 

which benefit people in many ways Forest also play an important role in health-related 

legends, myths, and fairy tales from all over the world, and are important sources of new potential 

emerging microbial threats to human. Although plausibly numerous abundant microbial forms with 

a forest origin may exist, our systematic literature review shows that forest-derived infection 

studies are relatively unexplored, and both taxonomically and geographically biased. Since 

biodiversity has been associated with emergence of novel infectious diseases at macro-scale, we 

describe the main biogeographical patterns in the emerging infection-biodiversity-forest loss nexus. 

Then, we illustrate four fine-scale case studies to decipher the underlying processes of increased 

infection risk in changing forest clearing landscapes. Finally, we identify scientific challenges and 

regional management measures required to mitigate these important new emerging threats. 

 

Introduction 

In a general perspective all people have some dependence on forests. Forests vividly affected the 

imagination of preliterate societies, and over time, they have come to represent different concepts in 

the imaginations of populations living in various geographical locations. In addition to these positive 

views, woodlands are also believed to be inhabited by mythical beings, trying to harm humans, or to 

be a great danger and inhospitable areas of evil and darkness [1], and of mysterious diseases [2-4]. In 

modern times, many people rely directly on forests for their livelihoods; woodlands provide 

sustenance, building materials and medicinal plants. People who live inside forests are often hunter-

gatherers or shifting cultivators, and people living near forest are usually involved in agriculture 

outside the forest, and regularly use forest product partly for their own subsistence purposes. Last 

people living outside forest, including urban dwellers, are engaged in commercial activities and forest 

industries, and use, at least, timber products and paper. Although paucity of data makes it difficult to 

draw definite conclusions about the state of many tropical forest ecosystems, precluding a global 
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understanding of impacts of current disturbances on animal vital rates [1,5], many forest ecosystem 

services could be lost forever, as highlighted for instance by Amazon rainforest decimated by 

widespread fires and logging [2,6,7]. As Earth’s forested areas and their native biodiversity could 

become progressively scarce and remain under increasing pressures for resource extraction and land 

conversion this new anatomy could create novel conditions for pervasive risks to emerge and interact 

in the longer term [8] (see Table 1 and Figure 1). 

These continued environmental changes interacting with human and animal demographics on Earth 

might reasonably be shown to have a greater immediate impact on current and future zoonotic and 

vector-borne emerging infections [9,10]. In this context, previous research has strongly focused on 

the expected effects of climate change on spatial and temporal disease risk, and notably for infectious 

diseases transmitted by arthropod vectors [11]. Research to date has paid less attention to other 

factors that are already known to interact with emerging infections, such as land-use changes, 

massive deforestation of tropical rainforests and fragmentation of forest areas.  In this review, we 

assess past and current knowledge on the relative effects of deforestation and forest alteration 

processes on emerging infectious diseases risk and examine how these have been incorporated into 

available analyses. We argue that the contact between wild animals, wild habitats, domestic animals 

and people in regions undergoing deforestation is a key driving process that induces the emergence 

of new infectious diseases. Although major focus has been given on the impact of climate change on 

emerging disease risks, we suggest, far more importantly that global climate changes, land-use 

transformation and particularly deforestation in the most speciose areas of the planet, and locally at-

risk nature resources harvest behaviors, is associated with increased risk of several major pathogens 

in human. We discuss how contemporary studies have focused on understanding unilateral aspects of 

forest-derived infections, and propose adopting a system-based dynamics approach to understanding 

forest-derived infections, and propose adopting a system-based dynamics approach to understanding 

forest-borne disease risk [12], and recommend future directions for research to guide interventions 

and contribute to planetary health efforts. 

Materials and Methods. A systematic literature review 

In April 2018, we searched the Web of Science Clarivate Analytics, InCites, JCR, ESI, EndNote, Publons, 

Medline and Google Scholar databases using a combination of search terms related to forests 
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(undisturbed, pristine, perturbed forests), deforestation, and emerging infectious diseases that were 

cross-checked to identify all original research articles published from January 1953 to mid-April 2018. 

Emerging infectious diseases are caused by newly identified species or strains of pathogens and 

whose incidence has increased in the past 40 years and could increase in the near future. Many 

emerging diseases in human are zoonotic (originated from an animal reservoir) or sapronotic (from 

soil, water or plant rhizosphere). The retained search terms were: tropical forest*; equatorial forest*; 

forest*; rainforest*; pristine forest*; undisturbed (non-disturbed) forest*; edge; edge effect*; 

deforestation; forest fragmentation; forest fragment*; deforested habitat*; deforested landscape*; 

(human) emerging infectious disease*; (human) emerging infection*; human health; zoonotic 

infection*; zoonotic infectious disease*; vector-borne disease*; and vector-borne infection*. We 

identified 565 article items (mainly scientific publications) in which one or several of these search 

terms were present in the article title, summary, or introduction section only. However, in most of 

these citations, the article core did not concern exactly the topic of this review, but mainly molecular 

biology and phylogenetic analyses. We excluded these articles from the final database. We also 

excluded articles with redundant information based on the same empirical work. As our review 

focuses on emerging human infectious diseases, we also discarded articles on emerging infections in 

wildlife in relation to forests. For instance, we excluded studies that were identified with the search 

terms forest succession and edge effect because it concerned only wildlife health. By reviewing the 

abstracts, titles, keywords and by reading the articles, we eliminated many other publications due to 

their lack of direct relevance. Finally, we retained 165 articles on temperate and tropical/equatorial 

forests, their environmental changes, and emerging human infections. The initial and final lists of 

scientific articles are available upon request. 

From our systematic literature review, it is observed a general increase in the number of scientific 

productions on forests and emerging infectious diseases from 1953 to mid-April 2018 (end of our 

literature review), with an important rise of this scientific works from 2000-2004 (Figure 2A). 

Distinction between different categories of research works on this topic reveals that empirical studies 

also tend to increase during this period, whereas descriptive and systematic reviews, modeling 

studies and syntheses show a flat trend (Figure 2A). The scientific production was clearly dominated 

by studies from three main large areas, i.e., North America, South and Meso America, and Sub-

Saharan Africa notably for its central and eastern regions, then followed by Europe (Figure 2B). For 

North America and Europe, a large proportion of studies concerned Lyme disease, and for South and 
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Meso America leishmaniasis, two disease systems that predominantly feed the topic. Classifying 

scientific papers based on the focus systems indicates that the number of studies asking unique and 

partitioning research questions, e.g., research done on insect vectors, or animal reservoirs or 

pathogens separately, clearly increase after 2006 (Figure 2C). A similar trend is observed for 

publications addressing host (or vector)-pathogen interactions, which undoubtedly increases 

biological representation in those disease transmission studies (Figure 2C). However, research studies 

integrating hosts and/or vectors, zoonotic pathogens and human cases do not show any particular 

trend, and such integrative studies on forest-derived diseases are still very rare. Indeed, research 

work on arthropod vectors only (without any analysis of pathogens) strongly increased after 2006 

(Figure 2D). Conversely, after 2006, although many studies still focused only on the hosts (e.g., 

mammals, bats), without any consideration for their status of infection, research on animal 

reservoirs/hosts started to take into account also the disease prevalence or incidence in animal 

reservoirs or in humans. 

Overall, our systematic review clearly shows that the topic on forest-emerging infections is not 

strongly supported by many empirical evidences, and that trends though time in taxonomic and 

geographical research options may definitely bias the conclusions claimed by the different authors. 

Notably, we would have expected more general studies on forest-derived infections and the different 

mechanisms responsible for disease spillover and emergence rather than on identification of specific 

pathogens associated with forest habitats and associated hosts.  

 

Forest-derived human infections macroecological patterns  

Macroecology of infectious diseases identifies large-scale patterns of relationships between 

pathogens and hosts, including humans, and their vectors or reservoirs [13]. However, studies are still 

rare partly because of the difficulties of large-scale and long-term data collection [14], and because 

medicine and veterinary sciences often focused on small-scale local processes [but see 13, 15-18]. For 

instance, two studies highlighted the association of Ebola virus disease outbreaks in Central and West 

Africa with disturbance hotspots by deforestation as a plausible explanation for local species 

community changes - possibly including reservoirs of pathogens - thereby further enhancing the risk 

of new infections in human communities close to the forest margins [19]. Definitively this pattern 
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would not have been highlighted at smaller scale [20]. Forest loss and fragmentation caused by 

human activities is an important cause of biodiversity erosion worldwide, and this process is 

particularly pronounced in tropical regions, where much of Earth’s biodiversity is loc22ated. One of 

the main effects of forest perturbation is the alteration of biological interactions, including the 

relationships between hosts and pathogens. On local scales, theory predicts a decrease in pathogen 

diversity due to the loss of hosts in such deforested contexts. However, forest loss and fragmentation 

could also increase pathogen infections from wildlife as a result of higher exposition due to human 

visits to these places for extraction of mineral resources, harvest of nature resources (game, ligneous 

and non-ligneous products), encroachment and implementation of new settlements [21]. Host-

pathogen interactions are fundamentally important in forested ecosystems, but very few studies have 

identified and emphasized forest-derived pathogen large-scale biogeographical patterns. In this 

section, we identify the main macroecological patterns which have been identified in recent years 

concerning human, wildlife and pathogen interactions in scenarios of forest loss. 

 

Sampling effort is important!  

 

A general relationship may exist between the number of pathogen species and the spatial distribution 

of the sampling effort across biomes or regions as demonstrated in the present work for forest-

derived infections in North America (Figures 2B and 3A). One area could be considered as pathogen-

rich just because of the high concentration of sampling events, e.g., primates and their parasites with 

particularly low sampling in Southeast Asia, Central and Western Africa, and South America, and 

better sampling in Eastern Africa and Brazil [22]. Therefore, large sample collection gaps (e.g., remote 

areas) and high concentration of sampling events (e.g., areas with facilitated “highway-driven 

sampling”) must be considered. The knowledge on pathogen biodiversity may be biased not only 

geographically, but also taxonomically because some host taxa or some infectious agents have been 

prioritized in emerging disease studies through time (e.g., bat species, tick-borne Lyme disease in 

Europe and North America, Leishmaniasis in South America), or were neglected in biomedical studies 

(e.g., fungal parasites). Some statistical tools, such as gap analysis, can be useful to reduce sampling 

bias between different regions and biomes [22]. The main message is that we know little about even 

the best studied primates and bats, and even less regarding the spatial and temporal distribution of 

pathogens within species. It is thus difficult to predict zoonotic pathogen emergence in humans 
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without having more sampling for pathogens across all animals, time, ecosystems and countries even 

if important advances have been achieved during the last decade. 

 

Latitudinal gradient of pathogen species diversity 

 

In general, human pathogen species richness peaks at equatorial latitudes and between the tropics, 

where large forest domains occur (Figure 3B). Helminth parasite species across diverse host species 

also support a latitudinal diversity gradient [23]. Human pathogen diversity generally peaks in regions 

characterized by warm, wet and more seasonally stable climatic conditions, and declines as climate 

becomes colder, with marked seasonal variations [16]. While the biogeography of human diseases 

corresponds well to this global biodiversity pattern, in terms of emergence a greater diversity of 

potential zoonotic diseases and their mammal species is concentrated in northern latitudes, especially 

rodent-borne infections in Europe [13]. The diversity of zoonotic mammal pathogens and their spatial 

distribution may erroneously be seen as synonymous with true human disease risk, rather than an 

estimate of underlying zoonotic potential mediated by many additional interactions. However, as far 

as we know, forests, and notably in tropical domains, may well constitute the cradle for myriads of 

enzootic, zoonotic and sapronotic microbes through evolutionary processes that drive this 

phenomenon [24].  

Large-scale nested species patterns of human pathogen composition 

 

Nestedness of pathogen species assemblages occurs when the biotas at temperate latitudes with 

lower numbers of species tend to be subsets of biotas at richer sites located in the tropics (Figure 

3C). Specifically, many human parasite and microbial species are spatially restricted to the tropics. 

On the other hand, pathogen species present at higher latitudes are generally detected also in 

tropical regions [16]. Worldwide, the human pathogen nestedness could be explained by extinction-

dominated processes where pathogens, host reservoirs and vector species do not distribute in a 

consistent manner at higher latitudes, because of the absence of suitable climatic, environmental 

(rainforested) conditions, or absence of host reservoirs/vector species populations to sustain the 

disease life-cycle. On average, relationships between host and pathogen biodiversity are often 
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unclear or lack consistent empirical support both across taxa and biomes. Thus, testing the hypothesis 

that tropical forests might constitute higher-risk regions for disease emergence and potential new 

epidemics in human than temperate forests, all other human and socio-economic parameters kept 

constant, remains a critical priority in infectious disease research, and international health 

prevention. 

 

The extent of pathogen species geographic distribution increases at higher latitudes 

 

One of the most well studied biogeographical patterns is the Rapoport’s rule, according to which at 

higher latitudes taxa harbor larger geographic ranges. Human pathogens are spread unevenly across 

the globe, with foci in the tropics, and the Rapoport’s rule could explain the geographical distribution 

of many of them [25] (Figure 3D). Seasonal climate changes at higher latitudes favor species with 

greater tolerance for environmental variations, and consequently larger distribution ranges [25]. 

Different socio-economic conditions (large population size, transportation, medical care) may have 

also allowed the expansion of some pathogen groups in regions with variable climates over time, 

particularly person-to-person infectious diseases (Figure 3D). Also, the greater diversity of 

biogeographic units and current habitat fragmentation at lower latitudes create spatial 

heterogeneities and habitat edges that could support an increased isolation of host reservoirs and 

vectors, favoring the development of many pathogens through coevolutionary processes [26].    

 

Relationship between human pathogen richness and mammal and bird richness 

 

After controlling for health spending, disease control and human population size, mammal and bird 

species richness explains most (72%) of the human pathogen richness variation across the globe [27] 

(Figure 3E). Humans living in regions with high biodiversity of bird and mammal species (i.e., 

intertropical forests and closed ecosystems) are consequently exposed to a larger diversity of 

pathogens than people living in areas of low diversity. Although it is not known whether bird and 

mammal richness causes human pathogen diversity, or rather indicates a higher level of pathogens in 

the environment, this richness does not guarantee the existence of a pathogen species pool capable 

of jumping to humans [28]. Since most biodiversity hotspots are tropical forests, they also form a rich 
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pool of microorganism diversity, a small fraction of them being potentially pathogens for human with 

an elevated risk of spillover through novel exposures. 

 

Relationship between human pathogen richness and disease prevalence 

 

Disease prevalence in humans is also strongly correlated with pathogen species richness in mammals 

and birds (Figure 3F) with additional effects of climate and human population size [27]. Massive 

health programs to control different infectious diseases, particularly in tropical areas, have 

considerably reduced pathogen prevalence, but not pathogen richness per se [27]. For instance, 

malaria control programs in Africa have reduced malaria prevalence, but the pathogen is still present. 

As local outbreaks of a neglected or newly developed infectious disease can rapidly progress to more 

severe stages, reducing the global pathogen prevalence will require the implementation of diagonal 

public health actions to target not only the more classically recognized infectious diseases (i.e., 

HIV/AIDS, malaria and tuberculosis) but also such co-occurring often neglected diseases (e.g., 

schistosomiasis, soil nematodes, Buruli ulcer), because they also contribute to the global disease 

burden of a country [27].     

 

Relationship between human pathogen richness and surface area 

 

According to the species-area relationship, the size of a site will limit the number of species and of 

vector or host reservoir that can be harbored (Figure 3G). The habitat heterogeneity (natural mosaic 

or heterogeneity resulting from pressures, e.g., rainforest clearing, forest edges) and food resource 

diversity (for host reservoirs or vectors) increase with the size of the area, thus offering a larger 

number of available niches and favoring the coexistence of a larger number of potential reservoir or 

vector species. Alternatively, the positive species-area relationship could be the result of a pattern 

generated by random sampling process [29]. Indeed, the number of newly discovered pathogen 

species in forests could simply depend on the size of the prospected sites. 

 

Pathogen richness homogenization  
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Given the frequency and extent of human movements, homogenization also applies to human 

pathogens. Human pathogens are distributed around the globe, and the species distribution 

magnitude varies greatly in function of their host requirement, transmission mode, and taxonomy. 

However, when plotting the species composition similarity of the different human pathogen 

categories against the surface area (from local to global scale), human-specific pathogen assemblages 

are extremely homogenous across regions and continents due to their fast dispersal (Figure 3H). By 

contrast, pathogens requiring non-human hosts to complete their life cycle, such as tropical rainforest 

zoonotic agents, are more localized [30] (Figure 3H), as the distribution of host species is determined 

by biogeography and climatic constraints. At the local level, the maintenance of human zoonotic 

pathogen diversity also depends on having host reservoir species-rich habitats such as for rainforests 

[30]. As a member of the Coronavirus family, the current outbreak of novel coronavirus disease 2019 

(COVID-19) is a zoonotic disease, that jumped from some animals to humans, maybe traveling 

through other species on its way to infecting people, somewhere in the Wuhan province, and has 

spread rapidly within China and across many countries [31]. To some extent, COVID-19 has passed 

through a wildlife market in China to a global outbreak as a real-time demonstration of this global and 

rapid homogenization/uncontrolled spread of disease [32]. 

  

Relationship between human pathogen richness and human population size 

 

Generally, larger host populations can maintain diseases more easily due to the presence of a larger 

pool of susceptible individuals (i.e., without acquired immunity) and the higher number of new 

susceptible individuals entering the population by birth or immigration. In high-density populations, 

contacts between individuals should also be more frequent, thus favoring the spread of a contagious 

pathogen or a vector-borne infection [33]. Large islands support larger human populations with 

correspondingly higher pathogen species diversity, than smaller ones, supporting the island 

equilibrium theory [34]. Similarly, the diversity of human pathogens in a region increases with the 

human population size and the bird and mammal species richness [27]. In general, when all other 

potential confounding parameters are kept constant, pathogen diversity should be higher in larger 

human populations (Figure 3I). In tropical rainforests, indigenous tribes and ethnic groups generally 

lived in small groups, thus reducing the opportunity for the circulation of a wide range of human and 

zoonotic pathogens. However, as disturbance by deforestation will destroy the core habitats of host 
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species and will modify uses of the forests by humans, possibly reservoirs of some zoonotic pathogens 

will thrive enhancing the risk of transmission in human communities close to the forest margins 

thereby enhancing the risk of new epidemics and pandemics.  

 

As the space separating the local and global scales becomes thinner, every human pathogen could 

spread everywhere, reducing the possibility of finding macro-scale biogeographical signatures of 

human microbes. However, recent advances in human infectious disease macroecology strongly 

support several empirical findings in geographical ecology, and show that they still explain human 

pathogens distributions on a global level.  

 

Microbial hazards, forest clearing and conversion and risk of novel infectious disease 

emergence  

Forests have always been seen as places of threatening diseases and microbial hazards. For instance, 

the Death’s servants biloko are dwarf-like creatures and haunt the densest and darkest part of the 

rainforest in the Democratic Republic of Congo, bringing mysterious diseases [2]. Amazonian forests 

are populated by spirits, images of the fathers of living animals, and by other creatures, such as the 

"Devil spirit from the penis" of the Trio Carib group (Guianas) that causes the epah sesereimë, likely a 

cervical cancer [3] and the forest evil spirits (wiripë) mediating diseases [4]. 

Native tribes also acquired traditional and extensive knowledge from living in the rainforest, relying 

on long-term empirical observations, oral tradition and wisdom of the ancients. In Amazonian, the 

Trio Amerindian tribe observed that hunting trips in swamp forests are associated with a higher risk of 

cutaneous Leishmaniasis, attributed to insect bites [3,4]. The Wayãpi tribe are aware that seasonal 

heavy rains are favorable to mosquito reproduction, and consider mosquitoes as the bearers of 

illness, associating the rainy months with the upsurge of malaria (see Box) [35]. In Sub-Saharan Africa, 

bushmeat hunting and butchering are considered to be primary risk factors for disease transmission 

[36,37]. In Cameroon, older people explain that Buruli disease (a skin ulceration caused by an 

environmentally persistent bacillus; see Box) may appear at the time of important bush fires for 

deforestation [38]. All these examples illustrate the long-term entanglement of human-forest 

interactions and traditional culture [39].  
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The current Anthropocene era is characterized by the overall disappearance of native tribes, their 

knowledges and wisdom, disappearance of natural landscapes, pollutions of ecosystems, global 

warming, and habitat changes. The ongoing dramatic global changes of climatic cycles have observed 

and predicted consequences on disease dynamics [40], linked to the overall geographic expansion of 

vectors [41-44]. Despite some encouraging trends, tropical forest loss and forest degradation, which 

remain locally the most spectacular effects [45-47], persist or are still increasing, particularly in lower 

income countries [48] or as consequence of profound political changes [49]. Beside deforestation, the 

more visible impact of anthropogenic disturbances on natural habitats is undoubtedly the loss of 

biodiversity [50]. Species disappearance has consequences on the structure of inter-specific biotic 

networks and functioning ecosystems [51,52], and on human well-being, notably through the 

degradation of ecosystem goods and services [51, 53-55].  

Locally, even the early stages of environmental disturbance affect the organization of species 

communities and the biotic interactions. Modifications in the distribution of natural resources, 

simplification of ecological niches, and microclimatic variations could favor the expansion of more 

generalist and adaptive species, and the reduction or disappearance of more specialized, less resilient 

species. Although the mechanisms driving diversity at the metacommunity scale are not identified, 

the distribution of host species in edges between core forests and matrix landscapes may facilitate or 

impede inter-species contacts and the distribution of pathogens [56-58] (Figure 4). It also modifies the 

trophic chains, and consequently affects all the disease transmission systems [19, 59].  

Loss of biodiversity can exacerbate the risk of pathogen spillover [60]. In low diversity communities, 

vectors reach higher pathogen prevalence because they feed more frequently on primary reservoirs. 

On the opposite, vectors in high biodiversity communities feed on a wider range of hosts, some of 

which are poor pathogen reservoirs, resulting in lower pathogen prevalence at ecological community 

level [60-62]. The dilution effect proposes different mechanisms to link high species richness and 

reduced infection disease risk: lower frequency of encounters between competent hosts and 

pathogens, increased host recovery from infection, higher mortality of infected hosts, and decreased 

density of susceptible hosts [63]. Despite supportive evidence at small spatial scales, the dilution 

effect has been strongly debated [64-66], and on broad spatial scales higher biodiversity may on the 

opposite amplify disease risk [65]. 

Although the dilution effect is still an attractive model, it presents important limits and 

interpretations subject to semantic and a priori choices that may influence the conclusions: how 
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"biodiversity" was measured, how "increased infection" and "increased transmission" were assessed, 

how the "increased risk" was evaluated [67]? This concept relies on the supposed evidence that 

anthropogenic disturbances reduce biodiversity, but this may not be true [68]. Moreover, in disturbed 

habitats, dominated by more efficient species, the decrease of low-competence species is definitively 

not a general pattern, and depends on the species life-history traits and their resilience [69]. In 

communities with the highest species richness, the likelihood of the occurrence of some highly 

efficient species could also increase, with a positive effect on parasite transmission, a phenomenon 

called the "identity effect" [70]. The geographical scale is another important issue [65]. The dilution 

effect operates at the local scale [71], while at the global scale, higher avian and mammal diversity is 

associated with higher pathogen richness and prevalence in humans. In addition, communities can act 

differently on competing drivers of transmission (i.e., host density, contact rates, transmissibility), 

causing concurrent transmission increases and decreases in the same host-pathogen system [72]. A 

striking example of the limit of the dilution effect is malaria: deforestation is associated with 

increased malaria incidence in South America [73,74], whereas the opposite trend is observed in 

Southeast Asia where the main vector is dependent on forest habitats. Feedbacks between 

deforestation and emerging diseases may also exist, with deforestation significantly increasing 

malaria incidence while high malaria burden simultaneously reduces forest clearing [75]. 

Contradictory effects of deforestation on emerging infections found in the literature illustrate the 

intimate ties that exist between these environmental changes and human health, stimulating more 

case-by-case analyses that are required to precisely predict the impacts of deforestation on derived 

infections [76-77]. 

Besides these theoretical considerations, the edge effects and ecosystem fragmentation are more 

immediate and likely understudied links between habitat disturbances and disease risk [58, 78-82]. 

Together with more frequent contacts between humans and hosts and/or vectors and bioclimatic 

condition modifications [83], increased contact areas also may lead to a rise in the number of index 

cases and promote the introduction of a pathogenic agent in the surrounding human populations. 

Particularly in the case of infections with low transmissibility between humans, more primary cases 

and increased contact frequency with a suspected reservoir or intermediate host will have important 

consequences on the resulting outbreak strength, as observed for Nipah virus [84,85] and EBOV 

[19,86] (Figure 5).  
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The current levels of forest anthropization can cause changes in the ecology of host reservoirs, 

vectors or pathogens, promoting the proliferation of zoonotic and sapronotic diseases [57]. 

Synanthropic species are wild species that prosper in areas where humans are present, both in rural 

and urban conditions. Many rodents, opossums and bats inhabit or even benefit from ecotone zones 

that contain mixed forested, pasture and human-dwelling areas. These species can be important 

components of the transmission ecology of pathogenic microbes [87]. Additionally, synanthropic 

hosts can be associated with blood sucking arthropods (e.g., mosquitoes, ticks) close to 

anthropogenic areas and that can transmit pathogens to humans. For instance in Panama, Borrelia 

bacteria that cause relapsing fever are associated with a wide diversity of mammal hosts, including 

opossums, monkeys, armadillos, horses and calves, in human-occupied settings [87]. 

Furthermore, forest fragmentation and the associated edges could favor the introduction of human 

strains in wild hosts. In French Guiana, toxoplasmosis is caused by Amazonian Toxoplasma gondii 

strains associated with forest cycles circulating in wild felids and showing a much higher genetic 

diversity than strains from urban and anthropized habitats and hosted by domestic cats [88,89]. 

Microsatellite DNA analysis shows genetic structure differences between urban and forest strains, 

introgression of urban strains into forest strains in forested edge areas, and strain hybridization [90]. 

These genetic re-assortments could have consequences for human health, and unknown effects on 

wildlife [90]. Similarly, in peri-urban satellite forests close to Cayenne, rodents, marsupials and bats 

are infected by the Dengue virus serotype 2 that causes outbreaks in humans. This suggests a possible 

role of wild mammals in dengue virus maintenance between epidemics [91]. However, such splits of 

strains from urban to forest cycle is far less studied that the peri-domestication of disease cycles 

favoring introgression of wild strains into more anthropized environments.  

Another key question concerns the cascading relationships between habitat disturbance and 

pathogen genetic diversity, and between pathogen diversity and the likelihood of spillover and 

disease outbreak [58,81,82]. Furthermore, the links between microbial strain diversity and the 

likelihood of pathogen spillover are unclear. These relationships are under the influence of a set of 

drivers, including some unidentified ones, and they are never simply linear. For instance, in malaria, 

outbreaks are mediated through selection imposed by the host immunity [92] and drug resistance 

[93]. Therefore, it is currently unrealistic to claim a general trend between habitat change, microbial 

intra- and inter-species diversity, and likelihood of disease emergence. 
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Concluding Remarks and Recommendations 

 

For centuries, forests have been the cradle of humankind by providing food, medications, places for 

ritual practices, mysticism, etc. We showed that forests are also the source of many threats to human 

health. We first highlighted some important diseases, geographical and taxonomic trends through 

time in the published studies on the links between forests and human emerging infections, 

particularly the focus on some regions (e.g., North America), on specific pathogens and the disease 

they cause (e.g., Lyme, Leishmaniasis) and on some particular host taxonomic groups (e.g., bats, 

rodents). Specifically, in many articles, the links between forest and emerging diseases were not at all 

or poorly discussed, or the disease life-cycle system was analyzed partly, particularly in the case of 

vector-borne infections where only the arthropod compartment was analyzed. We then delineated 

current main macroecological patterns for human emerging infections. As shown with examples 

based on our own personal field and research experience, the pathogen spillovers and outbreaks are 

related to: i) land use change, notably through deforestation for timber production, agriculture 

development and land transformation for infrastructure needs; and ii) increase of human populations 

living in or beneath core forests who have contributed to the modification of the natural, sylvatic 

equilibrium between microbial forms, their reservoirs/hosts and vectors, and the human intruders. 

Through the example of Buruli ulcer, we stressed the important role of deforestation and land 

conversion in the alteration of animal communities and trophic networks at habitat interfaces, thus 

affecting interspecies - including human - contacts and landscape spillovers. Ecological dynamics at 

edge habitats is the most important mechanism influencing pathogen transmission as demonstrated 

for Plasmodium species that transmit from primate reservoirs into humans and back, via mosquito 

vectors in South American deforested landscapes (see Box). Moreover, the interface between land-

use changes for agriculture development, husbandry practices and varieties of other human activities 

facilitates spillovers and disease outbreaks, as shown for Nipah virus in Cambodia (see Box). 

Bushmeat consumption and hunting contact rates are another important cause of pathogen 

emergence within human populations as highlighted with the example of HIV/SIV (see Box).  

In the present review, we limited our analysis to forest human-based emerging infections only, and 

we did not consider wildlife-based diseases [94,95] because drivers of spillovers and outbreaks are 

likely to be quite different between these two categories. We strongly recommend that a similar 
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study can be done pinpointing on this aspect and discussing on comparison between wildlife and 

human diseases for a better understanding of wildlife-human-forest alteration interfaces. 

Finally, we need to think about the next step to prevent, or at least limit the emergence and spread of 

threats to human populations from forests (see Table 2). Many authors recommend the “OneHealth” 

approach. However, we need to rely on a true, integrative and transdisciplinary OneHealth approach 

[96]. In this approach, health management requires the participation of traditional health actors, such 

as physicians and veterinarians, and of other actors from ecology, environmental sciences, social 

science education and citizen participatory science. Yet, a multidisciplinary team may not be sufficient 

to put in place a true OneHealth/EcoHealth approach and to tackle the complexity of emerging 

disease risks. Integrating the work of these different disciplines is a real challenge, and companion 

modeling tools might help constructing models and strategies for health management between 

disciplines and actors, involving local communities, local and national authorities, and non-

governmental organizations [97]. Control and prevention measures can be useless if not understood 

and adopted by concerned populations, including low-cost solutions such as bamboo skirts used to 

protect palm sap from Nipah virus contamination by bats [98]. The involvement of local populations in 

the construction of socio-ecological system models can help truly implement these OneHealth and 

EcoHealth approaches and may better address to solve these new important global threats. 

Furthermore, the implication of local population may help improve the sustainability of surveillance 

programs, including for instance detectable and early signs of animal populations changes (e.g., 

migrations, outbreaks, deaths or disappearance). Indeed, long-term monitoring and communication 

systems are costly to implement and maintain but are essential to the prevention of emerging threats 

to health. Current research inadequately addresses the complexity, context specificity and social 

dimensions of forest-derived infections. Definitely, it requires long-term surveillance, cross-scale 

evaluation of the interactions between these changing forest landscapes and surveillance of wildlife 

communities, vectors and pathogens in order to underpin effective management of disease risk at the 

forest-human interface [58,99]. To advance research on this critical topic, we suggest that future 

studies pay careful attention to the precise local paths of the disease local and global outbreaks. With 

continuing land conversion and fragmentation of world forests, notably in the tropics, it will drive 

dynamic changes in disease transmission, requiring a better understanding of the factors that 

condition the microbial diversity within these habitats and of the coevolutionary host-parasite 

processes ranging from host individuals to entire continents and long-term lifespans (see Table 2). 
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We argue that our ability to understand the forest-pathogens relationships in detail and manage 

these threats depends on long-term monitoring programs, and regional and global coordinated and 

practical disease management taking into account both land-use changes, social issues, and biological 

conservation.  
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Figures and figure legends 

 

Figure 1. World forested regions, human population density and poverty. Forests areas are indicated 

with (i) the forest coverage defined in Hansen et al. (2013) (Hansen/UMD/Google/USG/NASA ©) in 

light green, and (ii) the intact forest landscapes (Greenpeace, University of Maryland, World 

Resources Institute and Transparent World, available at www.intactforests.org), in dark green.  

Global population density (Gridded Population of the World, Version 4) is derived from CIESIN (Center 

for International Earth Science Information Network), Columbia University, NASA, Socioeconomic 

Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ. 

Inlets show the forested regions in the world surrounded by densely populated areas, and having 

large number of exposed people below poverty line (Reinterpreted from [100] and the present work). 

https://doi.org/10.1007/s10661-018-6711-6 
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Figure 2. Main results and trends of our literature survey. A) Changes in the total, empirical, modeling 

and reviews/syntheses/meta-analyses number of scientific articles on forests and emerging infectious 

diseases from 1950 to April 2018. B) Geographical distribution of scientific articles on forests and 

emerging infectious diseases published from 1950 to April 2018. C) Changes in the number of 

scientific works productions classified in the five strategic research orientation categories from 1950 

to April 2018. Light blue, articles only on arthropod vectors or animal reservoirs; orange, articles on 

pathogens and their vectors or reservoirs; grey, articles on pathogens in humans only; yellow, articles 

associating vectors or reservoirs and pathogens; dark blue, articles associating hosts, pathogens and 

cases of human infection (in general these are syntheses/reviews). D) Changes in the number of 

scientific articles on forests and arthropod vectors or animal reservoir hosts (rodents, bats, other 

mammals) from 1950 to April 2018; with in blue, articles on arthropod vectors; and in orange, articles 

on host reservoirs. The absence of any specific trend for the studies on host reservoirs, except from 

2008, could be explained by the fact that this research field takes into consideration also the study of 

pathogens in hosts or the relation with cases of human infection. 
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Figure 3. The main macroecological patterns of human infectious diseases. A) Sampling bias effort; B) 

Latitudinal gradient of pathogen species diversity; C) Large-scale nested species patterns of human 

pathogen composition; D) Geographical extent of pathogen species with latitude; E) Relationship 

between human pathogen species richness and mammal and bird species richness; F) Relationship 

between human pathogen richness and disease prevalence; G) Relationship between human 

pathogen richness and surface area; H) Pathogen richness homogenization in function of the surface 

area (grey dots indicate contagious human diseases, and black dots zoonotic diseases); I) Relationship 

between human pathogen species richness and human population size. Figures 3A-D were re-

interpreted from [101], Figures 3E-F were redrawn and adapted from [27], and Figures G-I were 

created for the present article.  
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Figure 4. Schematic illustrations of forest-derived infections. The left panel represents a forested 

pristine environment with colored dots illustrating the distribution of four different emerging 

infectious diseases (EIDs), naturally present in this type of ecosystem, and illustrated in this review 

paper: red dot is for Nipah virus, green dot M. ulcerans/Buruli ulcer, yellow dot SIV and HIV/AIDS, and 

blue dot malaria. The four panels on the right part correspond to the four disease case studies as 

illustrated in the box text. These four panels show how deforestation, through the development of 

agriculture, human encroachment and settlement or bushmeat, may disrupt dynamic equilibria and 

interactions of animal hosts and their associated microbes, and increase EID risk for humans exposed 

to these new microbial hazards through recreative or professional activities. Figures for Nipah virus, 

M. ulcerans/Buruli ulcer and malaria, in addition to deforestation, illustrate also the role of rainfalls in 

the development of corresponding disease life cycles.   

Nipah virus

Mycobacterium ulcerans/Buruli ulcer
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Original subfigures are available

in high quality on request
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Figure 5. Upper panels. Increasing deforestation from the left to the right. Lower panels. Relationship 

between the outbreak size of a zoonotic infectious disease and R0 and I0, two important 

epidemiological parameters. R0 is the basic reproduction number, which gives the transmissibility 

force of a disease agent in the human population. Infectious diseases with a R0 lower or equal to 1 

tend to disappear. I0 is the number of human primary cases introduced from an external source, such 

as a zoonotic reservoir. The outbreak size is highly sensitive to small changes in R0 and I0, with R0 

lower or close to 1. As deforestation increases it perturbs disease dynamics in multi-host disease 

systems by disrupting the cross-species transmission rate (the “perturbation hypothesis”). With the 

development of marginal and ecotone zones in deforested areas, more exposure to and contacts with 

potential sylvatic sources of new infection may arise (the “pathogen pool hypothesis”), which 

ultimately influences cross-species transmission rate (i.e., increase of I0 illustrated with multiple lines 

and red arrows increasing in size), till edge effects reach intermediate levels with interspecies 

contacts decreasing thus impacting on I0 (read arrow with a loop). In time total land deforestation in a 

region drastically decreases the contact rates with potential sylvatic cycles of zoonotic diseases due to 

massive biodiversity loss. Reinterpreted from [BZ,CA,102]. 

 

 

R0

0 1 2 3R
el

at
iv

e 
si

ze
 o

f 
o

u
tb

re
ak

R0

0 1 2 3
R0

0 1 2 3

I0 I0
I0

One large piece of forest area Starting of deforestation Partially deforested area Largely deforested area

R0

0 1 2 3

I0

time

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 April 2020                   doi:10.20944/preprints202004.0061.v1

https://doi.org/10.20944/preprints202004.0061.v1


37 

 

 

Table and table legends 

Table 1. List of forested regions in the world surrounded by densely populated areas, and having large 
number of exposed people below poverty line 
 
The forest region in Nepal. See subfigure A on figure 1. 
Between 1990 and 2005, Nepal lost 24.5% of its forest cover (c.a. 1,181,000 hectares. Measuring the 
total rate of habitat conversion (defined as change in forest area plus change in woodland area minus 
net plantation expansion) for the 1990-2005 interval, Nepal lost 7.9% of its forest and woodland 
habitat. 
 
The forest region in Bangladesh. See subfigure A on figure 1. 
By 1980 only about 16 percent of the land was forested, and forests had all but disappeared from the 
densely populated and intensively cultivated deltaic plain. The largest areas of forest are in 
the Chittagong Hills (more than 4,600 square kilometers) and the Sundarbans (nearly 6,000 square 
kilometers). 
 
The forest regions north of Goma and Kinshasa (Democratic Republic of Congo). See subfigure B on 
figure 1. 
Since 1990 till 2015, the rate of deforestation in the DRC has remained constant at 0.20%, which 
equates to the loss of 311,000 hectares  annually. From 2015 to 2019 the rate of deforestation in the 
Democratic Republic of Congo has doubled. 
 
The forest region around Douala (Cameroon). See subfigure C on figure 1. 
Forest land cover in Cameroon has declined for the last 25 years (1990-2015) with a loss of around 
1.0% forest cover per year, which is one of the highest deforestation rates in the Congo Basin. 
 
The forest regions around Pointe-Noire and Loango (Congo). See subfigure D on figure 1. 
About 65% of the Republic of Congo is covered in dense rainforest. Deforestation rates are relatively 
low, compared to many other tropical forest countries; the annual rate of deforestation for the period 
2010-15 was 0.1%. 
 
The forest regions west of Mejicanos and San Salvador (El Salvador). See subfigure E on figure 1. 
El Salvador is the second most deforested country in Latin America after Haiti. Almost 85 percent of 
its forested cover has disappeared since the 1960s, leaving about 5 percent of the land area forested. 
Less than 6,000 hectares are classified as primary forest. 
 
The forest region around Mixco (Guatemala). See subfigure E on figure 1. 
Deforestation is rife in Guatemala, which lost 17% of its forest between 1990 and 2005.  
 
The southern forest region in Nigeria. See subfigure F on figure 1. 
As of 2005, Nigeria has the highest rate of deforestation in the world. Between 1990 and 2005, in 
total Nigeria lost 35.7% of its forest cover, or around 6,145,000 hectares, and between 2000 and 2005 
the country lost 55.7% of its primary forests, and the rate of forest change strongly increased up to 
31.2% per annum. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 April 2020                   doi:10.20944/preprints202004.0061.v1

https://en.wikipedia.org/wiki/Nepal
https://en.wikipedia.org/wiki/Chittagong_Hills
https://en.wikipedia.org/wiki/Sundarbans
https://en.wikipedia.org/wiki/Hectares
https://en.wikipedia.org/wiki/Nigeria
https://en.wikipedia.org/wiki/Deforestation
https://en.wikipedia.org/wiki/Forest_cover
https://en.wikipedia.org/wiki/Primary_forest
https://doi.org/10.20944/preprints202004.0061.v1


38 

 

The northern forest near Bo, the southern and eastern forests around Freetown (Sierra Leone). See 
subfigure F on figure 1. 
Forest loss in Sierra Leone is rapid, drastic and recent. Forest lands seem to have been preserved 
more along the western and southern edge of the country, but important development and 
deforestation are evident all along the coast. 
 
The forest region around Abidjan (Côte d’Ivoire). See subfigure G on figure 1. 
From 2001 to 2018, Côte d’Ivoire lost 2,78 million hectares, which is equivalent to a deforestation rate 
of 19% since 2000 on average. 
 
The Atlantic forest (Brazil). See subfigure H on figure 1. 
The Atlantic Forest was one of the largest rainforests of the Americas, originally covering around 
150 million ha, with only 7% remaining, and inhabited by 130 millions of people. Causes of 
deforestation include agriculture, urban sprawl, cattle ranching, eucalyptus plantations. Forest loss is 
slowing down, thanks to important conservation initiatives. 
 
Adapted from [100] and the present work.  
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Table 2. Main recommendations and future research orientations on forest-derived infections1.  

 
Recommendation Possible avenues to address recommendation 

Anticipate and organize plans and actions 
 

• Develop models to explain and predict the 

role of deforestation and other habitat 

changes on the risk of emerging threats and 

the geography of pathogen spread 

• Develop prevention and control strategies, 

tools and capacities for infectious hazards 

interlinked with forest loss  

• Establish and maintain experts’ networks to 

detect, monitor, and understand emerging 

infectious disease threats, notably in regions 

with increased urbanization, uncontrolled 

population growth or migration to urban and 

peri-urban areas, and poor-vector and 

reservoir-control intervention and 

surveillance capacities  

• Develop integrated surveillance systems, 

including satellite imagery systems, for early 

detection of habitat changes 

Research and knowledge development 
 

• Characterize knowledge gaps on the risk 

factors for transmission of emerging 

infections at the forest -animal-human 

interfaces 

• Study the pathogen per se through real-time 

genomic surveillance, check for molecular, 

proteome, metagenome and epigenetic 

changes that may predispose to spread or 

virulence and host spillover, and develop 

comparative genomics 

• Understanding the dynamics of preceding 
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animal outbreaks (enzoonosis), detecting and 

monitoring infectious agents in animal 

populations and the environment (soil, 

water…) can help informing any subsequent 

human outbreaks and spillovers 

• Identify the presence of animal reservoirs and 

vectors and their competences for carrying 

specific pathogens (at least prevalence level) , 

and analyze their dynamics in time and space, 

and at the community level 

• Understand the catalysts of disease 

transmission and identify early the 

appearance of new syndromes or clusters of 

symptoms in communities 

Education and training 
 

• Implement more creative and inclusive 

surveillance approaches (e.g., vegetation 

density and composition, rainfall, plant and 

animal phenology, animal and human 

movements, vector presence and dynamics) 

• Improve forest-derived modeling studies and 

data analyses and Training in interpretation 

of major emerging threats 

• Training in interpretation of major emerging 

threats due to land-use changes, and notably 

deforestation and forest fragmentation 

(including for instance early signs of animal 

populations changes (e.g., migrations, 

outbreaks, deaths or disappearance) need to 

be available to educate the workforce in all 

sectors 

• Understand human behavior and traditional 

practices as key drivers of emergence and 

transmission of emerging threats, and 

promote practices at low/least risks 

• Health education should be promoted, 

locally/ethnically adapted to the different 

idioms, and cultures 

Transdisciplinary and synergies to reinforce • Anticipate future needs for EIDs prevention 
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work forces 
 

and mitigation by horizon and environmental 

scanning of major forested blocks and their 

evolution timeframe on the long term; 

• Focus on areas undergoing rapid socio-

ecological changes such as deforestation and 

forest fragmentation, large human population 

size, high density, precarious ways of life, and 

important resource demand 

• Analyze syndemic clustering between 

endemic, e.g., neglected tropical diseases, 

and EIDs, exploring how anthropological 

behaviors, social attitudes, political, economic 

and ecological factors, could create 

syndemics, especially in poor and 

undersurveilled populations 

• Develop national and international short- and 

medium-term research agendas and 

increased cross-disciplinary collaboration and 

promotion of inter-sectoral collaboration 

(economists, social and environmental 

scientists, practitioners, veterinarians, 

forestry experts, livestock farmers and other 

animal keepers, decision analysts, and 

experts in politics and logistics) and 

knowledge synthesis 

• Continue integrated, systems-based research, 

including animal and ecological health, going 

beyond the OneHealth approach 

 

1The list of recommendations and orientations has been synthetized from the recent literature and 
collective knowledge from the authors. The following references have been particularly helpful: [103-
113]. 
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Box text 

Sub-box 1 

Deforestation and host foraging behavior: Nipah virus 

 

Deforestation can impact disease emergence through the modification of the foraging behavior of reservoir 

hosts. Following the loss of habitats, some wildlife species may change their feeding behavior and use 

human productions as food resources, increasing potential contacts at the human-domestic-wildlife 

interface, as exemplified by the emergence of the Nipah virus (NiV) (see Figure 4). 

Fruit bats of the Pteropus genus has been identified as the reservoir of the NiV, and its emergence occurred 

in Malaysia in 1999 [114, 115] and recurrent outbreaks in Bangladesh and India. 

Several studies have suggested a link between forest land-use changes, agricultural practices and NiV 

emergence. In Malaysia, the NiV emergence zone was characterized by a significant intensification of 

agricultural production, particularly pigs and mangoes [116, 117] (see inlet Figure I). The hypothesis that 

NiV was transmitted through fruits contaminated by Pteropus bats at the index farm was supported by its 

isolation from fruits partially eaten by pigs [115].  

In Bangladesh, villages in the epidemic region have higher human population densities and are located in 

more fragmented forest areas and agricultural fields [118]. The greater diversity of food sources in these 
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cultivated and mosaic landscapes might provide Pteropus bats with permanent resources, promoting their 

sustainable establishment and increasing the risk of contacts with humans. 

In the Philippines, a NiV outbreak affected 17 people and 10 horses in 2014 in a deforested area [119]. 

While no human cases have been detected in Cambodia and Thailand to date, NiV has been isolated in 

Pteropus bats from these two countries [120,121] where GPS studies confirmed a foraging preference 

towards cultivated areas [122,123]. 

 

 

 

Inlet Figure I. Local pig farm showing bat faeces on the canvas roof, Cambodia. Copyright, J. Cappelle. 

 

Sub-box 2 

Deforestation and foodweb structure: Buruli ulcer 

 

Deforestation can impact disease emergence through the modification of trophic chains and the 

promotion or decline of specific functional groups of species in ecological communities. Natural 

habitat modifications or land-use changes could shift trophic interactions that can represent a direct 

(e.g., predation) or indirect (e.g., extinction cascade) modification of trophic networks. 

Mycobacterium ulcerans is a slow-growing bacillus that causes a rare, neglected tropical disease in 

humans, called Buruli ulcer. It is present in many flood plains and wetland areas in tropical Africa, 

Central and South America and South-east Asia (see inlet Figure II). Recent findings suggest that its 
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aquatic persistence and dynamics are the result of complex interplays between environmental, 

abiotic factors, and biotic interactions [124]. In Cameroon and French Guiana, in two medium-term 

research surveys of aquatic ecosystems, it was demonstrated that this bacillus shows seasonal 

fluctuations in the environment [59,125]; it persists in water bodies with higher pH and within low-

abundance species communities [126]. These two surveys also highlighted the important role of 

deforestation and land-use changes in the emergence of this skin infection in humans (see Figure 4). 

The highest bacilli concentrations were found in host functional groups lower in the food chain, 

indicating a diet high in algae, detritus, diatoms, bacteria and similar food resources. The size of the 

local aquatic taxa trophic niche was reduced in sites located in or near deforested areas [59]. This 

resulted in the concomitant decrease in the number of potential predator species per prey taxon and 

of potential prey species per predator taxon. The non-linear increase in the potential abundance of M. 

ulcerans in conditions of anthropogenic stress may be attributed to an increase of the preferred 

hosts, represented predominantly by low-trophic level organisms that accumulate bacilli from the 

aquatic environment through their diet.  

At sites perturbed by human activities, some basal aquatic host species may flourish because of a 

decrease or disappearance of their natural predators, and could incidentally recover and concentrate 

the naturally-persistent microbes. Therefore, deforestation, rather than agriculture development and 

human settlement, appears to play a determinant role in the freshwater food web collapse and on its 

consequence on M. ulcerans load in the more perturbed sites.    
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Inlet Figure II. River side and swampy areas near the Nyong river, highly favorable for the persistence 

of Mycobacterium ulcerans causing Buruli ulcer, central Cameroon. Copyright, J.-F. Guégan. 

 

 

Sub-box 3 

Forest logging and mining in West Central Africa and the emergence of HIV/AIDS 

 

Viruses causing AIDS in humans originated from those infecting chimpanzees and gorillas in Central 

Africa and those infecting sooty mangabeys in West Africa [127]. Molecular clock analyses have set 

the date of cross-species transmissions from chimpanzees to humans around 1920 for pandemic HIV-

1 and around 1940 for the epidemic groups of HIV-2 [128,129]. 

Factors that favoured the emergence of HIV/AIDS epidemic/pandemic included: (i) an increase in 

exposure risk, (ii) an increase in the probability of human-to-human transmission of the virus and (iii), 

an increase of the probability of virus adaptation to the human population [130]. Increase of exposure 

risk is demonstrated by the increase of bushmeat hunting and butchering (see Figure 4), and of forest 

logging and mining in West Central Africa, since the early years of the 20th century (see inlet Figure 

III). For example, a detailed analysis of the evolution of forest logging in the Congo Basin between 

1959 and 2004 showed a dramatic increase in Cameroon, Gabon and the former Zaire, now DRC 

[131]. Commercial logging with as corollary the settlement of temporary villages, the presence of 
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commercial sex workers, and wood transportation by truck drivers, facilitated the spread of a sexually 

transmitted infection such as HIV [132]. A recent and additional dramatic consequence of human 

mobility between rural and urban areas of West Central Africa is, beside the emergence of the virus 

from the rainforest into the human population in urban centres, the backwards spread of the HIV 

virus from cities into villages as exemplified by the observed high HIV prevalence and genetic diversity 

in logging areas and in villages located along truck tracks [133,134].  

Today, the World Health Organization (WHO) estimates that 37 million people worldwide are carrying 

the AIDS virus, and, since the beginning of the epidemics in the early 1980’s, HIV/AIDS has killed 

approximately 35 million persons around the world. Factors that contributed to emergence of 

HIV/AIDS pandemics are still present in Africa. Forest fragmentation and deforestation all over 

tropical Africa altogether with agricultural field developments, human behavior and practices and 

population demography constitute important settings for animal-human contacts and elevated 

zoonotic disease transmission risks. 

 

 

 

 

Inlet Figure III. Deforestation for timber production in tropical areas may contribute to increase 

human-wildlife contacts, and facilitate the spread of new emerging viruses, e.g., HIV/AIDS, towards 

large cities. Copyright, B. de Thoisy. 
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Sub-box 4 

Deforestation, loss of forest cover and Malaria in Central and Southern America  

 

Malaria is a potentially fatal human infectious disease caused by several species of protozoan 

parasites (genus Plasmodium) and is among the most debilitating infectious diseases worldwide. The 

parasite host range is large, from birds to humans. Plasmodium species infecting humans originate 

from primates and are transmitted to humans through the bite of infected mosquitoes of the genus 

Anopheles. 

In Central America and Amazonia, early observations revealed high prevalence of malaria infection in 

many species of monkeys, particularly in the Cebidae family [135]. Those works also evidenced strong 

Plasmodium seroprevalences among several Amerindian ethnic groups, living strictly in the rainforest, 

without contact with urban or peri-urban forms of malaria, suggesting a zoonotic component of 

malaria [136]. Studies on monkeys in French Guiana confirmed the existence of a malaria sylvatic 

cycle [137,138]. It was first shown that Plasmodium brasilianum, the parasitic agent classically 

considered to be restricted to monkeys, and P. malariae, one of the four human malaria agents, were 

a single species [139]. More recent investigations on the links between forest habitat disturbances 

and malaria showed a clear effect of deforestation on increased incidence of the disease [BV, 

139,140]. But rather than deforestation sensu stricto, many explanatory factors associated with 

deforestation are mentioned: opening of forest tracks, logging methods, increased fires frequencies 

at forest edges [141], resulting in habitat modification of mosquito species communities, with 

creation of new breeding sites and development of favourable conditions for the expansion of 

efficient vectors for parasite transmission [76,142] (see Figure 4). 

These elements are changing today's vision of the Plasmodium malaria cycle [143], questioning the 

role of habitat and ecosystem changes on the transmission of this parasite (see inlet Figure IV). In 

areas where the presence of human would be temporary (e.g., logging areas, gold mining camps, 

extractive activities), the introduction of human parasite to peripheral monkey species populations 

could allow its establishment and maintenance at edges, even when anthropogenic activities have 

locally stopped. These parasites could be at the origin of then re-emergence to cause human cases 

through contacts. 
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Inlet Figure IV. Human encroachment and settlement in forest satellites, here in suburbs of Cayenne, 

French Guiana, put into contact wildlife and human communities, and also favor the development of 

mosquito populations transmitting malaria. Copyright, J.-F. Guégan. 
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