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Abstract

The work is devoted to the study of a family of linear initial value problems of partial differential
equations in the complex domain, dealing with two complex time variables. The use of a truncated
Laplace-like transformation in the construction of the analytic solution allows to overcome a small divisor
phenomenon arising from the geometry of the problem and represents an alternative approach to the one
proposed in a recent work [9] by the last two authors. The result leans on the application of a fixed point
argument and the classical Ramis-Sibuya theorem.
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1 Introduction

This work is devoted to the study of a family of singularly perturbed partial differential equations
in the complex domain of the form

(1) Q(∂z)u(t1, t2, z, ε) = P (tk1+1
1 ∂t1 , t2, ∂t2 , ∂z, z, ε) + f(t1, t2, z, ε),

under initial data u(0, t2, z, ε) ≡ u(t1, 0, z, ε) ≡ 0, with Q(X) ∈ C[X] and P (T1, T21, T22, Z, z, ε)
being a polynomial in (T1, T21, T22, Z) with holomorphic coefficients w.r.t. (z, ε) on Hβ×D(0, ε0).
Here, Hβ and D(0, ε0) stand for the horizontal strip {z ∈ C : |Im(z)| < β} and the disc at the

∗The author is partially supported by the project MTM2016-77642-C2-1-P of Ministerio de Economı́a y Com-
petitividad, Spain; and by Dirección General de Investigación e Innovación, Consejeŕıa de Educación e Investi-
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origin and radius ε0, for some β > 0, ε0 > 0, respectively. The forcing term f(t1, t2, z, ε) is
holomorphic on C? ×D(0, h′) ×Hβ × E , for any open sector E centered at 0 and contained in
D(0, ε0), for some h′ > 0, and remains close to a polynomial in t1, analytic in t2 on D(0, h′)
and in z on Hβ, as ε becomes close to the origin in C. The variable ε acts as a small complex
parameter. The concrete assumptions on the elements involved in the main problem (1) are to
be described and analysed in detail throughout the work.

The study of a problem of such form is motivated by the recent research [9] of the second
and third authors. The main aim in the preceeding work was related to the description of the
asymptotic behavior of the analytic solutions, with respect to the perturbation parameter, near
the origin, of singularly perturbed equations

(2) Q(∂z)u(t1, t2, z, ε) = P̃ (tk1+1
1 ∂t1 , t

k2+1
2 ∂t2 , ∂z, z, ε) + f̃(t1, t2, z, ε),

with P̃ (T1, T2, Z, ε) being a polynomial in (T1, T2, Z, z, ε) with holomorphic coefficients w.r.t.
(z, ε) on Hβ ×D(0, ε0).

Two main novelties are considered here with respect to it. On the one hand, the irregular
singular operators related to the second time variable stay rigid in (2), as a polynomial function
of the operator tk2+1

2 ∂t2 . In the present study, the irregular operators in this variable fit a more
general scheme within the problem, under certain technical assumptions (see (5) and (6)). This,
at first sight slight, variation on the form of the main problem varies its underlying geometry
radically. On the other hand, the appearance of different types of solutions observed in [9],
known as inner and outer solutions, which describe boundary layer expansions do not appear in
the present situation, since we study local solutions in time t1, t2 near the origin in the complex
domain. It is worth mentioning that, despite the fact that the form of the main equation under
study resembles that of [9], the nature of the singularities appearing in the problem require to
appeal different approaches and apply novel techniques, to be briefly described below.

This work continues a line of research on the study of the asymptotic behavior of solutions of
singularly perturbed PDEs in the complex domain, under the action of two time variables: deal-
ing with a symmetric factorized (resp. asymmetric) leading term [8] (resp. [6]), the mentioned
work [9], and the corresponding q−analog [10] in the framework of q−difference−differential
equations.

The technique developed in the present work consists on searching for solutions of the main
problem ( see (8) for its precise expression) in the form of a Fourier, truncated Laplace and
Laplace transform of certain function, for every fixed value of the perturbation parameter ε:
(3)

u(t, z, ε) :=
1

(2π)1/2

∫ ∞
−∞

∫
L1,ε

∫
L2

ω(u1, u2,m, ε) exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

du2

u2

du1

u1
.

The integration path L1,ε stands for the segment [0, h1(ε)e
√
−1θ1 ], for some holomorphic function

ε 7→ h1(ε) on the domain of definition of the perturbation parameter, approaching to infinity
when ε tends to 0, and some θ1 ∈ R which does not depend on ε. The integration with respect to
the path L2 stands for a usual Laplace transform along certain half line [0,∞)e

√
−1d2 , for some

d2 ∈ R, whereas the function ω belongs to certain Banach space which depends on the choice
of the perturbation parameter. From this point, the main problem is replaced by an auxiliary
convolution problem (see (17)) in the Borel plane with respect to the time variables (t1, t2). The
precise knowledge on the geometry of the auxiliary problem is crucial in order to understand
the location and control of the singularities (see Section 3). As a matter of fact, the singularities
of the auxiliary problem are always located outside (but remain close to) a product of discs in
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the domain of the transformed time variables, say (τ1, τ2). The radius of the discs depend on ε
tending to infinity regarding τ1 and shrinking to the origin with respect to τ2. In addition to
this, one can choose narrow finite (resp. infinite) sectors with vertex at the origin with respect
to τ1 (resp. τ2), valid for all the values of the pertubation parameter, which avoid the singular
points. In other words, the function ω can be extended to the product of such sectors w.r.t.
(τ1, τ2). Therefore, a small denominator problem regarding movable singularities to infinity and
to zero at the same time (in each of the time variables) has to be analysed. This construction
through a truncated Laplace transform is proposed in order that the solutions (3) remain close,
as ε tends to 0, to a double usual Laplace transform in both variables t1, t2. For such a complete
double Laplace representable solution, a direct analysis of the asymptotic behaviour w.r.t. ε
is unfortunately not possible (as shown in our previous work [9]). However, such study turns
achievable within the new approach regarding truncated Laplace transform solutions.

The use of truncated Laplace transform with respect to one of the time variables in the Borel
plane is used successfully to control the growth of the solutions, via complex Banach spaces of
functions not only subject to an exponential growth in the monomial variables, but also whose
domain of definition depends on each value of ε (see Section 4). Given a finite family of finite
sectors E = (Ep)0≤p≤ι−1 which conform a good covering (see Definition 3), the first main result
in the work, Theorem 1, states the existence of a solution of the main problem in the form (3)
for every 0 ≤ p ≤ ι − 1, remaining holomorphic in a domain T1 × T2 × Hβ × Ep, where T1, T2

are finite sectors with vertex at the origin. Moreover, the exponential decrease of the difference
of two solutions associated to consecutive sectors in E enables the application of the classical
Ramis-Sibuya theorem (RS) in order to achieve the second main result of our study, namely
the asymptotic relation of the analytic solutions and the formal solution of the main problem in
powers of ε, with coefficients in some complex Banach space (see Theorem 3).

In recent years, several steps have been taken to contribute to the knowledge of the asymp-
totic behavior of analytic solutions of singularly perturbed partial differential equations in the
complex domain. We first refer to the recent works [17, 18], by H. Yamazawa and M. Yoshino,
and M. Yoshino resp. in which the parametric Borel summability of semilinear systems of PDEs
is studied, first in the case of fuchsian operators, and second combining both irregular and fuch-
sian operators. We refer to [1, 14] as introductory texts on the classical theory of summability
of formal solutions of differential equations in the complex domain.

The appearance of truncated Laplace transform is closely related to the classical theory of
asymptotic approximation of analytic functions (examples of this situation is the classical proof
of Ritt’s Theorem for Gevrey asymptotics, see [1] Proposition 10, and also Lemma 1.3.2 in [14]).
Truncated Laplace transform also appears as a recent object of study in the literature, related
to differential operators [12, 13], but also from the numerical point of view [11]. The choice of
an integration path for Laplace transform which depends on each fixed value of the perturbation
parameter ε has been inspired from [3, 15].

Throughout the work, we use bold letters to indicate a vector of two variables: we write τ
for the pair (τ1, τ2), u for (u1, u2), T for (T1, T2), etc.

The paper is organized as follows.
In Section 2.1, we recall some properties on Fourier transform which allow to transform the

main problem, stated in Section 2.2, in the form a convolution problem, described in Section 2.3.
The geometry of the problem is an important matter in this work, which needs to be explained
in detail. Section 3 is focused on this issue. The Banach spaces involved in the construction
of the analytic solution of the auxiliary problem, and some of their main properties, are stated
in Section 4. Such function is constructed in Section 5. The analytic solution of the main
problem is obtained in Section 6 (Theorem 1), and the work concludes with the description of
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the parametric Gevrey asymptotic expansions of the analytic solution, obtained in Section 7
(Theorem 3).

2 Layout of the main and auxiliary problems

In this initial section, we describe in detail the main problem under study (8) (Section 2.2),
and the conditions on the elements involved in it. The solution of this problem is reduced to a
convolution auxiliary problem in the Borel plane (17) when inspecting solutions in the particular
form of a triple Fourier, Laplace and truncated Laplace transform (see Section 2.3). We first
give some words about inverse Fourier transform on certain Banach spaces which act on the
transformation of the problem (Section 2.1).

2.1 Inverse Fourier transform on certain function spaces

The transformation of the main problem with respect to variable z requires recalling some basic
facts about inverse Fourier transform when acting on certain Banach spaces of real functions of
exponential decrease at infinity.

Definition 1 Let β, µ ∈ R. We write E(β,µ) for the set of all continuous functions h : R → C
such that

‖h(m)‖(β,µ) := sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)| <∞.

The pair (Eβ,µ, ‖·‖(β,µ)) is a Banach space.

The next result will be needed in our reasoning. We refer to [4], Proposition 7, for its proof.

Proposition 1 Let β > 0 and µ > 1. The inverse Fourier transform

F−1(f)(x) =
1

(2π)1/2

∫ ∞
−∞

f(m) exp(ixm)dm, x ∈ R

satisfies the following properties acting on every f ∈ E(β,µ):

• The function F−1(f) is well defined in R and can be analytically extended to the set

(4) Hβ := {z ∈ C : |Im(z)| < β}.

• Let φ(m) := imf(m). Then, φ ∈ E(β,µ−1) and ∂zF−1(f)(z) = F−1(φ)(z) for z ∈ Hβ.

• Let g ∈ E(β,µ) and let ψ(m) = 1
(2π)1/2

f ∗ g(m) be the convolution product of f and g, for

all m ∈ R. Then, ψ ∈ E(β,µ) and it holds that

F−1(f)(z)F−1(g)(z) = F−1(ψ)(z), z ∈ Hβ.

2.2 Statement of the main problem

Let k1 and k2 and D1, D2 ≥ 2 be positive integers. Let δ`1 (resp. δ̃`2) be a nonnegative integer
for every 1 ≤ `1 ≤ D1 (resp. every 1 ≤ `2 ≤ D2). We also fix nonnegative integers ∆`1,`2 , d`2 for
all 1 ≤ `1 ≤ D1 − 1 and 1 ≤ `2 ≤ D2 − 1.
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We assume that

(5) ∆D1D2 := k1δD1 + k2δ̃D2 .

and

(6) ∆`1`2 > k1δ`1 +
k2δ̃D2δ`1
δD1

, d`2 > δ̃`2(k2 + 1),
δ̃D2δl1
δD1

≥ δ̃l2 +
1

k2
,

for every 1 ≤ `1 ≤ D1 − 1 and 1 ≤ `2 ≤ D2 − 1.
Let Q(X), RD1D2(X) and R`1`2(X) for all 1 ≤ `1 ≤ D1 − 1 and 1 ≤ `2 ≤ D2 − 1 belong to

C[X]. We assume that

(7) deg(RD1D2) ≥ deg(R`1`2), RD1D2(im) 6= 0

for every 0 ≤ `1 ≤ D1 − 1 and 0 ≤ `2 ≤ D2 − 1, and all m ∈ R.

Remark: In Section 3 we assume further geometric conditions on these polynomials. In
particular, observe that condition (18) implies that deg(Q) ≥ deg(RD1D2).

We choose µ ∈ R with
µ > max

0≤`1≤D1−1
0≤`2≤D2−1

deg(R`1`2) + 1.

The main aim in this work is to study the following initial value problem:

(8) Q(∂z)u(t1, t2, z, ε) = ε∆D1D2 (tk1+1
1 ∂t1)δD1 (tk2+1

2 ∂t2)δ̃D2RD1D2(∂z)u(t1, t2, z, ε)

+
∑

1≤`1≤D1−1
1≤`2≤D2−1

ε∆`1`2 (tk1+1
1 ∂t1)δ`1 t

d`2
2 ∂

δ̃`2
t2
c`1`2(z, ε)R`1`2(∂z)u(t1, t2, z, ε) + f(t1, t2, z, ε),

for the initial conditions u(t1, 0, z, ε) ≡ u(0, t2, z, ε) ≡ 0. Let us describe the form of the elements
involved in the problem.

Let ε0 > 0 and β > 0. For all 1 ≤ `1 ≤ D1 − 1 and 1 ≤ `2 ≤ D2 − 1, the term c`1`2(z, ε) are
holomorphic functions on Hβ ×D(0, ε0). We recall that Hβ stands for the horizontal strip (4).
The function c`1`2 is defined by

c`1`2(z, ε) := F−1(m 7→ C`1`2(m, ε))(z) =
1

(2π)1/2

∫ ∞
−∞

C`1`2(m, ε)eizmdm,

where m 7→ C`1`2(m, ε) is continuous for m ∈ R and is subject to uniform exponentially flat
upper bounds with respect to ε ∈ D(0, ε0), i.e. there exists Cc > 0 such that

(9) sup
ε∈D(0,ε0)

|C`1`2(m, ε)| ≤ Cc
(1 + |m|)µ

exp(−β|m|), m ∈ R.

Observe that m 7→ C`1`2(m, ε) belongs to E(β,µ) with

sup
ε∈D(0,ε0)

‖C`1`2(·, ε)‖(β,µ) ≤ Cc,

for all 0 ≤ `1 ≤ D1 − 1 and 0 ≤ `2 ≤ D2 − 1.
The forcing term f(t1, t2, z, ε) is a holomorphic function in C? ×D(0, h′)×Hβ × E , for any

given open sector E centered at 0, and contained in D(0, ε0) \ {0}, for some positive number h′.
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The forcing term is constructed as follows. Let N1 ≥ 0 and Fn1,n2(m, ε) ∈ E(β,µ) under uniform
bounds with respect to ε in the disc D(0, ε0). More precisely, assume that

sup
ε∈D(0,ε0)

‖Fn1n2(m, ε)‖(β,µ) ≤ K0

(
1

T0

)n2

, 0 ≤ n1 ≤ N1, n2 ≥ 0,

for some K0, T0 > 0. We consider

ψ(τ ,m, ε) :=

N1∑
n1=0

∑
n2≥0

Fn1n2(m, ε)k1τ
n1
1

k2τ
n2
2

Γ
(
n2
k2

) ,
which turns out to be a holomorphic function on C2 with respect to the first two variables, with
coefficients in E(β,µ). We write

(10) F (T , z, ε) =

N1∑
n1=0

∑
n2≥0

F−1(m 7→ Fn1n2(m, ε))Tn1
1 γ(

n1

k1
,

(
κh1(ε)e

√
−1θ1

T1

)k1
)Tn2

2 ,

where κh1(ε) is a holomorphic function on any open sector centered at 0 in the punctured
disc D(0, ε0) \ {0} (see (20)), θ1 is a real number to be determined and γ(n, z) stands for the
incomplete Gamma function

γ(n, z) =

∫ z

0
un−1e−udu,

which is an entire function w.r.t. z, when n is a fixed positive real number. Observe that the
forcing term F depends in particular on the choice of θ1.

The following property related to the lower incomplete Gamma function will be crucial in
the construction of the auxiliary equation of the problem. Namely,

(11)

∫ κh1(ε)e
√
−1θ1

0
un−1 exp(−(

u

T
)k)du =

Tn

k
γ(
n

k
,

(
κh1(ε) exp(

√
−1θ1)

T

)k
).

We recall that the infinite Laplace transform satisfies

(12)

∫ ∞
0

un−1 exp(−(
u

T
)k)du =

Tn

k
Γ
(n
k

)
,

for every positive natural numbers n, k.
This property will be used with respect to the second time variable, whereas a truncated

Laplace transform depending on each value of the perturbation parameter near the origin is
applied on the first variable. Both, (11) and (12) give rise to adequate algebraic properties
which allow to reduce the main equation in the form of an auxiliary problem.

Regarding (10), F is holomorphic w.r.t. T1 on C?, T2 on the disc D(0, T0/2) and on Hβ

w.r.t. z. Furthermore, according to (11), (12), we observe that

γ(
n1

k1
, (
κh1(ε)e

√
−1θ1

T1
)k)→ Γ(

n1

k1
)

as ε tends to 0, for (well chosen) fixed T1. Therefore, F is getting closer to a polynomial in T1

as ε tends to 0. The function f defined by

f(t, z, ε) = F (εt1, εt2, z, ε)

is holomorphic on C?×D(0, h′)×Hβ×E , for any given open sector E centered at 0 and contained
in D(0, ε0) \ {0}, with h′ > 0 such that 0 < h′ε0 < T0/2. From the remark above, we check in
particular that f becomes close to a polynomial in t1 as ε becomes closer to the origin.
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2.3 Auxiliary problems

We search for solutions of (8) in the form of an inverse Fourier transform

u(t1, t2, z, ε) = F−1(m 7→ U(εt1, εt2, z, ε)).

The classical properties of inverse Fourier transform, together with (5), lead to an auxiliary
functional equation satisfied by the expression U(T1, T2,m, ε), namely

(13) Q(im)U(T1, T2,m, ε) = (T k1+1
1 ∂T1)δD1 (T k2+1

2 ∂T2)δ̃D2RD1D2(im)U(T1, T2,m, ε)

+
∑

1≤`1≤D1−1
1≤`2≤D2−1

ε∆`1`2
−k1δ`1−d`2+δ̃`2 (T k1+1

1 ∂T1)δ`1T
d`2
2 ∂

δ̃`2
T2

× 1

(2π)1/2

∫ ∞
−∞

C`1`2(m−m1, ε)R`1`2(im1)U(T1, T2,m1, ε)dm1 + F (T1, T2,m, ε).

Let 0 < κ < 1 and θ1, d2 ∈ R. Let ε 7→ h1(ε) be a holomorphic function defined on the
domain of definition of the perturbation parameter, to be detailed afterwards. For every fixed
value of the perturbation parameter ε, we search for solutions of (13) written as the Laplace
transform with respect to T2 along direction d2 and the truncated Laplace transform with respect
to T1 along direction θ1 − λk2δ̃D2arg(ε) applied to a second auxiliary function. More precisely,
we search for solutions of (13) of the form

(14) Ud1d2(T ,m, ε) =

∫
Ld1,ε

∫
Ld2

ω(u,m, ε) exp

(
−
(
u1

T1

)k1
−
(
u2

T2

)k2) du1

u1

du2

u2
,

where d1 = d1(ε) := arg(h1(ε)) + θ1 and Ld1,ε stands for the segment [0, κh1(ε)e
√
−1θ1 ]; Ld2

consists of the half-line with endpoint at the origin and direction d2. The domain of definition
of ω and Ud1d2 will be discussed in the subsequent sections.

Lemma 1 ((8.7), [16]) For every m, k ∈ N one has

tm(k+1)∂mt = (tk+1∂t)
m +

∑
1≤`≤m−1

Am`t
k(m−`)(tk+1∂t)

`,

for some constants Am`, 1 ≤ ` ≤ m− 1.

The assumption (6) guarantees the existence of d`2k2 ∈ N such that

(15) d`2 = δ̃`2(k2 + 1) + d`2k2 , 1 ≤ `2 ≤ D2 − 1.

The following result states a one-to-one correspondence between the solution of (13) and
(17). Its proof, which is omitted, can be adapted with minor modifications from [6], Lemma 1.

Lemma 2 Let Ud1d2(T1, T2,m, ε) be defined by (14). Then, it holds that

T
kj+1
j ∂TjUd1d2(T1, T2,m, ε) =

∫
Ld1,ε

∫
Ld2

(kju
kj
j )ω(u1, u2,m, ε)e

−
(
u1
T1

)k1−(u2
T2

)k2 du2

u2

du1

u1
, j = 1, 2.

(16) Tm2
2 Ud1d2(T1, T2,m, ε) =

∫
Ld1,ε

∫
Ld2

uk22

Γ
(
m2
k2

) ∫ u
k2
2

0
(uk22 − s2)

m2
k2
−1
ω(u1, s

1/k2
2 ,m, ε)

ds2

s2

× e−
(
u1
T1

)k1−(u2
T2

)k2 du2

u2

du1

u1
, m2 ∈ N.
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Lemma 1, (15) together with the shape of the solution in (14), the assumptions on the
coefficients c`1`2 and the forcing term f , and Lemma 2 entail ω being a solution of the following
auxiliary convolution equation in the Borel plane:

(17)
(
Q(im)−RD1D2(im)(k1τ

k1
1 )δD1 (k2τ

k2
2 )δ̃D2

)
ω(τ ,m, ε)

=
∑

1≤`1≤D1−1
1≤`2≤D2−1

ε∆`1`2
−k1δ`1−d`2+δ̃`2 (k1τ

k1
1 )δ`1

1

(2π)1/2

∫ ∞
−∞

C`1`2(m−m1, ε)R`1`2(im1)

×

 τk22

Γ
(
d`2k2
k2

) ∫ τ
k2
2

0
(τk22 − s2)

d`2k2
k2
−1

(k2s2)δ̃`2ω(τ1, s
1/k2
2 ,m1, ε)

ds2

s2
dm1

+
∑

1≤p2≤δ̃`2−1

Aδ`2p2 τ
k2
2

Γ

(
d`2k2+k2(δ̃`2−p2)

k2

) ∫ τ
k2
2

0
(τk22 − s2)

d`2k2
+k2(δ̃`2

−p2)
k2

−1
(k2s2)p2

×ω(τ1, s
1/k2
2 ,m1, ε)

ds2

s2
dm1

]
+ ψ(τ ,m, ε)

So far, the solution is of symbolic nature. The geometry of the problem, detailed in the
following section, together with Section 4 provide convergence and growth estimates of such
solution.

3 On the geometry of the problem

In this section, we preserve the objects and assumptions detailed in Section 2.2 on the elements
involved in the construction of the main problem under study (8), giving rise to the auxiliary
problem (17). This section is devoted to the study of the geometry of the problem, which is
crucial in the asymptotic approximation of the solution.

We define for every m ∈ R the polynomial

Pm(τ ) = Q(im)−RD1D2(im)(k1τ
k1
1 )δD1 (k2τ

k2
2 )δ̃D2 .

In the case that τ1 6= 0 one can factorize Pm in the form

Pm(τ ) = −RD1D2(im)k
δD1
1 k

δ̃D2
2 τ

k1δD1
1

k2δ̃D2
−1∏

`=0

(τ2 − q`(τ1,m))

where q`(τ1,m) are the k2δ̃D2 roots of Q(im)/(RD1D2k
δD1
1 k

δ̃D2
2 τ

k1δD1
1 ) with respect to τ2, i.e.

q`(τ1,m) =

 |Q(im)|

|RD1D2(im)|kδD1
1 k

δ̃D2
2 |τ1|k1δD1

 1
k2δ̃D2

exp

(
√
−1

(
arg

(
Q(im)

RD1D2(im)τ
k1δD1
1

)
1

k2δ̃D2

+
2π`

k2δ̃D2

))

for every 0 ≤ ` ≤ k2δ̃D2 − 1.
We assume that the polynomials Q and RD1D2 satisfy that

(18)
Q(im)

RD1D2(im)
∈ SQ,RD1D2

,
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where SQ,RD1D2
stands for an unbounded sector

SQ,RD1D2
= {z ∈ C : |z| ≥ ρQ,RD1D2

, |arg(z)− dQ,RD1D2
| ≤ ηQ,RD1D2

},

for some small ηQ,RD1D2
> 0, large ρQ,RD1D2

, > 0, and some dQ,RD1D2
∈ R to be determined.

Let λ be a real number which satisfies that

(19) 0 < λ <
1

k1δD1

.

Let E be a sector with vertex at the origin which is contained in the disc D(0, ε0) and for
every ε ∈ E we define

(20) h1(ε) :=

ρQ,RD1D2

k
δD1
1 k

δ̃D2
2

 1
k1δD1 1

εr11
,

and the quantities

(21) r1(ε) :=

ρQ,RD1D2

k
δD1
1 k

δ̃D2
2

 1
k1δD1 1

|ε|r11
and r2(ε) =

1

2
|ε|r22 ,

with r11 := λk2δ̃D2 , and r22 := λk1δD1 .
The next result summarizes the main properties of the geometric construction above, which

will be used to state the asymptotic behavior of the solutions of the main problem.

Lemma 3 Let m ∈ R and ε ∈ E. The following statements hold:

• {τ ∈ C2 : Pm(τ ) = 0} ∩ (D(0, r1(ε))×D(0, 2r2(ε))) = ∅.

• Provided that λ > 0 is small enough, for any couple of directions (θ1, d2) which satisfy that

d2 6=
(
d− k1δD1(λk2δ̃D2arg(ε)− θ1)

) 1

k2δ̃D2

+
2π`

k2δ̃D2

,

for all 0 ≤ ` ≤ k2δ̃D2−1, where d ∈ (dQ,RD1D2
−ηQ,RD1D2

, dQ,RD1D2
+ηQ,RD1D2

), all ε ∈ E,
there exist an unbounded sector Sd2 with bisecting direction d2 and small opening, and a
sector Sd1,ε, with

Sd1,ε = {z ∈ C? : 0 < |z| < κr1(ε), |arg(z)− d1| < δ̃1},

where d1 = d1(ε) = λk2δ̃D2arg(ε)− θ1 such that

{τ ∈ C2 : Pm(τ ) = 0} ∩ (Sd1,ε × Sd2) = ∅,

for all ε ∈ E.

• Let Sd1,ε and Sd2 be as above. We put

(22) Ω1(ε) := Sd1,ε, and Ω2(ε) := D(0, r2(ε)) ∪ Sd2 .

Then, there exists CP > 0 which does not depend on ε ∈ E such that

(23) |Pm(τ )| ≥ CP |RD1D2(im)|(1 + |τ1|k1δD1 |τ2|k2δ̃D2 ),

for every m ∈ R, τ ∈ Ω1(ε)× Ω2(ε).
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Proof
Let τ = (τ1, τ2) ∈ C2 such that Pm(τ ) = 0. One has that τ2 = q`(τ1,m), for some 0 ≤ ` ≤

k2δ̃D2 − 1. In the case that |q`(τ1,m)| ≤ 2r2(ε), from the definition of Pm and (18) we derive
that

|τ1| ≥

ρQ,RD1D2

k
δD1
1 k

δ̃D2
2

 1
k1δD1 1

(2r2(ε))

k2δ̃D2
k1δD1

= r1(ε).

The first statements follows from here.
The second statement is a direct consequence of the fact that for all τ1 ∈ C? and m ∈ R one

has

(24) arg(q`(τ1,m)) =

[
arg

(
Q(im)

RD1D2(im)

)
− k1δD1arg(τ1)

]
1

k2δ̃D2

+
2π`

k2δ̃D2

,

for every 0 ≤ ` ≤ k2δ̃D2 − 1. Regarding the construction of Sd1,ε we have that for all τ1 ∈ Sd1,ε
it holds that

−δ̃1 + λk2δ̃D2arg(ε) + θ1 < arg(τ1) < δ̃1 + λk2δ̃D2arg(ε) + θ1.

The pair (θ1, d2) can be chosen accordingly, provided that λ, ηQ,RD1D2
, δ̃1 > 0 are small

enough.
In order to give proof to the third item, we first give estimates on |τ2/q`(τ1,m)| for any

0 ≤ ` ≤ k2δ̃D2 − 1 and m ∈ R. First, assume that τ1 ∈ D(0, r1(ε)) and τ2 ∈ D(0, r2(ε)). Then,
it holds that

(25)

∣∣∣∣ τ2

q`(τ1,m)

∣∣∣∣ ≤ 1

2
|ε|λk1δD1

 |RD1D2(im)|kδD1
1 k

δ̃D2
2 |τ1|k1δD1

|Q(im)|

 1
k2δ̃D2

≤ 1

2
|ε|λk1δD1

kδD1
1 k

δ̃D2
2 r1(ε)k1δD1

ρQ,RD1D2

 1
k2δ̃D2

≤ 1

2
.

The previous estimates yield dist(q`(τ1,m)/τ2, 1) ≥ 1
2 . Moreover, the choice made for Sd1,ε can be

made in order to guarantee the existence of a positive constantM2 such that dist(q`(τ1,m)/τ2, 1) ≥
M2 for every τ1 ∈ Ω1(ε), τ2 ∈ Sd2 and m ∈ R. One gets from the previous argument that
|q`(τ1,m)/τ2 − 1| ≥ min{M2, 1/2}, for every m ∈ R and τ ∈ (Ω1(ε) × Ω2(ε)). This entails the
existence of a constant c1 > 0 such that

|q`(τ1,m)− τ2| ≥ c1|τ2|, |q`(τ1,m)− τ2| ≥ c1|q`(τ1,m)| ≥ c2

|τ1|
k1δD1
k2δ̃D2

,

where c2 = c1

(
ρQ,RD1D2

k
δD1
1

) 1
k2δ̃D2 1

k
1/k2
2

. The previous estimates yield

|q`(τ1,m)− τ2| ≥
c1

2

|τ2|+
c2

c1

1

|τ1|
k1δD1
k2δ̃D2

 ,
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and from the factorization of Pm,

(26) |Pm(τ )| ≥ |RD1D2(im)|kδD1
1 k

δ̃D2
2 |τ1|k1δD1

c1

2
(|τ2|+

c2

c1

1

|τ1|
k1δD1
k2δ̃D2

)


k2δ̃D2

.

From (26), we conclude the existence of c̃ > 0 such that

|Pm(τ )| ≥ c̃|RD1D2(im)|

(
|τ1|

k1δD1
k2δ̃D2 |τ2|+

c2

c1

)k2δ̃D2

,

for all m ∈ R and τ ∈ (Ω1(ε)× Ω2(ε)).
It only rests to prove that

(27)

(
|τ1|

k1δD1
k2δ̃D2 |τ2|+

c2

c1

)k2δ̃D2

≥ CP (1 + |τ1|k1δD1 |τ2|k2δ̃D2 ),

for some constant CP > 0, all m ∈ R and τ ∈ (Ω1(ε)× Ω2(ε)).
Usual estimates guarantee that(
|τ1|

k1δD1
k2δ̃D2 |τ2|+

c2

c1

)k2δ̃D2

=

(
c2

c1

)k2δ̃D2

(
c3|τ1|

k1δD1
k2δ̃D2 |τ2|+ 1

)k2δ̃D2

≥ c4

(
|τ1|

k1δD1
k2δ̃D2 |τ2|+ 1

)k2δ̃D2

with c3 = c1/c2, and some c4 > 0. Taking into account that

lim
x→0+

(1 + x)m

1 + xm
= lim

x→∞

(1 + x)m

1 + xm
= 1, m > 0,

we get the existence of c5 > 0 such that(
|τ1|

k1δD1
k2δ̃D2 |τ2|+ 1

)k2δ̃D2

≥ c5(1 + |τ1|k1δD1 |τ2|k2δ̃D2 ),

which concludes the proof. 2

4 Banach spaces of functions with exponential growth

In this section, we recall the definition and main properties of certain Banach spaces previously
used by the authors in [4], and adapted to the several variable case in [6, 8]. The dependence
of the domains of definition involved in the norm with respect to the values of the perturbation
parameter has previously been consider in [5].

Let E be a sector of finite radius in the complex plane. For every ε ∈ E we consider the
following two domains: a finite sector Ω1(ε) with vertex at the origin, bisecting direction d1

which depends on ε, and radius r1(ε); and the union of an infinite sector Sd2 with vertex at the
origin, fixed bisecting direction d2 and positive opening which do not depend on ε together with
the disc D(0, r2(ε)) for some r2(ε) > 0, say Ω2(ε), i.e. Ω2(ε) = Sd2 ∪D(0, r2(ε)).

In the following we write d = (d1, d2).
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Definition 2 Let ν1, ν2, β, µ > 0 and let k1, k2 be positive integers. We write k = (k1, k2) and
ν = (ν1, ν2). For every ε ∈ E, Fd(ν,β,µ,k,ε) stands for the vector space of continuous functions

(τ ,m) 7→ h(τ ,m) defined on Ω1(ε) × Ω2(ε) × R which are holomorphic with respect to the first
two variables on Ω1(ε)× Ω2(ε), and satisfy that

(28) ‖h(τ ,m)‖(ν,β,µ,k,ε)

= sup
τ∈Ω1(ε)×Ω2(ε)

m∈R

(1 + |m|)µ
1 +

∣∣ τ1
ε

∣∣2k1∣∣ τ1
ε

∣∣ 1 +
∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ exp

(
β|m| − ν1

∣∣∣τ1

ε

∣∣∣k1 − ν2

∣∣∣τ2

ε

∣∣∣k2) |h(τ ,m)|

is finite. The pair (Fd(ν,β,µ,k,ε), ‖·‖(ν,β,µ,k,ε)) is a complex Banach space.

In the rest of this section, we fix the values of ν1, ν2, β, µ > 0 and the positive integers k1, k2.
We write ν = (ν1, ν2), and k = (k1, k2).

The first result follows directly from the definition of the norm of the Banach space in
Definition 2.

Lemma 4 Let ε ∈ E, and let (τ ,m) 7→ a(τ ,m) be a bounded continuous function on Ω1(ε) ×
Ω2(ε). Then it holds that

‖a(τ ,m)h(τ ,m)‖(ν,β,µ,k,ε) ≤Ma ‖h(τ ,m)‖(ν,β,µ,k,ε) ,

for every h(τ ,m) ∈ Fd(ν,β,µ,k,ε), where Ma := supτ∈(Ω1(ε)×Ω2(ε)) |a(τ ,m)|. Moreover, if τ 7→
a(τ ,m) is a holomorphic function, then a(τ ,m)h(τ ,m) belongs to Fd(ν,β,µ,k,ε).

Some parts of the proof of the following result can be adapted from that of Proposition 2
in [4]. We decided to include it completely for the sake of completeness and a self-contained
work.

Lemma 5 Let ε ∈ E. Let σ = (σ1, σ2) ∈ (0,∞)2, σ̃1 < σ1, and let aσ,k be a holomorphic

function in Ω1(ε)× Ω2(ε), continuous up to Ω1(ε)× Ω2(ε), such that

|aσ,k(τ )| ≤ 1

1 + |τ1|k1σ1 |τ2|k2σ2
,

for τ ∈ (Ω1(ε)× Ω2(ε)). Assume that σ3, σ4 > 0 with

(29) σ3 =
χ

k2
− 1, and

σ2σ̃1

σ1
− 1 ≥ σ4 +

1

k2
,

for some positive integer χ. Then, there exists C1 > 0, depending on k, ν2, σ̃2,σ, such that

(30)

∥∥∥∥∥aσ,k(τ )τk1σ̃11 τk22

∫ τ
k2
2

0
(τk22 − s2)σ3sσ42 f(τ1, s

1/k2
2 ,m)ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1|ε|k2(σ3+σ4+2) max{|ε|−
k2σ2σ̃1
σ1 , |ε|−r11k1σ̃1} ‖f(τ ,m)‖(ν,β,µ,k,ε) ,

for every f ∈ Fd(ν,β,µ,k,ε).
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Proof Let f ∈ Fd(ν,β,µ,k,ε). It holds that∥∥∥∥∥aσ,k(τ )τk1σ̃11 τk22

∫ τ
k2
2

0
(τk22 − s2)σ3sσ42 f(τ1, s

1/k2
2 ,m)ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

= sup
τ∈Ω1(ε)×Ω2(ε)m∈R

(1 + |m|)µ
1 +

∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ exp

(
β|m| − ν2

∣∣∣τ2

ε

∣∣∣k2) ∣∣∣aσ,k(τ )τk1σ̃11 τk22

∫ τ
k2
2

0
{(1 + |m|)µ

1 +
∣∣ τ1
ε

∣∣2k1∣∣ τ1
ε

∣∣ 1 + |s2|2
|ε|2k2

|s2|1/k2
|ε|

exp(β|m| − ν1

∣∣∣τ1

ε

∣∣∣k1 − ν2
|s2|
|ε|k2

)f(τ1, s
1/k2
2 ,m)}

×{exp(−ν2
|τk22 − s2|
|ε|k2

)
1 +

|τk22 −s2|2
|ε|2k2

|τk22 −s2|1/k2
|ε|

(τk22 − s2)χ/k2B(τ2, s2,m, ε)}

∣∣∣∣∣∣∣ ds2,

with

B(τ2, s2,m, ε) = e−β|m|
1

(1 + |m|)µ
exp

(
ν2
|τk22 − s2|
|ε|k2

)
|s2|1/k2
|ε|

|τk22 − s2|1/k2
|ε|

×

(
(1 +

|s2|2

|ε|2k2
)(1 +

|τk22 − s2|2

|ε|2k2
)|τk22 − s2|

)−1

sσ42 .

Therefore, one has∥∥∥∥∥aσ,k(τ )τk1σ̃11 τk22

∫ τ
k2
2

0
(τk22 − s2)σ3sσ42 f(τ1, s

1/k2
2 ,m)ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C2.2(ε)C2.3(ε) ‖f(τ ,m)‖(ν,β,µ,k,ε) ,

with

C2.2(ε) = sup
x≥0

exp

(
−ν2

x

|ε|k2

) 1 + x2

|ε|2k2
x1/k2
|ε|

xχ/k2

 ,

and

C2.3(ε) = sup
τ∈Ω1(ε)×Ω2(ε)

1 +
∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ |τ1|k1σ̃1 |τ2|k2
1 + |τ1|k1σ1 |τ2|k2σ2

×
∫ |τ2|k2

0

h
1/k2
2

|ε|
(|τ2|k2 − h2)1/k2

|ε|

(
(1 +

h2
2

|ε|2k2
)(1 +

(|τ2|k2 − h2)2

|ε|2k2
)(|τ2|k2 − h2)

)−1

hσ42 dh2.(31)

The classical estimates

sup
x≥0

xm1 exp(−m2x) =

(
m1

m2

)m1

exp(−m1),

for m1 ≥ 0 and m2 > 0, yield

C2.2(ε) ≤ |ε|χ
(χ− 1

k2ν2

)χ−1
k2

exp(−χ− 1

k2
) +

(
2 + χ−1

k2

ν2

)2+χ−1
k2

exp(−2− χ− 1

k2
)

 .
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At this point, we provide upper bounds for C2.3(ε). Let g(y) = ay
1+cyb

, for some a, c > 0 and

b > 1. The function g attains its maximum at y0 = (c(b − 1))−1/b. We apply this result to the
case a = |τ2|k2 , b = σ1/σ̃1 and c = |τ2|k2σ2 to arrive at

(32)
|τ1|k1σ̃1 |τ2|k2

1 + |τ1|k1σ1 |τ2|k2σ2
≤ C(σ1, σ̃1)

|τ2|
k2(

σ2σ̃1
σ1
−1)

,

for some C(σ1, σ̃1) > 0. We plug the bound (32) into (31) and make the change of variable
h = |ε|k2h′ at the integral in C2.3(ε) to arrive at

(33) C23(ε) ≤ C24 sup
τ2∈Ω2(ε)

1 +
∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ 1

|ε|k2(
σ2σ̃1
σ1
−1) ∣∣ τ2

ε

∣∣k2(
σ2σ̃1
σ1
−1)

×
∫ | τ2ε |k2

0
(h′)1/k2(

∣∣∣τ2

ε

∣∣∣k2 − h′)1/k2 1

1 + (h′)2

1

1 + (
∣∣ τ2
ε

∣∣k2 − h′)2

(∣∣∣τ2

ε

∣∣∣k2 − h′)−1

|ε|k2σ4(h′)σ4dh′

for some C24 > 0 only depending on σ̃1, σ1.
Let x0 > 0. The previous sup. particularized for those τ2 ∈ Ω2(ε) such that x := |τ2/ε|k2 > x0

reads as

(34) C24|ε|
k2(1−σ2σ̃1

σ1
+σ4)

sup
x>x0

1 + x2

x1/k2

1

x
σ2σ̃1
σ1
−1

×
∫ x

0
(h′)1/k2(x− h′)1/k2 1

1 + (h′)2

1

1 + (x− h′)2

(
x− h′

)−1
(h′)σ4dh′

≤ C24|ε|
k2(1−σ2σ̃1

σ1
+σ4)

sup
x>x0

(1 + x2)
1

x
σ2σ̃1
σ1
−1

∫ x

0

1

(x− h′)1− 1
k2

1

1 + (h′)2

1

1 + (x− h′)2
(h′)σ4dh′,

Let

∆(x) = (1 + x2)
1

x
σ2σ̃1
σ1
−1

∫ x

0

1

(x− h′)1− 1
k2

1

1 + (h′)2

1

1 + (x− h′)2
(h′)σ4dh′.

For x > x0, one can perform the change of variable h′ = xu in the integral of ∆(x), in order to
get that

∆(x) = (1 + x2)x
σ4+ 1

k2
+1−σ2σ̃1

σ1 Fk2(x),

where

Fk2(x) =

∫ 1

0

uσ4

(1 + x2u2)(1 + x2(1− u)2)(1− u)
1− 1

k2

du.

A partial fraction decomposition allows to write Fk2(x) = F1,k2(x) + F2,k2(x), where

F1,k2(x) =
1

4 + x2

∫ 1

0

(2u+ 1)uσ4

(1 + x2u2)(1− u)
1− 1

k2

du,

F2,k2(x) =
1

4 + x2

∫ 1

0

(3− 2u)uσ4

(1 + x2(1− u)2)(1− u)
1− 1

k2

du.
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We observe that

F1,k2(x) ≤
F1,k2

4 + x2
, F2,k2(x) ≤

F2,k2

4 + x2
,

for some positive constants F1,k2 ,F2,k2 , valid for all x ≥ x0. Under the second assumption
in (29), we obtain that supx>x0 ∆(x) is upper bounded by a constant. We conclude that the
expression in (34) is upper bounded by

(35) C25|ε|
k2(1−σ2σ̃1

σ1
+σ4)

,

for some C25 > 0.
It only rests to provide upper bounds for C2.3(ε) regarding the set of τ2 ∈ Ω2(ε) such that

0 ≤ x ≤ x0. We observe that

(36)
|τ1|k1σ̃1 |τ2|k2

1 + |τ1|k1σ1 |τ2|k2σ2
≤ |τ1|k1σ̃1 |τ2|k2 .

We plug this last expression into (31) to arrive at

(37) sup
(τ1,τ2)∈Ω1(ε)×Ω2(ε)

|τ2/ε|k2≤x0

1 +
∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ |τ1|k1σ̃1 |τ2|k2

×
∫ | τ2ε |k2

0
(h′)1/k2(

∣∣∣τ2

ε

∣∣∣k2 − h′)1/k2 1

1 + (h′)2

1

1 + (
∣∣ τ2
ε

∣∣k2 − h′)2

(∣∣∣τ2

ε

∣∣∣k2 − h′)−1

|ε|k2σ4(h′)σ4dh′

≤ C26|ε|−r11k1σ̃1 sup
τ2∈Ω2(ε),|τ2/ε|k2≤x0

1 +
∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ |ε|k2
∣∣∣τ2

ε

∣∣∣k2
×
∫ | τ2ε |k2

0
(h′)1/k2(

∣∣∣τ2

ε

∣∣∣k2 − h′)1/k2 1

1 + (h′)2

1

1 + (
∣∣ τ2
ε

∣∣k2 − h′)2

(∣∣∣τ2

ε

∣∣∣k2 − h′)−1

|ε|k2σ4(h′)σ4dh′

≤ C27|ε|−r11k1σ̃1+k2(1+σ4) sup
0≤x≤x0

1 + x2

x1/k2
x

∫ x

0
(h′)1/k2 1

1 + (h′)2

1

1 + (x− h′)2

1

(x− h′)1− 1
k2

(h′)σ4dh′

≤ C28|ε|−r11k1σ̃1+k2(1+σ4) sup
0≤x≤x0

(1 + x2)x

∫ x

0

1

1 + (h′)2

1

1 + (x− h′)2

1

(x− h′)1− 1
k2

(h′)σ4dh′

≤ C29|ε|−r11k1σ̃1+k2(1+σ4),

for some C26, C27, C28, C29 > 0. We conclude that the left-hand side in (37) is upper bounded
by

(38) C29|ε|−r11k1σ̃1+k2(1+σ4).

In view of (35) and (38), we derive that

C23(ε) ≤ sup

{
C25|ε|

k2(1−σ2σ̃1
σ1

+σ4)
, C29|ε|−r11k1σ̃1+k2(1+σ4)

}
,

which concludes the result. 2

The proof of the following result can be reproduced under minor adjustments from that of
Proposition 2, [7].
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Lemma 6 Let P1, P2 ∈ C[X] such that

deg(P1) ≥ deg(P2), P1(im) 6= 0 for all m ∈ R,

and let µ > deg(P2) + 1. For every f ∈ E(β,µ) and g ∈ Fd(ν,β,µ,k,ε), then one has that the function

Φ(τ ,m) :=
1

P1(im)

∫ ∞
−∞

f(m−m1)P2(im1)g(τ ,m1)dm1,

belongs to Fd(ν,β,µ,k,ε) and it holds that

‖Φ(τ ,m)‖(ν,β,µ,k,ε) ≤ C2 ‖f(m)‖(β,µ) ‖g(τ ,m)‖(ν,β,µ,k,ε) ,

for some constant C2 > 0.

5 Solution of an auxiliary problem

In this section, we preserve the elements and assumptions made on the main problem under
study described in Section 2.2. More precisely, we assume the conditions (5), (6), (7) are
satisfied by the parameters and elements involved. The coefficients c`1`2(z, ε) and the forcing
term f(t, z, ε) are constructed accordingly. We also assume the geometry of the problem is set
in accordance with the assumptions made in Section 3 (see condition (18)), and preserve the
values of r1(ε), r2(ε) for each ε ∈ E and λ > 0 (see (19) and (21)).

We provide a solution of the auxiliary problem (17) by means of a fixed point method in the
Banach spaces introduced in Section 4.

Let ε ∈ D(0, ε0) \ {0} and let d1, d2 be chosen as described in Section 3. We define the
operator

(39) Hε(ω(τ ,m))

=
∑

1≤`1≤D1−1
1≤`2≤D2−1

ε∆`1`2
−k1δ`1−d`2+δ̃`2 (k1τ

k1
1 )δ`1

Pm(τ )

1

(2π)1/2

∫ ∞
−∞

C`1`2(m−m1, ε)R`1`2(im1)

×

 τk22

Γ
(
d`2k2
k2

) ∫ τ
k2
2

0
(τk22 − s2)

d`2k2
k2
−1

(k2s2)δ̃`2ω(τ1, s
1/k2
2 ,m1, ε)

ds2

s2
dm1

+
∑

1≤p2≤δ̃`2−1

Aδ`2p2 τ
k2
2

Γ

(
d`2k2+k2(δ̃`2−p2)

k2

) ∫ τ
k2
2

0
(τk22 − s2)

d`2k2
+k2(δ̃`2

−p2)
k2

−1
(k2s2)p2

×ω(τ1, s
1/k2
2 ,m1, ε)

ds2

s2
dm1

]
+

1

Pm(τ )
ψ(τ ,m, ε)

We consider the Banach space of Definition 2, when fixing the domains described in (22), in
accordance with the geometric analysis of the problem, in Section 3.

Proposition 2 Under the assumptions adopted in this section, for every $ > 0 there exist
ξψ, ε0 > 0 such that if

‖ψ(τ ,m, ε)‖(ν,β,µ,k,ε) ≤ ξψ,

then the operator Hε admits a unique fixed point ωdk(τ ,m, ε) ∈ Fd(ν,β,µ,k,ε) which satisfies that∥∥ωdk(τ ,m, ε)
∥∥

(ν,β,µ,k,ε)
≤ $.
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Proof Let ω ∈ Fd(ν,β,µ,k,ε). For every 0 ≤ `1 ≤ D1 − 1 and 0 ≤ `2 ≤ D2 − 1 we define

(40) L1`1`2 :=
τ
k1δ`1
1 τk22

Pm(τ )

∫ ∞
−∞

C`1`2(m−m1, ε)R`1`2(im1)

×
∫ τ

k2
2

0
(τk22 − s2)

d`2k2
k2
−1
s
δ̃`2−1

2 ω(τ1, s
1/k2
2 ,m1, ε)ds2dm1.

Taking into account the assumptions in (6) and (19), one can apply Lemmas 4–6 to arrive at

(41) ‖L1`1`2‖(ν,β,µ,k,ε) ≤ C1C2 ‖C`1`2‖(β,µ) |ε|
d`2k2+k2δ̃`2−

k2δ̃D2
δ`1

δD1 ‖ω(τ ,m, ε)‖(ν,β,µ,k,ε) .

We put

(42) L2`1`2 :=
τ
k1δ`1
1 τk22

Pm(τ )

∫ ∞
−∞

C`1`2(m−m1, ε)R`1`2(im1)

∫ τ
k2
2

0
(τk22 − s2)

d`2k2
+k2(δ̃`2

−p2)
k2

−1
sp2−1

2

ω(τ1, s
1/k2
2 ,m1, ε)ds2dm1.

An analogous argument as before leads to

(43) ‖L2`1`2‖(ν,β,µ,k,ε) ≤ C1C2 ‖C`1`2‖(β,µ) |ε|
d`2k2+k2δ̃`2−

k2δ̃D2
δ`1

δD1 ‖ω(τ ,m, ε)‖(ν,β,µ,k,ε)
Finally, the definition of the forcing term and Lemma 4 lead to∥∥∥∥ 1

Pm(τ )
ψ(τ ,m, ε)

∥∥∥∥
(ν,β,µ,k,ε)

≤ 1

CP
sup
m∈R

1

|RD1D2(im)|
‖ψ(τ ,m, ε)‖(ν,β,µ,k,ε)

≤ 1

CP
sup
m∈R

1

|RD1D2(im)|
ξψ.(44)

In view of (41), (43) and (44) we get that

(45) ‖Hε(ω(τ ,m))‖(ν,β,µ,k,ε) ≤
∑

1≤`1≤D1−1
1≤`2≤D2−1

|ε|∆
k
δ`1
1 C1C2 ‖C`1`2‖(β,µ)

(2π)1/2

 k
δ̃`2
2

Γ
(
d`2k2
k2

)

+
∑

1≤p2≤δ̃`2−1

|Aδ`2p2 |k
p2
2

Γ

(
d`2k2+k2(δ̃`2−p2)

k2

)
 ‖ω(τ ,m, ε)‖(ν,β,µ,k,ε) +

ξψ
CP

sup
m∈R

1

|RD1D2(im)|
,

where ∆ = ∆`1`2 − k1δ`1 −
k2δ̃D2

δ`1
δD1

> 0, in view of (6). Let $ > 0, and assume that ω(τ ,m) ∈
Fd(ν,β,µ,k,ε) with ‖ω(τ ,m, ε)‖(ν,β,µ,k,ε) < $. Any choice of small enough ξψ, ε0 > 0 which satisfies

(46)
∑

1≤`1≤D1−1
1≤`2≤D2−1

ε∆0
k
δ`1
1 C1C2 ‖C`1`2‖(β,µ)

(2π)1/2

 k
δ̃`2
2

Γ
(
d`2k2
k2

)

+
∑

1≤p2≤δ̃`2−1

|Aδ`2p2 |k
p2
2

Γ

(
d`2k2+k2(δ̃`2−p2)

k2

)
$ +

ξψ
CP

sup
m∈R

1

|RD1D2(im)|
≤ $
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leads to

(47) ‖Hε(ω(τ ,m))‖(ν,β,µ,k,ε) ≤ $.

Let $ > 0 and ω1, ω2 ∈ Fd(ν,β,µ,k,ε) with ‖ωj(τ ,m, ε)‖(ν,β,µ,k,ε) < $ for j = 1, 2. Then, analogous
arguments as above entail

(48)

‖Hε(ω1(τ ,m))−Hε(ω2(τ ,m))‖(ν,β,µ,k,ε) ≤
∑

1≤`1≤D1−1
1≤`2≤D2−1

|ε|∆
k
δ`1
1 C1C2 ‖C`1`2‖(β,µ)

(2π)1/2

 k
δ̃`2
2

Γ
(
d`2k2
k2

)

+
∑

1≤p2≤δ̃`2−1

|Aδ`2p2 |k
p2
2

Γ

(
d`2k2+k2(δ̃`2−p2)

k2

)
 ‖ω1(τ ,m, ε)− ω2(τ ,m, ε)‖(ν,β,µ,k,ε) .

Let ε0 > 0 such that

∑
1≤`1≤D1−1
1≤`2≤D2−1

ε∆0
k
δ`1
1 C1C2 ‖C`1`2‖(β,µ)

(2π)1/2

 k
δ̃`2
2

Γ
(
d`2k2
k2

) +
∑

1≤p2≤δ̃`2−1

|Aδ`2p2 |k
p2
2

Γ

(
d`2k2+k2(δ̃`2−p2)

k2

)
 < 1

2
.

Then, it holds that

(49) ‖Hε(ω1(τ ,m))−Hε(ω2(τ ,m))‖(ν,β,µ,k,ε) ≤
1

2
‖ω1(τ ,m, ε)− ω2(τ ,m, ε)‖(ν,β,µ,k,ε) .

In view of (47) and (49), we get that the operatorHε, restricted to B(0, $) ⊆ Fd(ν,β,µ,k,ε) turns

out to be a contractive map in the complete metric space B(0, $) ⊆ Fd(ν,β,µ,k,ε) for the distante

d(x, y) = ‖·‖(ν,β,µ,k,ε). The classical contractive mapping theorem guarantees the existence of a

unique fixed point, say ωdk(τ ,m, ε) ∈ Fd(ν,β,µ,k,ε) with
∥∥ωdk(τ ,m, ε)

∥∥
(ν,β,µ,k,ε)

< $.
2

As a result, and regarding the proof of the previous result, one attains the following state-
ment.

Corollary 1 Under the assumptions made in Proposition 2, the function ωdk(τ ,m, ε) is a solu-
tion of the auxiliary equation (17). Moreover, for every ε ∈ E, it satisfies that

(50) |ωdk(τ ,m, ε)| ≤ Cω
1

(1 + |m|)µ

∣∣ τ1
ε

∣∣
1 +

∣∣ τ1
ε

∣∣2k1
∣∣ τ2
ε

∣∣
1 +

∣∣ τ2
ε

∣∣2k2 exp

(
−β|m|+ ν1

∣∣∣τ1

ε

∣∣∣k1 + ν2

∣∣∣τ2

ε

∣∣∣k2) ,
for every τ ∈ Ω1(ε) × Ω2(ε) and m ∈ R. The constant Cω > 0 can be chosen uniformly for all
ε ∈ E.

6 Analytic solutions of the main problem

The main aim in this section is to provide analytic solutions of (8) for each of the elements of a
family of sectors with respect to the perturbation parameter in the form of a truncated Laplace,
Laplace and Fourier transforms. We first fix the geometric elements in this construction.
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Definition 3 Let ι be an integer number, ι ≥ 2. Let E := (Ep)0≤p≤ι−1, where Ep stands for a
finite open sector with vertex at the origin, radius smaller than ε0. We assume the intersection
of three different elements in E is empty, and

⋃
0≤p≤ι−1 Ep = U \ {0}, for some neighborhood of

the origin U ⊆ C. For the sake of simplicity, we arrange the sectors in order that nonempty
intersections of sectors in E correspond to consecutive indices in the ring of integers modulo ι.
Under this configuration, we say that E describes a good covering in C?.

Definition 4 Let ι be an integer number, ι ≥ 2, and let E := (Ep)0≤p≤ι−1 be a good covering
in C?. Let Tj be an open sector with vertex at the origin in C and finite radius rTj > 0, for
j = 1, 2. For all 0 ≤ p ≤ ι− 1 we consider two bounded sectors Sdj,p of bisecting direction dj,p,
and small opening.

In the following statements, we identify the indices p = ι and p = 0.
We say that the set

(51) {T1, T2, E , (Sd1,p)0≤p≤ι−1, (Sd2,p)0≤p≤ι−1}

is admissible if there exists δ > 0 such that for j = 1, 2 one has

(52) kj(ξj − arg(εtj)) ∈
(
−π

2
+ δ,

π

2
− δ
)
,

for every 0 ≤ p ≤ ι − 1, ε ∈ Ep, tj ∈ Tj and ξj ∈ R (which may depend on tj and ε) such that

eξj
√
−1 ∈ Sdj ,p. The directions dj,p are given by d2,p := d2 ∈ R and d1,p := d1 according to the

choice made on the directions d2 and d1 = d1(ε) in Lemma 3.

Let ι ≥ 2 be an integer number. Let E = (Ep)0≤p≤ι−1 be a good covering and consider an
admissible set {T1, T2, E , (Sd1,p)0≤p≤ι−1, (Sd2,p)0≤p≤ι−1}, which is associated to the good covering
E . We briefly discuss the feasibility of such a construction. Indeed, let 0 ≤ p ≤ ι − 1 be fixed.
We can first choose the direction ν1,p (related to a fixed direction θ1 depending on p) such that
(52) holds for j = 1. Then, select the direction ν2,p = d2 in order that (52) holds for j = 2
together with the condition stated in the second item of Lemma 3.

Let 0 ≤ p ≤ ι − 1. For each 0 ≤ p ≤ ι − 1, we consider the main problem under study
(8) under the assumptions (5)-(7), and departing from the coefficients c`1`2(z, ε) and the forcing
term f(t, z, ε) defined in Section 2.2. In virtue of the geometry of the problem described in
Section 3 and Corollary 1, in particular the assumption of condition (18) and the choice of λ
and rj(ε) for j = 1, 2 in (19) and (21) resp., one has that for every ε ∈ Ep there exist a vector
of directions dp = (dp,1(ε), dp,2), a bounded sector with vertex at the origin Sdp,1,ε and bisecting

direction dp,1, with Sdp,1,ε ⊆ D(0, r1(ε)) and an infinite sector Sdp,2 of bisecting direction dp,2

such that the problem (17) admits a solution, say ω
dp
k (τ ,m, ε).

Let us write Ωp,1(ε) := Sdp,1,ε and Ω2(ε) := D(0, r2(ε)) ∪ Sdp,2 .

In view of Corollary 1, one has that for every ε ∈ Ep, the function (τ ,m) 7→ ω
dp
k (τ ,m, ε)

is continuous on Ωp,1(ε) × Ωp,2(ε) × R, holomorphic with respect to the first two variables on
Ωp,1(ε)× Ωp,2(ε) which satisfies that
(53)

|ωdpk (τ ,m, ε)| ≤ C
ω
dp
k

1

(1 + |m|)µ

∣∣ τ1
ε

∣∣
1 +

∣∣ τ1
ε

∣∣2k1
∣∣ τ2
ε

∣∣
1 +

∣∣ τ2
ε

∣∣2k2 exp

(
−β|m|+ ν1

∣∣∣τ1

ε

∣∣∣k1 + ν2

∣∣∣τ2

ε

∣∣∣k2) ,
for every τ ∈ Ωp,1(ε) × Ωp,2(ε) and m ∈ R. The constant C

ω
dp
k

can be uniformly chosen for all

ε ∈ Ep.
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The application of a Fourier, Laplace and truncated Laplace transforms to the function

ω
dp
k (τ ,m, ε) leads to a solution of the main problem under study: for every 0 ≤ p ≤ ι − 1 and
ε ∈ Ep, we define the function up(t, z, ε) by

(54)
1

(2π)1/2

∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2

ω
dp
k (u,m, ε) exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm.

The integration path Ldp,1,ε stands for the segment [0, κh1(ε)e
√
−1θ1 ] (see Lemma 3 and (20)),

and Ldp,2 stands for a usual Laplace transform along the half line [0,∞)e
√
−1d2 .

We observe that the choice of the admissible set, compatible with the good covering, together
with the bounds in (53) guarantee that (t, z) 7→ up(t, z, ε) is holomorphic on the domain (T1 ∩
D(0, h′))× (T2 ∩D(0, h′))×Hβ′ , for 0 < β′ < β and some h′ > 0. We recall that Hβ stands for
the horizontal strip

Hβ = {z ∈ C : |Im(z)| < β}.

Indeed, the construction of ω
dp
k (τ ,m, ε) and the definition of up(t, z, ε) in (54) allow to affirm

that the function

(55) (t, z, ε) 7→ up(t, z, ε)

is holomorphic on the domain (T1∩D(0, h′))× (T2∩D(0, h′))×Hβ′×Ep, for every 0 ≤ p ≤ ι−1.
The properties of Fourier transform (see Section 2.1) and Laplace transform (see Lemma 2),

together with the definition of the elements involved in the main equation guarantee that (55)
represents a solution of the main problem (8).

From now on, we refer to consecutive solutions of (8) to solutions associated to consecutive
sectors in the corresponding good covering, which have nonempty intersection.

The next property on the difference of two consecutive solutions will be crucial in order to
provide the asymptotic behavior of the solution at 0 regarding the perturbation parameter.

Theorem 1 Let E = (Ep)0≤p≤ι−1 be a good covering and consider an admissible set (51) asso-
ciated to E. For every 0 ≤ p ≤ ι− 1, the function up(t, z, ε) in (54) is a holomorphic solution of
(8) defined in (T1 ∩D(0, h′))× (T2 ∩D(0, h′))×Hβ′ × Ep for some h′ > 0 and all 0 < β′ < β.

Moreover, there exist K,M > 0 such that for every 0 ≤ p ≤ ι− 1, one has

(56) sup
t∈(T1∩D(0,h′))×(T2∩D(0,h′)),z∈Hβ′

|up+1(t, z, ε)− up(t, z, ε)| ≤ K exp

(
− M

|ε|α

)
,

for every ε ∈ Ep ∩ Ep+1, with

(57) α = min{k2(1− λk1δD1), k1(1 + λk2δ̃D2)}.

Proof The first part of the proof is guaranteed from the construction of the function up(t, z, ε)
for every 0 ≤ p ≤ ι− 1.

Let 0 ≤ p ≤ ι − 1. For every ε ∈ Ep ∩ Ep+1 we distinguish different situations depending on
the relative position of the directions dp,1, dp+1,1, and dp,2, dp+1,2.

Let ε ∈ Ep ∩ Ep+1 and assume that Ldp,1,ε can be transformed into Ldp+1,1,ε by a path
deformation and the same holds for Ldp,2 and Ldp+1,2 without meeting any (τ1, τ2) ∈ D(0, r1(ε))×
(C \D(0, r2(ε))) with Pm(τ1, τ2) = 0 for m ∈ R, i.e. the movable singularities in D(0, r1(ε)) ×
(C \ D(0, r2(ε))) fall apart from the arguments between dp,1 and dp+1,1 with respect to the
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first component, nor between dp,2 and dp+1,2 with respect to the second component. Whenever
this configuration holds, Cauchy theorem ensures that up(t, z, ε) ≡ up+1(t, z, ε) for all (t, z) ∈
(T1 ∩D(0, h′))× (T2 ∩D(0, h′))×Hβ′ . The same argument can be applied to all ε ∈ Ep ∩ Ep+1

concluding that the sectors Ep and Ep+1 can merge in the configuration of the good covering.
It is worth mentioning that the following cases state three equivalence classes regarding each

element in the good covering. A continuity argument yields that for all 0 ≤ p ≤ ι − 1, if there
exists ε ∈ Ep∩Ep+1 such that one of the following mutually excluded cases holds for such ε, then
the same case holds for every element in Ep ∩ Ep+1.

Case 1: Assume that Ldp,1,ε ≡ Ldp+1,1,ε and Ldp,2 differs from Ldp+1,2 . This situation occurs
in case that the first component of every singularity in the Borel plane does not fall between the
directions dp,1 and dp+1,1 but at least the second component of one singular point in the Borel
plane occurs within angles between dp,2 and dp+1,2.

Then, one has
up+1(t, z, ε)− up(t, z, ε) = I11 − I12,

where

I11 :=
1

(2π)1/2

∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp+1,2

ω
dp+1

k (u,m, ε) exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm,

I12 :=
1

(2π)1/2

∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2

ω
dp
k (u,m, ε) exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm,

for every ε ∈ Ep ∩ Ep+1. Taking into account the first statement in Lemma 3, the functions

ω
dp
k (τ ,m, ε) and ω

dp+1

k (τ ,m, ε) define a common function , say ωk(τ ,m, ε) in D(0, r1(ε)) ×
D(0, 2r2(ε)) with respect to the first two variables. This entails that a deformation of the
integration path in the second time variable can be performed in the previous difference in order
to obtain after the application of Cauchy theorem that for all τ1 ∈ Ldp,1,ε and m ∈ R∫

Ldp+1,2

ω
dp+1

k (u,m, ε) exp

(
−
(
u2

εt2

)k2) du2

u2
−
∫
Ldp,2

ω
dp
k (u,m, ε) exp

(
−
(
u2

εt2

)k2) du2

u2

can be expressed in the form

(58)∫
Ldp+1,2,r2(ε)

ω
dp+1

k (u,m, ε) exp

(
−
(
u2

εt2

)k2) du2

u2
+

∫
Cp,p+1,r2(ε)

ωk(u,m, ε) exp

(
−
(
u2

εt2

)k2) du2

u2

−
∫
Ldp,2,r2(ε)

ω
dp
k (u,m, ε) exp

(
−
(
u2

εt2

)k2) du2

u2
= I13 + I14 − I15,

where Ldp,2,r2(ε) = [r2(ε),∞)e
√
−1dp,2 , Ldp+1,2,r2(ε) = [r2(ε),∞)e

√
−1dp+1,2 and Cp,p+1,r2(ε) stands

for the arc of circle centered at 0 and radius r2(ε) which connects the points r2(ε)e
√
−1dp,2

and r2(ε)e
√
−1dp+1,2 . Taking into account (53) and by construction of the solutions, the direction

dp+1,2 (depending on εt2) is such that there exists δ1 > 0 with cos(k2(dp+1,2−arg(εt2))) ≥ δ1 > 0
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for every ε ∈ Ep ∩ Ep+1 and every t ∈ (T1 ∩D(0, h′)) ∩ (T2 ∩D(0, h′)). This entails that

(59) |I13| ≤ C
ω
dp+1
k

exp(−β|m|) 1

(1 + |m|)µ

∣∣u1
ε

∣∣
1 +

∣∣u1
ε

∣∣2k1 exp

(
ν1

∣∣∣u1

ε

∣∣∣k1)
∫ ∞
r2(ε)

s2
|ε|

1 +
(
s2
|ε|

)2k2
exp

((
s2

|ε|

)k2 (
ν2 −

cos(k2(dp+1,2 − arg(εt2)))

|t2|k2

))
ds2

s2

≤ C
ω
dp+1
k

exp(−β|m|) 1

(1 + |m|)µ

∣∣u1
ε

∣∣
1 +

∣∣u1
ε

∣∣2k1 exp

(
ν1

∣∣∣u1

ε

∣∣∣k1)
∫ ∞
r2(ε)

s2

|ε|
exp

((
s2

|ε|

)k2 (
ν2 −

δ1

|t2|k2

))
ds2

s2
.

We choose 0 < h′ < (δ1/ν2)1/k2 , to get that the previous expression is upper bounded by

(60) C
ω
dp+1
k

exp(−β|m|) 1

(1 + |m|)µ

∣∣u1
ε

∣∣
1 +

∣∣u1
ε

∣∣2k1 exp

(
ν1

∣∣∣u1

ε

∣∣∣k1) exp

(
− C21

|ε|k2(1−λk1δD1
)

)
,

for some C21 > 0. The expression I15 is upper estimated following analogous arguments. We
consider I14, and apply (53) to analogous argument as above arriving at

(61) |I14| ≤ Cωk
exp(−β|m|) 1

(1 + |m|)µ

∣∣u1
ε

∣∣
1 +

∣∣u1
ε

∣∣2k1 exp

(
ν1

∣∣∣u1

ε

∣∣∣k1)

×
r2(ε)
|ε|

1 +
(
r2(ε)
|ε|

)2k2

∫ dp+1,2

dp,2

exp

((
r2(ε)

|ε|

)k2 (
ν2 −

cos(k2(θ − arg(εt2)))

|t2|k2

))
dθ

≤ Cωk,2 exp(−β|m|) 1

(1 + |m|)µ

∣∣u1
ε

∣∣
1 +

∣∣u1
ε

∣∣2k1 exp

(
ν1

∣∣∣u1

ε

∣∣∣k1) exp

(
− C21

|ε|k2(1−λk1δD1
)

)
,

for some Cωk,2 > 0.
In view of (60) and (61), and regarding (52) we get that

(62) |up+1(t, z, ε)− up(t, z, ε)| ≤ Cωdp
k ,3

1

(2π)1/2

(∫ ∞
−∞

exp((|Im(z)| − β)|m|) 1

(1 + |m|)µ
dm

)

×

∫ κr1(ε)

0

s1
|ε|

1 +
(
s1
|ε|

)2k1
exp

((
s1

|ε|

)k1 (
ν1 −

δ1

|t1|k1

))
ds1

s1

 exp

(
− C21

|ε|k2(1−λk1δD1
)

)

for some C
ω
dp
k ,3

> 0. This is valid for all ε ∈ Ep ∩Ep+1, t ∈ ((T1 ∩D(0, h′))× (T2 ∩D(0, h′))) and

z ∈ Hβ′ . We point out that

(63)

∫ ∞
−∞

exp((|Im(z)| − β)|m|) 1

(1 + |m|)µ
dm <∞, z ∈ Hβ′ .

Finally, observe that the change of variable s1 = |ε|s and usual estimates yield
(64)∫ κr1(ε)

0

s1
|ε|

1 +
(
s1
|ε|

)2k1
exp

((
s1

|ε|

)k1 (
ν1 −

δ1

|t1|k1

))
ds1

s1
≤
∫ ∞

0

1

1 + s2k1
exp(−Ask1)ds <∞,
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for some A > 0. We conclude that

|up+1(t, z, ε)− up(t, z, ε)| ≤ Cωdp
k ,4

exp

(
− C21

|ε|k2(1−λk1δD1
)

)
,

for all ε ∈ Ep ∩ Ep+1, t ∈ ((T1 ∩D(0, h′))× (T2 ∩D(0, h′))) and z ∈ Hβ′ .
Case 2: Assume that Ldp,2 ≡ Ldp+1,2 and Ldp,1,ε differs from Ldp+1,1,ε. We only provide

details on the steps which differ from the proof of Case 1. We have

up+1(t, z, ε)− up(t, z, ε) = I21 − I22,

where

I21 :=
1

(2π)1/2

∫ ∞
−∞

∫
Ldp+1,1,ε

∫
Ldp,2

ω
dp+1

k (u,m, ε) exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm,

I22 :=
1

(2π)1/2

∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2

ω
dp
k (u,m, ε) exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

du2

u2

du1

u1
dm,

for every ε ∈ Ep ∩ Ep+1.

We split the integration path on the second time variable into Ldp,2,[0,r2(ε)] := [0, r2(ε)]e
√
−1dp,2

and Ldp,2,[r2(ε),∞) := [r2(ε),∞)e
√
−1dp,2 . The first statement of Lemma 3 and Cauchy theorem

allow to write
I21 − I22 = I23 − I24 + I25,

where

I23 :=

∫ ∞
−∞

∫
Ldp+1,1,ε

∫
Ldp,2,[r2(ε),∞)

∆p+1(u, ε, t)du2du1dm,

I24 :=

∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2,[r2(ε),∞)

∆p(u, ε, t)du2du1dm,

I25 :=

∫ ∞
−∞

∫
Cp,p+1,κr1(ε)

∫
Ldp,2,[0,r2(ε)]

∆(u, ε, t)du2du1dm,

where Cp,p+1,κr1(ε) is the arc of circle centered at the origin, radius κr1(ε) connecting the points

κr1(ε)e
√
−1dp,1 and κr1(ε)e

√
−1dp+1,1 . Here, we have used the notation

∆j =
1

(2π)1/2
ω
dj
k (u,m, ε) exp

(
−
(
u1

εt1

)k1
−
(
u2

εt2

)k2)
eizm

1

u1u2
, j ∈ {p, p+ 1},

and ∆ = ∆p = ∆p+1 whenever both functions coincide. In practice, this last consideration holds
if |τ1| < r1(ε) and |τ2| < 2r2(ε) as it follows from the first statement in Lemma 3.

The estimates for I23 coincide with those for I13, together with the bounds provided after
(62) to get that

|I23| ≤ Cωdp
k ,4

exp

(
− C21

|ε|k2(1−λk1δD1
)

)
,

for all ε ∈ Ep ∩ Ep+1, t ∈ ((T1 ∩D(0, h′))× (T2 ∩D(0, h′))) and z ∈ Hβ′ .
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The expression I24 can be handled analogously. We finally provide upper bounds for |I25|,
which can be estimated via (53) and the choice made in (52) by

(65) |I25| ≤ Cωdp
k ,4

(∫ ∞
−∞

exp((|Im(z)| − β)|m|) 1

(1 + |m|)µ
dm

)

×

∫ dp+1,1

dp,1

κr1(ε)
|ε|

1 +
(
κr1(ε)
|ε|

)2k1
exp

((
κr1(ε)

|ε|

)k1 (
ν1 −

cos(k1(θ − arg(εt1)))

|t1|k1

))
dθ


×

∫ r2(ε)

0

s2
|ε|

1 +
(
s2
|ε|

)2k2
exp

((
s2

|ε|

)k2 (
ν2 −

δ1

|t2|k2

))
ds2

s2

 = C
ω
dp
k ,4

I26I27I28,

for some C
ω
dp
k ,4

> 0. I26 (resp. I28) is upper bounded by a constant, see (63) (resp. a symmetric

situation to that in (64)). We also have

(66) |I27| ≤ (dp+1,1 − dp,1)

(
sup
x≥0

x

1 + x2k1

)
exp

((
κr1(ε)

|ε|

)k1 (
ν1 −

δ1

|t1|k1

))

≤ (dp+1,1 − dp,1)

(
sup
x≥0

x

1 + x2k1

)
exp

(
− C22

|ε|k1(1+λk2δ̃D2
)

)

for 0 < h′ < (δ1/ν1)1/k1 , and some C22 > 0. This entails the existence of C
ω
dp
k ,5

, C23 > 0 such

that

|up+1(t, z, ε)− up(t, z, ε)| ≤ Cωdp
k ,5

exp

(
−C23

|ε|α

)
,

for all ε ∈ Ep ∩ Ep+1, t ∈ ((T1 ∩D(0, h′))× (T2 ∩D(0, h′))) and z ∈ Hβ′ , with α defined in (57).
Case 3: Assume that Ldp,2 does not coincide with Ldp+1,2 and Ldp,1,ε differs from Ldp+1,1,ε.

For a more compact writing, we will only display the integration paths in which the integrals
involved are subdivided. Each of them can be reduced to the situation in case 1 or case 2 above.
In the following steps, we preserve the notation for ∆,∆p and ∆p+1, and consider

up+1(t, z, ε)− up(t, z, ε) = I31 − I32,

where

I31 :=

∫ ∞
−∞

∫
Ldp+1,1,ε

∫
Ldp+1,2

∆p+1
du2

u2

du1

u1
dm, I32 :=

∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2

∆p
du2

u2

du1

u1
dm,
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Figure 1: Deformation of the paths involved in the proof of Theorem 1

for every ε ∈ Ep∩Ep+1. We deform and split the integration paths to obtain that I31−I32 equals∫ ∞
−∞

∫
Ldp+1,1

,ε

∫
Ldp+1,2,[0,r2(ε)]

∆du2du1dm+

∫ ∞
−∞

∫
Ldp+1,1

,ε

∫
Ldp+1,2,[r2(ε),∞)

∆p+1du2du1dm

−
∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2,[0,r2(ε)]

∆du2du1dm−
∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2,[r2(ε),∞)

∆pdu2du1dm

=

∫ ∞
−∞

∫
Ldp+1,1

,ε

∫
Ldp+1,2,[0,r2(ε)]

∆du2du1dm+

∫ ∞
−∞

∫
Ldp+1,1

,ε

∫
Ldp+1,2,[r2(ε),∞)

∆p+1du2du1dm

−
∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp+1,2,[0,r2(ε)]

∆du2du1dm+

∫ ∞
−∞

∫
Ldp,1,ε

∫
Cp,p+1,r2(ε)

∆du2du1dm

−
∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2,[r2(ε),∞)

∆pdu2du1dm

=

∫ ∞
−∞

∫
Cp,p+1,κr1(ε)

∫
Ldp+1,2,[0,r2(ε)]

∆du2du1dm+

∫ ∞
−∞

∫
Ldp+1,1

,ε

∫
Ldp+1,2,[r2(ε),∞)

∆p+1du2du1dm

+

∫ ∞
−∞

∫
Ldp,1,ε

∫
Cp,p+1,r2(ε)

∆du2du1dm−
∫ ∞
−∞

∫
Ldp,1,ε

∫
Ldp,2,[r2(ε),∞)

∆pdu2du1dm

= I33 + I34 + I35 − I36.

In the previous expression, we have extended in a natural manner the notation adopted for
the integration paths in Case 1 and Case 2. Analogous bounds as those stated for the integral
I25 (resp. I23) are also valid for I33 (resp. I34), in Case 2. For the expression I35 (resp. I36) one
can consider the estimates used to study I14 (resp. I13), involved in Case 1. We conclude the
existence of Cωk,6, C24 > 0 such that

|up+1(t, z, ε)− up(t, z, ε)| ≤ Cωk,6 exp

(
−C24

|ε|α

)
,

for all ε ∈ Ep ∩ Ep+1, t ∈ ((T1 ∩D(0, h′))× (T2 ∩D(0, h′))) and z ∈ Hβ′ , with α defined in (57).
Figure 1 illustrates the deformation of the paths involved in the procedure.

2
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7 Parametric Gevrey asymptotic expansions of the analytic so-
lutions

In this section, we analyse the asymptotic behavior of the analytic solutions of the main problem
(8) obtained in the previous section, regarding the perturbation parameter approaching the
origin. The classical criterion for k−summability of formal power series with coefficients in a
Banach space, known as Ramis-Sibuya Theorem (see [1], p.121, or Lemma XI–2–6 in [2]) will
be used to describe the Gevrey asymptotic approximation of the solution.

The assumptions made in Section 2.2 and construction of the elements related to the main
problem under study (8) are maintained in this section.

We first give some words on this classical summability theory for the sake of completeness.

7.1 k−summable formal power series and Ramis-Sibuya Theorem

Let (E, ‖·‖E) be a complex Banach space.

Definition 5 Let k ≥ 1 be an integer number. A formal power series f̂(ε) =
∑

n≥0 fnε
n ∈ E[[ε]]

is k−summable with respect to ε along direction d ∈ R if there exists a bounded holomorphic
function f defined in a finite sector Vd of bisecting direction d and opening larger than π/k, and
with values in E, which admits f̂ as its Gevrey asymptotic expansion of order 1/k on Vd, i.e.
for every proper subsector V1 of Vd, there exist K,M > 0 such that∥∥∥∥∥f(ε)−

N−1∑
n=0

fnε
n

∥∥∥∥∥
E

≤ KMNΓ

(
N

k
+ 1

)
|ε|N ,

for every integer N ≥ 1 and ε ∈ V1. Watson’s lemma guarantees uniqueness of such function,
known as the k−sum of the formal power series.

Theorem 2 (RS) Let ι ≥ 2 and let (Ep)0≤p≤ι−1 be a good covering in C?. For every 0 ≤
p ≤ ι − 1 we consider a holomorphic function Gp : Ep → E, and define the function Θp(ε) :=
Gp+1(ε)−Gp(ε) holomorphic in Zp := Ep ∩ Ep+1. We assume the following statements hold:

• Gp is a bounded function for ε ∈ Zp, ε→ 0 for all 0 ≤ p ≤ ι− 1.

• Θp is an exponentially flat function of order k in Zp for all 0 ≤ p ≤ ι− 1, i.e. there exist

K,M > 0 such that ‖Θp(ε)‖E ≤ K exp
(
− M
|ε|k

)
, valid for all ε ∈ Zp, and each 0 ≤ p ≤ ι−1.

Then, each of the functions Gp(ε), for 0 ≤ p ≤ ι − 1 admits a common formal power series
Ĝ(ε) ∈ E[[ε]] as Gevrey asymptotic expansion of order 1/k on Ep. In addition to this, if the
opening of Ep0 is larger than π/k for some 0 ≤ p0 ≤ ι − 1, then Gp0(ε) is unique, being the
k−sum of Ĝ(ε) on Ep0.

7.2 Asymptotic behavior of the solutions of (8) in the perturbation param-
eter

We are in conditions to describe the asymptotic behavior of the analytic solutions of the main
problem under study (8) with respect to the perturbation parameter, at the origin.

For this purpose, we consider a good covering E = (Ep)0≤p≤ι−1, for some integer number
ι ≥ 2. We also fix an admissible set {T1, T2, E , (Sd1,p)0≤p≤ι−1, (Sd2,p)0≤p≤ι−1}, which is associated
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to the good covering E , in accordance with the geometry of the problem (see Section 3) for each
0 ≤ p ≤ ι− 1, as described in Section 6.

Let (up)0≤p≤ι−1 be the set of analytic solutions of (8), determined in Theorem 1. We recall
that for every 0 ≤ p ≤ ι − 1, the function (t, z, ε) 7→ up(t, z, ε) is a holomorphic function in
T1 × T2 ×Hβ′ × Ep, for all 0 < β′ < β.

Let E be the Banach space of holomorphic and bounded functions on the domain (T1 ∩
D(0, h′))× (T2 ∩D(0, h′))×Hβ′ , endowed with the norm of the supremum.

Theorem 3 There exists a formal power series

(67) û(t, z, ε) =
∑
m≥0

Hm(t, z)
εm

m!
∈ E[[ε]],

solution of (8), such that for every 0 ≤ p ≤ ι − 1, the function ε 7→ up(t, z, ε) constructed in
(54) admits ε 7→ û(t, z, ε) as its Gevrey asymptotic expansion of order 1/α, as ε→ 0 with ε ∈ Ep
regarding them as functions and formal power series with coefficients in E. Here, α is defined
by (57). More precisely, there exist C,M > 0 such that

(68) sup
t∈((T1∩D(0,h′))×(T2∩D(0,h′))),z∈Hβ′

∣∣∣∣∣up(t, z, ε)−
N−1∑
m=0

Hm(t, z)
εm

m!

∣∣∣∣∣ ≤ CMNΓ

(
1 +

N

α

)
|ε|N ,

for every integer N ≥ 0, 0 ≤ p ≤ ι− 1 and all ε ∈ Ep. In case the opening of Ep0 is larger than
π/α for some 0 ≤ p0 ≤ ι− 1, then u(t, z, ε) turns out to be the α−sum of û(t, z, ε) in Ep0.

Proof For every 0 ≤ p ≤ ι− 1, let Gp be the function ε 7→ up(t, z, ε). It holds that Gp : Ep → E
is a holomorphic function in Ep and moreover, in view of (56), it holds that

‖Gp+1(ε)−Gp(ε)‖E ≤ K exp

(
− M

|ε|α

)
,

for someK,M > 0, and all ε ∈ Ep∩Ep+1. Regarding Ramis-Sibuya Theorem (RS), this entails the
existence of a formal power series in the form (67), such that ε 7→ up(t, z, ε) admits ε 7→ û(t, z, ε)
as its Gevrey asymptotic expansion of order 1/α. The function up0(t, z, ε) is the α−sum of
û(t, z, ε) if the opening of Ep0 is larger than π/α, for some 0 ≤ p0 ≤ ι− 1.

It is straight to check that the formal power series (67) is a formal solution of (8) by plugging it
into (8) and taking into account that, in accordance to the existence of the asymptotic expansion
in (68), it holds that

lim
ε→0,ε∈Ep

(t,z)∈(T1∩D(0,h′))×(T2∩D(0,h′))×Hβ′

|∂mε up(t, z, ε)−Hm(t, z)| = 0, m ≥ 0.

We refer to Theorem 2 [6] for further details on this last part of the proof, which follows usual
reasonings. 2

Remark: An example of equation which can be considered in this study is the following:

(69) (∂8
z +M)u(t, z, ε) = ε12(t41∂t1)2(t32∂t2)3(∂4

z + 1)u(t, z, ε)

+ ε7(t41∂t1)t72∂t2c11(z, ε)R11(∂z)u(t, z, ε) + f(t, z, ε),

for some large M > 0, R11(X) ∈ C[X] with deg(R11) ≤ 4, and for some c11(z, ε) and f(t, z, ε)
constructed as in Section 2.2.
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