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Abstract

The work is devoted to the study of a family of linear initial value problems of partial differential
equations in the complex domain, dealing with two complex time variables. The use of a truncated
Laplace-like transformation in the construction of the analytic solution allows to overcome a small divisor
phenomenon arising from the geometry of the problem and represents an alternative approach to the one
proposed in a recent work [9] by the last two authors. The result leans on the application of a fixed point
argument and the classical Ramis-Sibuya theorem.
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1 Introduction

This work is devoted to the study of a family of singularly perturbed partial differential equations
in the complex domain of the form

(1) Q(az)U(tl,tg, Z, 6) = P(tlf1+16t17t2a 87527827 2, 6) + f(t17t27z7 6)7

under initial data u(0,t2, z,€) = u(t1,0, z,¢) = 0, with Q(X) € C[X] and P(T1,T51,T22, Z, z,€)
being a polynomial in (77, T51, T2, Z) with holomorphic coefficients w.r.t. (2, €) on HgxD(0, €p).
Here, Hz and D(0,€p) stand for the horizontal strip {z € C : [Im(z)| < £} and the disc at the
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origin and radius €y, for some § > 0,¢y > 0, respectively. The forcing term f(t1,t2,2,€) is
holomorphic on C* x D(0,h') x Hg x &, for any open sector £ centered at 0 and contained in
D(0,¢€p), for some b’ > 0, and remains close to a polynomial in ¢1, analytic in t3 on D(0, k')
and in z on Hg, as € becomes close to the origin in C. The variable € acts as a small complex
parameter. The concrete assumptions on the elements involved in the main problem (1) are to
be described and analysed in detail throughout the work.

The study of a problem of such form is motivated by the recent research [9] of the second
and third authors. The main aim in the preceeding work was related to the description of the
asymptotic behavior of the analytic solutions, with respect to the perturbation parameter, near
the origin, of singularly perturbed equations

(2) Q(az)u(tl,tQ,Z, 6) - p(t]{:1+lat17t]2€2+lat27 aza Z, 6) + .f(tlatQa Z, 6)7

with P(Tl,Tg, Z,€) being a polynomial in (71,75, Z, z,€) with holomorphic coefficients w.r.t.
(2,€) on Hg x D(0, €).

Two main novelties are considered here with respect to it. On the one hand, the irregular
singular operators related to the second time variable stay rigid in (2), as a polynomial function
of the operator t§2+1(9t2. In the present study, the irregular operators in this variable fit a more
general scheme within the problem, under certain technical assumptions (see (5) and (6)). This,
at first sight slight, variation on the form of the main problem varies its underlying geometry
radically. On the other hand, the appearance of different types of solutions observed in [9],
known as inner and outer solutions, which describe boundary layer expansions do not appear in
the present situation, since we study local solutions in time %1, to near the origin in the complex
domain. It is worth mentioning that, despite the fact that the form of the main equation under
study resembles that of [9], the nature of the singularities appearing in the problem require to
appeal different approaches and apply novel techniques, to be briefly described below.

This work continues a line of research on the study of the asymptotic behavior of solutions of
singularly perturbed PDEs in the complex domain, under the action of two time variables: deal-
ing with a symmetric factorized (resp. asymmetric) leading term [8] (resp. [6]), the mentioned
work [9], and the corresponding g—analog [10] in the framework of g—difference—differential
equations.

The technique developed in the present work consists on searching for solutions of the main
problem ( see (8) for its precise expression) in the form of a Fourier, truncated Laplace and
Laplace transform of certain function, for every fixed value of the perturbation parameter e:

(3)
u(t, z,€) ! /OO/ / w(ui,ug,m,€)e u )" uz \ " eizmdu2 dus
€) (= ——7s e)exp | — | — — | = —
T (27T)1/2 —o0 JLy J Lo L ’ P 6t1 EtQ u2 Ul

The integration path L; . stands for the segment [0, by (e)e\/jwl], for some holomorphic function
€ — hi(e) on the domain of definition of the perturbation parameter, approaching to infinity
when € tends to 0, and some 61 € R which does not depend on €. The integration with respect to
the path L stands for a usual Laplace transform along certain half line [0, oo)eﬁd% for some
ds € R, whereas the function w belongs to certain Banach space which depends on the choice
of the perturbation parameter. From this point, the main problem is replaced by an auxiliary
convolution problem (see (17)) in the Borel plane with respect to the time variables (¢1,¢2). The
precise knowledge on the geometry of the auxiliary problem is crucial in order to understand
the location and control of the singularities (see Section 3). As a matter of fact, the singularities
of the auxiliary problem are always located outside (but remain close to) a product of discs in
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the domain of the transformed time variables, say (71, 72). The radius of the discs depend on e
tending to infinity regarding 7 and shrinking to the origin with respect to 7. In addition to
this, one can choose narrow finite (resp. infinite) sectors with vertex at the origin with respect
to 71 (resp. 7o), valid for all the values of the pertubation parameter, which avoid the singular
points. In other words, the function w can be extended to the product of such sectors w.r.t.
(11, 72). Therefore, a small denominator problem regarding movable singularities to infinity and
to zero at the same time (in each of the time variables) has to be analysed. This construction
through a truncated Laplace transform is proposed in order that the solutions (3) remain close,
as € tends to 0, to a double usual Laplace transform in both variables t1, to. For such a complete
double Laplace representable solution, a direct analysis of the asymptotic behaviour w.r.t. e
is unfortunately not possible (as shown in our previous work [9]). However, such study turns
achievable within the new approach regarding truncated Laplace transform solutions.

The use of truncated Laplace transform with respect to one of the time variables in the Borel
plane is used successfully to control the growth of the solutions, via complex Banach spaces of
functions not only subject to an exponential growth in the monomial variables, but also whose
domain of definition depends on each value of € (see Section 4). Given a finite family of finite
sectors € = (&p)o<p<,—1 which conform a good covering (see Definition 3), the first main result
in the work, Theorem 1, states the existence of a solution of the main problem in the form (3)
for every 0 < p < ¢ — 1, remaining holomorphic in a domain 771 x T3 x Hg x &,, where T1, 7>
are finite sectors with vertex at the origin. Moreover, the exponential decrease of the difference
of two solutions associated to consecutive sectors in £ enables the application of the classical
Ramis-Sibuya theorem (RS) in order to achieve the second main result of our study, namely
the asymptotic relation of the analytic solutions and the formal solution of the main problem in
powers of €, with coefficients in some complex Banach space (see Theorem 3).

In recent years, several steps have been taken to contribute to the knowledge of the asymp-
totic behavior of analytic solutions of singularly perturbed partial differential equations in the
complex domain. We first refer to the recent works [17, 18], by H. Yamazawa and M. Yoshino,
and M. Yoshino resp. in which the parametric Borel summability of semilinear systems of PDEs
is studied, first in the case of fuchsian operators, and second combining both irregular and fuch-
sian operators. We refer to [1, 14] as introductory texts on the classical theory of summability
of formal solutions of differential equations in the complex domain.

The appearance of truncated Laplace transform is closely related to the classical theory of
asymptotic approximation of analytic functions (examples of this situation is the classical proof
of Ritt’s Theorem for Gevrey asymptotics, see [1] Proposition 10, and also Lemma 1.3.2 in [14]).
Truncated Laplace transform also appears as a recent object of study in the literature, related
to differential operators [12, 13], but also from the numerical point of view [11]. The choice of
an integration path for Laplace transform which depends on each fixed value of the perturbation
parameter € has been inspired from [3, 15].

Throughout the work, we use bold letters to indicate a vector of two variables: we write T
for the pair (71, 72), u for (u1,uz), T for (T1,T%), etc.

The paper is organized as follows.

In Section 2.1, we recall some properties on Fourier transform which allow to transform the
main problem, stated in Section 2.2, in the form a convolution problem, described in Section 2.3.
The geometry of the problem is an important matter in this work, which needs to be explained
in detail. Section 3 is focused on this issue. The Banach spaces involved in the construction
of the analytic solution of the auxiliary problem, and some of their main properties, are stated
in Section 4. Such function is constructed in Section 5. The analytic solution of the main
problem is obtained in Section 6 (Theorem 1), and the work concludes with the description of
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the parametric Gevrey asymptotic expansions of the analytic solution, obtained in Section 7
(Theorem 3).

2 Layout of the main and auxiliary problems

In this initial section, we describe in detail the main problem under study (8) (Section 2.2),
and the conditions on the elements involved in it. The solution of this problem is reduced to a
convolution auxiliary problem in the Borel plane (17) when inspecting solutions in the particular
form of a triple Fourier, Laplace and truncated Laplace transform (see Section 2.3). We first
give some words about inverse Fourier transform on certain Banach spaces which act on the
transformation of the problem (Section 2.1).

2.1 Inverse Fourier transform on certain function spaces

The transformation of the main problem with respect to variable z requires recalling some basic
facts about inverse Fourier transform when acting on certain Banach spaces of real functions of
exponential decrease at infinity.

Definition 1 Let 8,u € R. We write Eg ) for the set of all continuous functions h : R — C
such that

[P(m)ll 5,y := sup (1 + [m])* exp(Blm][)[h(m)] < oo.
meR
The pair (Egu, ||ll(g,,)) is @ Banach space.
The next result will be needed in our reasoning. We refer to [4], Proposition 7, for its proof.

Proposition 1 Let > 0 and p > 1. The inverse Fourier transform
1 oo
FHf)(=z) = anie /OO f(m)exp(izm)dm, zeR

satisfies the following properties acting on every f € E(g ,):

o The function F~L(f) is well defined in R and can be analytically extended to the set

(4) Hg:={zeC:|Im(z)| < B}.

o Let ¢(m) :=imf(m). Then, ¢ € Eg,_1y and 0.F 1(f)(z) = F1(¢)(2) for z € Hg.

o Let g € Eg) and let p(m) = Wf x g(m) be the convolution product of f and g, for
allm € R. Then, ¢ € Eg ) and it holds that

FHUAHEF H9)(2) = F 1 (W)(2), =€ H

2.2 Statement of the main problem

Let k1 and ko and Dp, Dy > 2 be positive integers. Let dp, (resp. 552) be a nonnegative integer
for every 1 < ¢ < Dy (resp. every 1 < ¢y < D). We also fix nonnegative integers Ay, ¢,, dy, for
a111§€1§D1—1and1§£2§D2—1.
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We assume that

(5) ADlDQ = k16D1 + k2SD2'
and
k26 p,0 . oyl _ =~ 1
(6) Agl@ > k:l(sgl + M, d42 > 5(2(]{32 + 1), D2 > 512 + —,
dp, 0p, ko

forevery 1 </ < Di—1land 1</y < Dy—1.
Let Q(X), Rp,p,(X) and Ry,¢,(X) forall 1 < ¢; < D; —1 and 1 < ¢35 < Dy — 1 belong to
C[X]. We assume that

(7) deg(Rp,p,) > deg(Ry,y,), Rp,p,(im) #0

forevery 0 < /3 < D;—1and 0 </y < Dy—1, and all m € R.

Remark: In Section 3 we assume further geometric conditions on these polynomials. In
particular, observe that condition (18) implies that deg(Q) > deg(Rp,p,)-
We choose i € R with
>  max deg(Rye,) + 1.

0<01<D1—-1
0<l<Do—1

The main aim in this work is to study the following initial value problem:

(8) Q(az)u(th t2, 2, 6) = 6AD1D2 (tlfl+18t1)5D1 (t§2+1at2)SD2 RD1D2 (8Z)u(t17 lo, 2, 6)

+ Z eBae (fhtly, Yo t;% 85222 Coyty (2, €) Rpy0, (02 u(ty, ta, z,€) + f(t1,t2, 2, €),

1< <D;—1

1<l<D>—1
for the initial conditions wu(t1,0, z,€) = u(0, t2, z,€) = 0. Let us describe the form of the elements
involved in the problem.

Let g >0 and 5 >0. Forall 1 </; < D; —1and 1</ < Dy—1, the term cs,,(2,€) are

holomorphic functions on Hg x D(0,€y). We recall that Hg stands for the horizontal strip (4).
The function ¢y, 4, is defined by

— 1 * 1zm
Co1 4, (Za 6) =F 1(m = CKMQ (m7 6))(2) = (271')1/2/ C@lfz (ma 6)6 dm,

where m +— Cy,4,(m, €) is continuous for m € R and is subject to uniform exponentially flat
upper bounds with respect to € € D(0, ¢), i.e. there exists C. > 0 such that

C
(9) Sup |CZ1€2 (m,e)| <

—————exp(—f|m|), meR.
e€D(0,e0) (1 + ’m|),u

Observe that m > Cy, g, (m, €) belongs to E g ,) with

sup HC@ J4 (76)” <C )
ceD(0.c0) 162 (B;1) ¢
foraHOgEl§D1—1and0§£2§D2—1.
The forcing term f(t1,t2, 2, €) is a holomorphic function in C* x D(0,h’) x Hg x &, for any
given open sector & centered at 0, and contained in D(0, €y) \ {0}, for some positive number h’.
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The forcing term is constructed as follows. Let N1 > 0 and Fy, n,(m, €) € E(g ,) under uniform
bounds with respect to € in the disc D(0,€y). More precisely, assume that

1\
sup [ Fagms (m, €)] SK() < < Nine >0,
e€D(0,e0) e (B:12) To

for some Ky, Ty > 0. We consider

koTa'?

Y(T,m,e) = g E Fn1n2mek7'1"1 2
T
n1=0ns>0 (;75)

which turns out to be a holomorphic function on C? with respect to the first two variables, with
coefficients in Eg ). We write

n rhy(e)eV 101 .
(10) T Zy 6 Z Z f m = Fn1n2(m 6))T1nl’y( : (hl()> )T2n27

ki’ T
71=0 ng >0 1 1

where khi(€) is a holomorphic function on any open sector centered at 0 in the punctured
disc D(0,€0) \ {0} (see (20)), 0; is a real number to be determined and v(n, z) stands for the
incomplete Gamma function

4
'y(n,z):/ u"te T du,
0

which is an entire function w.r.t. z, when n is a fixed positive real number. Observe that the
forcing term F' depends in particular on the choice of ;.

The following property related to the lower incomplete Gamma function will be crucial in
the construction of the auxiliary equation of the problem. Namely,

Khy(e)eV =101 u T" n (khi(e)exp(v/—161) g
11 n—l (VYA = n 1 p 1 '
We recall that the infinite Laplace transform satisfies

(12) /0 Tt esp(~ ()= 21 (1),

for every positive natural numbers n, k.

This property will be used with respect to the second time variable, whereas a truncated
Laplace transform depending on each value of the perturbation parameter near the origin is
applied on the first variable. Both, (11) and (12) give rise to adequate algebraic properties
which allow to reduce the main equation in the form of an auxiliary problem.

Regarding (10), F' is holomorphic w.r.t. T} on C*, Ty on the disc D(0,7y/2) and on Hpg
w.r.t. z. Furthermore, according to (11), (12), we observe that

rhy (€)eY 101 k ny

W ) = T

as € tends to 0, for (well chosen) fixed T7. Therefore, F is getting closer to a polynomial in T}
as € tends to 0. The function f defined by

f(t,Z,E) = F(€t176t27za6)

is holomorphic on C* x D(0, ') x Hg x £, for any given open sector £ centered at 0 and contained
in D(0,¢) \ {0}, with A’ > 0 such that 0 < h'ey < Tp/2. From the remark above, we check in
particular that f becomes close to a polynomial in t; as € becomes closer to the origin.
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2.3 Auxiliary problems
We search for solutions of (8) in the form of an inverse Fourier transform
u(ty,te, z,€) = FHm s Ulety, eta, 2, €)).
The classical properties of inverse Fourier transform, together with (5), lead to an auxiliary
functional equation satisfied by the expression U(T1, T, m, €), namely
(18) QUm)U(T1, Taym, ) = (T 05,)°1 (T3 01,)P2 R, p, (im)U (T1, To, m, €)

+Y nnhin s (Tt g n Tt gy

1<6,<D;—1
1<0,<Dy—1

1 > .
X W / Cglgz (m —myq, E)Rgng (zml)U(Tl, T5, mq, e)dm1 + F(Tl, T5, m, 6).

Let 0 < k < 1 and 61,d2 € R. Let € — hj(e) be a holomorphic function defined on the
domain of definition of the perturbation parameter, to be detailed afterwards. For every fixed
value of the perturbation parameter e, we search for solutions of (13) written as the Laplace
transform with respect to Ts along direction ds and the truncated Laplace transform with respect
to 11 along direction #; — V) p.arg(e) applied to a second auxiliary function. More precisely,
we search for solutions of (13) of the form

1) Usan@mo= [ [ wlwmeex _<UI>’“_<W>’” du duy
dida s 11 Loy L, 5 1Ty P T1 Tg u u2’

where di = di(e) := arg(hi(e)) + 61 and Lg, . stands for the segment [0, khi(e)eV=101]; Ly,
consists of the half-line with endpoint at the origin and direction do. The domain of definition
of w and Uy, 4, will be discussed in the subsequent sections.

Lemma 1 ((8.7), [16]) For every m,k € N one has

tm(kJrl)agn _ (thrlat)m + Z Amétk(mff) (thrlat)é’
1<¢<m—1

for some constants App, 1 <€ <m —1.
The assumption (6) guarantees the existence of dy,r, € N such that
(15) dey = 0gy (ko + 1) + dgry, 1<y < Dy—1.

The following result states a one-to-one correspondence between the solution of (13) and
(17). Its proof, which is omitted, can be adapted with minor modifications from [6], Lemma 1.

Lemma 2 Let Uy, q,(Th, T2, m,€) be defined by (14). Then, it holds that

. . (v kl_ ug ko d d
j—fﬂ‘f'laTjUdldz(Tl’TZ’m’e) — / / (ij?J)W(Ul,UQ,m, 6)6 (Tl) (T2) ﬂﬂ’ ] — 172
Lq, e 7 Ly U2 Ul

ko “];2 mg d
(16) T5"*Ua d, (T, T2, m,€) :/ / U,Qn / (u§2 — 32)@_1w(u1,3§/k2,m,6)ﬁ
Loy JLa, F(ﬁ) 0
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Lemma 1, (15) together with the shape of the solution in (14), the assumptions on the
coefficients ¢/, ¢, and the forcing term f, and Lemma 2 entail w being a solution of the following
auxiliary convolution equation in the Borel plane:

(A7) (Q(im) = Bo,p, (im) (k)1 (ker$?) 2 ) o(, m, )

~ o0
Agyoy—k1 80, —dg, +6 kiyay, L ,
= Z Bty =Ride —dey 4oy (| 7h1) 0 7 / Co,0,(m —ma, €) Ry g, (imy)
G2 ),
1<6,<D;—1
1<0,<Ds—1
k2 Ty 2 dg, <
T. 2 2k2 _q 1/k dsy
X | —2— / (752 — 55) 2 (k282)5‘2w(71,82/ 2 my,€)—dmy
Lako S
(%) :
2

k =
2 Aok th2(0py—p2)

) [ s T sy
0

ko
T2

Py

< doy iy +k2 (60, —p2)
1<pa<dp,—1 [’ <2 —
1/ko dsa
XW(7_1782 7m176) s dml +¢(T,m,€)
2

So far, the solution is of symbolic nature. The geometry of the problem, detailed in the
following section, together with Section 4 provide convergence and growth estimates of such
solution.

3 On the geometry of the problem

In this section, we preserve the objects and assumptions detailed in Section 2.2 on the elements
involved in the construction of the main problem under study (8), giving rise to the auxiliary
problem (17). This section is devoted to the study of the geometry of the problem, which is
crucial in the asymptotic approximation of the solution.

We define for every m € R the polynomial

Py (7) = Q(im) — Rp,p, (im) (ki7{")°P1 (ko752) P2
In the case that 7 # 0 one can factorize P, in the form

k2dp,—1

. 8p, ,0p, k16
P(T) = —Rp, p, (im)ky " k2 0 T (72 = qel(m1,m)
=0

= . 6p, ,0p, kid . .
where g¢(71,m) are the kadp, roots of Q(zm)/(RDlDzlch1 k2D2 T ! P1) with respect to 7y, i.e.

1
. k28, .
ae(r,m) = IQ(;m)Ig exp (‘E (arg ( Q(.Zm) k100 ) 12t >>
|RD1D2 (Zm) ’lel k2D2 ‘7’1 |k15D1 RDng (Zm)Tl 1 ]{225D2 k25D2

for every 0 < ¢ < k25D2 — 1.
We assume that the polynomials ) and Rp, p, satisfy that

Q(im)
—F €S
Rp, p,(im) © 2@ foy0,

(18)
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where Sq rp,, p, stands for an unbounded sector

SQ,RDlDQ ={z€C: 2|2 PQ,Rp,p,> |arg(z) — dQ7RD1D2| < 77Q7RD1D2}a

for some small ng g, ,, >0, large pg rp, p,, > 0, and some dg r,, ,, € R to be determined.
Let X be a real number which satisfies that

(19) 0<A<

k16p,

Let £ be a sector with vertex at the origin which is contained in the disc D(0, ) and for
every € € £ we define

1
o,
(20) hi(e€) := PQ.Fp, py !
o 1P ksDz e’
1 Fa

and the quantities

T

19Dq

PQ,R 1 1

(21) ri(e) == PQ.Rp,py P and ro(e) = §|e|r22,

6Dy 4 0Dy
kl k2

with 11 = )\kQSDZ, and T99 = )\kl(le-
The next result summarizes the main properties of the geometric construction above, which
will be used to state the asymptotic behavior of the solutions of the main problem.

Lemma 3 Let m € R and € € £. The following statements hold:
o {1 C?:P,(1) =0}n(D(0,r1(e)) x D(0,2ra(€))) = 0.
e Provided that A > 0 is small enough, for any couple of directions (601, ds) which satisfy that

1 27l
—
k2dp, k20D,

dy # (d — /-Cl(SDl()\k‘QSDZ arg(e) — 91))

forall0 < £ < k25D2 —1, whered € (dQ,RD1D2 —1Q,Rp, b, 4Q,Rp, p, +77Q,RD1D2)’ alle € &,
there exist an unbounded sector Sq, with bisecting direction dy and small opening, and a
sector Sy, ¢, with

Sgyc=1{2€C*:0 < |2| < wri(e), larg(z) — di| < 01},
where di = dy(e) = )\kQSDz arg(e) — 01 such that
{T € C?: Pu(7) = 0} N (S4y.c X Sa) = 0,
foralle € £.
o Let 4, and Sg, be as above. We put
(22) Qi(€) := Saye and  Qa(e€) := D(0,72(€)) U Sa,.
Then, there exists C'p > 0 which does not depend on € € £ such that

(23) 1P (T)| = Cp|Rp, p, (im)|(1 + || F19P1 ]7-2|k25D2)7

for every m € R, 7 € Q1(e) x Qa(e).
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Proof
Let 7= (m,m2) € C? such that P, (1) = 0. One has that 7 = (71, m), for some 0 < £ <
k26p, — 1. In the case that |g/(71,m)| < 2ra2(e), from the definition of P,, and (18) we derive
that )
k1édp,
PQ,Rp,p 1
71| > ﬁ —}CQ%:H(G).
1 2
kit kg (2ro(€)) 1701

The first statements follows from here.
The second statement is a direct consequence of the fact that for all 71 € C* and m € R one
has

1 21l

kodp,  k2dp,

Q(im)

RD1D2 (Zm)

(24) ang(an(r1,m) = [arg ( ) - kb, ans(r)

for every 0 < ¢ < koo p, — 1. Regarding the construction of Sy, . we have that for all 7 € Sy, .
it holds that 3 3 3 3
—01 + )\k:25D2arg(e) + 61 < arg(ﬁ) <o+ )\k:25D2arg(e) + 6.

The pair (A1,ds) can be chosen accordingly, provided that )\,nQﬁDl D2,(§1 > (0 are small
enough.

In order to give proof to the third item, we first give estimates on |72/q(71,m)| for any
0 < ¢ < kodp, — 1 and m € R. First, assume that 71 € D(0,71(¢)) and 75 € D(0,79(¢)). Then,
it holds that

_
QE(Tlv m)

- 1
Ry py (i) K™ iy [ F191 | 272

(25) Qi)

L s
< = 10D,
‘_2|€|

1

6Dy ;8 k28D,
k1D1 kzDg r (6)k15D1 2

PQ,Rp, Dy

= % || Mooy <

DO | =

The previous estimates yield dist(qe(r1,m)/72, 1) > 4. Moreover, the choice made for Sy,  can be
made in order to guarantee the existence of a positive constant My such that dist(ge (71, m)/72,1) >

My for every 71 € Qi(€), 72 € Sg, and m € R. One gets from the previous argument that

|ge(T1,m) /0 — 1| > min{ My, 1/2}, for every m € R and 7 € (Q;(€) x Q2(€)). This entails the
existence of a constant ¢; > 0 such that
Cc2

ki5p,
|7-1| k20 py

lqe(T1,m) — 72| > c1| T2, lqe(T1,m) — 72| > c1lge(T,m)| >

1

PQ.R k2dp . . .
where c2 = ¢; <5?D2> 2 kl}k > The previous estimates yield
kL 2

C1 C2 1
IQZ(Tlam)_T2| Z E |7—2|+5le1 )

7| k26D,
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and from the factorization of P,,,

k26D,

, 5py .6 c c 1
0 1P = Ry, m)lh” 1 2 | (il + 2 )

|71 |*2°P2

From (26), we conclude the existence of ¢ > 0 such that

k16D1 k28D2
|Pon(7)| = €l By, (im)) <H Il + ) ,

for all m € R and 7 € (21(€) x Qa(e)).
It only rests to prove that

k16D, kadp,
0Dy c )
(27) <!T1|kzapz |Ta| + Cj) > Cp(1+ ‘71’k15D1 |7_2|k26D2),

for some constant Cp > 0, all m € R and 7 € (Q2;(€) x Qa(e€)).
Usual estimates guarantee that

k19D e k20D, e k26D, k19D, k20D, k19D, k20D,
(|T1| k28D, |7'2| + Cl) = <Cl> <C3|7'1’k25D2 |T2’ + 1) > cy <|T1| k28D, ]7'2| + 1)

with ¢3 = ¢1/co, and some ¢4 > 0. Taking into account that

Q4o (o)™
lim —— = lim ——~— =
z—0t 14+ 2™ z—oo 14 ™

we get the existence of ¢; > 0 such that

k1dp, kQSDZ ]
(‘TllkzéDz ‘7’2| + 1) > C5(1 + |7.1|k15D1 ‘7.2’7626D2)’

which concludes the proof. O

4 Banach spaces of functions with exponential growth

In this section, we recall the definition and main properties of certain Banach spaces previously
used by the authors in [4], and adapted to the several variable case in [6, 8]. The dependence
of the domains of definition involved in the norm with respect to the values of the perturbation
parameter has previously been consider in [5].

Let £ be a sector of finite radius in the complex plane. For every ¢ € £ we consider the
following two domains: a finite sector Q;(e) with vertex at the origin, bisecting direction d
which depends on ¢, and radius 71 (€); and the union of an infinite sector Sy, with vertex at the
origin, fixed bisecting direction ds and positive opening which do not depend on € together with
the disc D(0,72(€)) for some r3(€) > 0, say Qa(e), i.e. Qa(e) = Sq, U D(0,72(€)).

In the following we write d = (d1, d2).
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Definition 2 Let vy, v, 5,4 > 0 and let ki, ko be positive integers. We write k = (ki, k2) and
v = (v1,v2). For every e € &, Ftlijﬂuke) stands for the vector space of continuous functions

(1,m) — h(T,m) defined on Qi(e) x Qa(e) x R which are holomorphic with respect to the first
two variables on Q1 (€) x Qa(€), and satisfy that

(28) Ih(m,m)ll (5,40

2k1 2ko
14| 14+ |22 Ty k1 Ty |k2
= sup (14 |m|)¥ ‘Tf ’T; exp <ﬂ\m| —uv|—| —v|—= > |h(T,m)|
TEQ1 () xa(e) | 2] | 2] € €
meR

is finite. The pair (F2

(v,B,1,k,€)° H'||(,,’5’#’k’e)) 18 a complex Banach space.

In the rest of this section, we fix the values of vy, vo, 8, > 0 and the positive integers k1, ko.
We write v = (v1,142), and k = (ki1, k2).

The first result follows directly from the definition of the norm of the Banach space in
Definition 2.

Lemma 4 Let € € &€, and let (T,m) — a(T,m) be a bounded continuous function on §1(€) x
Qa(e). Then it holds that

latr .m0l ey < Ma IR 1)

for every h(T,m) € F(‘li,’5%k76), where My := SUDPrc(q, () x0a(e)) |@(T,m)|. Moreover, if T

a(T,m) is a holomorphic function, then a(T,m)h(T, m) belongs to F(li/,ﬁ,u,k,e)'

Some parts of the proof of the following result can be adapted from that of Proposition 2
in [4]. We decided to include it completely for the sake of completeness and a self-contained
work.

Lemma 5 Let € € £. Let 0 = (01,02) € (0,00)?%, 61 < o1, and let ay g be a holomorphic
function in Q1 (e) x Qa(€), continuous up to Q1 (e) x Qa(e), such that

1
<
= T e

a6 1 (T)

for € (1(e) x Qa(€)). Assume that 03,04 > 0 with

X 0907 1
29 ==-1 d ——-1> —
( ) g3 k?Q ) an o1 > 04+ kza

for some positive integer x. Then, there exists C1 > 0, depending on k,vs, G2, 0, such that

ko

N T
(30) amk(T)TflUleQ / (7'2]€2 — 89)7389% f (71, sé/]”,m)dsz
0

(V’/BMLL?k’E)

_koo95y _ -
< C1|6‘k2(03+04+2) max{‘e‘ o |6| r11k101} Hf(T, m)“(u,ﬁ,,u,k:,e) ,

for every f € Fg,,ﬂ,u,k,e)‘
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Proof Let f € F¢ It holds that

v,06,1,k,€)°
)

To
oo (7)1 7 / (712 — 53)73 554 f (1, s5/*2 m) dss
0

(V767“7k76)
|TQ " T2 k2
= s (@) exp (8l = 2| 2[") [ alr)rlo
TEQl(e)XQQ(e)mER ‘ ‘
T }2]91 1+ |52| ky
‘ |e[2*2 1 |s2] 1/k
/ (@4 ) e G L R A MU
le]
|32 — 52
1+ 22
Ty~ — 89 2kg
X{exp(—y2| 2| 2 |) e s|||1/k2 (7’2’§2 — 59)X/*2B(7y, 59, m, €)}| dsa,
To ™ —S82

with

_ 1 7> — sa| \ |s2]1/k2 |52 — so| /K2
B — o BIm| 2 2
(s e) = <1+|m|>ue"p TR ) K

5ol |7 = sf? -
59 —
X ((1+ |€|2k2)(1+ | |2k2 )| _82|) 554‘

Therefore, one has

ko

- T2
aa,k(T)TflalT§2/0 (742 — 52)7355% f (11, 5/, m)dss < Co2(e)Cas(&) [[F (T, m) 0 g1 ke) »

(V7ﬂ7u7k75)
with 2
1+ o
T |e| k2 k
Coale) =sup | &xp (_V2|6|k2> s 0
2 le]
and
Co(e L4 [2] n o)
23(€) = sup
e (O xa(e) |L2| 1+ ’7'1|k1¢71 |7-2|k202
|72 |k2 hl/k2 (|7_ ‘kjg —h )1/k2 h2 (‘ ‘k2 —h )2 -1
. 9 T2 2 k
e [T q (“ ) U T g i - h2)> K

The classical estimates

mi
sup ™! exp(—mox) = <m1> exp(—myq),
>0 ma

for mp; > 0 and mo > 0, yield

1\ % 1 94 X1\ 25 1
X — 2 X — % X —

< X . 2 — —_
Caa(e) < el (bw) exp( T )+ < ) exp(—2 " )
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At this point, we provide upper bounds for Cy3(€). Let g(y) = 1fgyb, for some a,c > 0 and
b > 1. The function g attains its maximum at yo = (c¢(b — 1))~/*. We apply this result to the

case a = |12|*2, b= 01/61 and ¢ = |1|*292 to arrive at

|71 [F190 g F2 < C(01,61)
1 + |7-1’k‘10'1’7-2|k‘20'2 — k2(6251 _1)

71

(32)

i

|72

for some C(01,61) > 0. We plug the bound (32) into (31) and make the change of variable
h = |e|*2h’ at the integral in Cy3(€) to arrive at

7o | 2k2
14|z 1
(33) Caz(e) < Caq sup ‘Tge | PN PR
nea(e |2 e 2o D |z B o
ki T | k2 1 1 o k2 -t
% h/ 1/kag| 12 . h/ 1/ko < 12 . h/> € kooy h/ cr4dh/
AR GRE( ey e e[ (1

for some Cs4 > 0 only depending on &1, 0.
Let 2o > 0. The previous sup. particularized for those 75 € Qa(€) such that = := |7 /€|*? > x

reads as
k(12271 4 oy) 1+a22 1
(34)  Coyle| 1 SUP ik e
X /x(h/)l/kg(x_hl)l/kg 1 1 (x_h/)_l (h/)0'4dh/
0 14+ (W)21+ (z—h)?
ko (1— 2271 4 54) 2 1 /x 1 1 1 No4 77/
< Coyle 71 sup(1+ . h")%4dh’,
= 24‘ | $>£)0( )xagclrl _1 0 ( B hl)lié 1 + (h/)2 1 + (f]j _ h/)2( )
Let 1 z 1 1 1
Az) = (1 + 22)— / (W)esd.
2o (s L (W) 1 (2 = 1)
For x > x, one can perform the change of variable ' = zu in the integral of A(z), in order to
get that
1 096
A@) = 1+ B Ry (),
where

u’4

1
sz (x) = / 1_ L
0 (1+22u?)(1+22(1 —u)?)(1 —u) *
A partial fraction decomposition allows to write Fi,(x) = Fi ,(x) + Fo, (), where

1 1 2u + 1)u
Fy kz(w) = 2/ ( Gl >u 1 du,
’ A+2%Jo (14 2202)(1 —w)' 72

du.

L—u?)(1—u) %

Fago(2) = — /1 (8 = 2wu™ du
2k )= 02 (14 22( 5
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We observe that

for some positive constants Fi i,, Fok,, valid for all x > zg9. Under the second assumption
in (29), we obtain that sup,.,, A(z) is upper bounded by a constant. We conclude that the
expression in (34) is upper bounded by

(35) Chslel™! T e

)

for some Cys > 0.

It only rests to provide upper bounds for C3(€) regarding the set of 7 € Q2(e) such that
0 < x < x9. We observe that

|71 |17 7o |
L+ |y |fro1|rp|k2e2

(36) < [ |F19t |y P2

We plug this last expression into (31) to arrive at

L4 [z |2 ]
(37) sup %Im’“‘”lle’”
(e (Oxe( |2
|72/elF2 <z
|%2|k2 Ty | k2 1 1 T k2 -1
X (h/)l/kz( 72 _ hl)l/k}g < 72 _ h/) ‘6|k20'4(h/)0'4dh/
/0 € 1+(h’)21_’_(’7?2’k2_h/)2 €
o | 2k2
- 1+ |22 k
<Ol gy L g
T2€Q2(€),|T2/€|F2 <m0 ‘7‘
ki 7y (k2 1 1 ke N\
% hl 1/k2 ﬁ _ h/ 1/k2 72 _ h/ koos h/ 0'4th
PRGN (= el Rl o 1)
. 1422 [ 1 1 1
< Osle —r11k161+k2(1404) su 3’)/ h/ 1/ko h/ o’4dhl
= Corld e A R R e v
< 028’6’_T11k1&1+k2(1+04) sup (1 + 33'2)1' /w 1 1 1 (h,)a4dh/
- 0<z<zo o L+ 1+(@—=N)  _pylos

< 029’€|—7‘11k101+k2(1+04)’

for some Cag, Ca7, Cag, Cog > 0. We conclude that the left-hand side in (37) is upper bounded
by

(38) 029|6‘—T11k161+k2(1+a4).

In view of (35) and (38), we derive that
C23(6) S sup {C,2E)|6|]€2(1—Eill-i-a'zl)7 029‘6‘T11k15'1+k2(1+0'4)} ,

which concludes the result. O

The proof of the following result can be reproduced under minor adjustments from that of
Proposition 2, [7].
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Lemma 6 Let P, P, € C[X]| such that
deg(Py) > deg(P»), Pi(im) #0 for allm € R,

and let pn > deg(Py) + 1. For every f € Eg ) and g € F(l:i/,ﬁ,u,k,e)’ then one has that the function

1 oo
O(T,m) = Poiim) /_OO f(m —mq)Py(imy)g(T,m1)dmy,
belongs to F(‘f/ﬁ’ﬂ’k’e) and it holds that

12T, M) g pube) < C2 (M)l 19T M)l g ) »

for some constant Cy > 0.

5 Solution of an auxiliary problem

In this section, we preserve the elements and assumptions made on the main problem under
study described in Section 2.2. More precisely, we assume the conditions (5), (6), (7) are
satisfied by the parameters and elements involved. The coefficients ¢y, (2,€) and the forcing
term f(t,z,€) are constructed accordingly. We also assume the geometry of the problem is set
in accordance with the assumptions made in Section 3 (see condition (18)), and preserve the
values of 71 (¢),2(€) for each e € £ and A > 0 (see (19) and (21)).

We provide a solution of the auxiliary problem (17) by means of a fixed point method in the
Banach spaces introduced in Section 4.

Let € € D(0,€0) \ {0} and let dy,ds be chosen as described in Section 3. We define the
operator

(39) He(w(r,m))

Agyoy—k180, —dp, +3; k118 00
[t 1 2% (kT 1 1 ]
= Z 5 (7_) ( 1 ) (2 )1/2 / 05152 (’I’)’L —my, E)Rgng (’Lml)
1<0,<D1—1 m 7T —00
1<l2<D>—1
ko 752 dypok _
T 2 272 ] 1/k dss
X |~ / (752 — s2) 2 (kps2) 2w(ry, sy ma, ) —dmy
r( ‘2’“2) 0 52
ko
k:z ko

dghy th20ry —p2)

A T. .
n Z O0gpy 12 ) /2 (7’52 — 59) %3 (k282)p2
()

oy kg +k2 (S0, —p2
ko

/l/)(T7 m7 6)

1/ko S9 1
xw(T1, s ,mi,€)—dmi| + ——
(71,5 ) S9 Py (7)
We consider the Banach space of Definition 2, when fixing the domains described in (22), in
accordance with the geometric analysis of the problem, in Section 3.

Proposition 2 Under the assumptions adopted in this section, for every w > 0 there exist
&ypr €0 > 0 such that if

HQ/}(Ta m, 6) ||(u,ﬁ,,u,k,e) < &/)7

then the operator H. admits a unique fixed point w,‘:(T,m,e) € F((lilﬁy,ke) which satisfies that
< .

ng(‘ﬂ m, G)H(u,,ﬁ,u,k,e) =
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Proof Let w € F@

(. puke Forevery 0 < £ <Dy —1and 0 <y <Dy—1we define

k18,

Fron ky o poo ‘
(40) Loy, = 1P(T§/ Cflfz (m - ml,E)Rgng (Zml)

ko

T2 degky 5
k —1 52 -1 1 kQ
X / (192 —s2) k2 552 w(ﬁ,sQ/ ,mi, €)dsodmy.
0

Taking into account the assumptions in (6) and (19), one can apply Lemmas 4-6 to arrive at

41) L <ao|C gy~
lfléz”(u,ﬁ,u,k,e) < CiCo| éﬂz”(ﬁ,u) €] v flw(r,m, E)H(u,ﬂ,u,k,e) :
We put
k1641 ko o) Tk2 doo ke +k2((§g —p2)
T T ) 2 2k 2 1 e
(42) Lape, = 1]3(1_3/ Czleg(m—ml’e)Rzlez(Zml)/O (73 — 52) k2 sp !
m —00
w(T1, sé/kQ,ml, €)dsodm;.
An analogous argument as before leads to
~ kodp., 8
dpo ko +ko0p, ——2—1
(43) L2010\l 1 i) < C1C2[|Creall (5,0 L€l 2t T D, [w(T,m, )l w.5,0k.0)
Finally, the definition of the forcing term and Lemma 4 lead to
1 1
> ¥(T,me) < == sup ————— [[(7,m, €|
Hpm(f) Wik CP mer [RD D, (im)] @B oprke)
1 1
(44) = Cp mer Royp (im)|£w'
m 1472
In view of (41), (43) and (44) we get that
Op 5
ki C10 1Cn e Ml 0 ko'
@5) |Hewrm)lwppne < D, ld® Ty o
1<6,<D1—1 (2m)/ r ( %2:@)
1<6:<Dy—1
P2 1

- T /- N1
- oy iy +k2 (50, —p2 P meR | D, D, (1
1<py<byy 1 T % meR |Rp, D, (im)]

|As, |
+ Z < lopo |TV2 > ||(,L)(T, m, 6) ||(U,,37H7k76) + él i

6p,0 o
where A = Ay,p, — k10¢, — ’CQ(SDTQZI > 0, in view of (6). Let w > 0, and assume that w(T,m) €

1
F(‘f/ﬁ%k’g) with [lw(7,m, €)||,, 5,k < @- Any choice of small enough &y, €9 > 0 which satisfies

s -
Z Aklel €10 ||C€1€2||(5“u) k}géz

€

1/2 dook
1<0,<Dy—1 (2m) r (7;322>
1<05<Ds—1

(46)

|A6£2p2 | k1232

Aoy ko tk2 (552 —p2)
ko

1
) w—i—g—wsupigw

1<pe<bp, —1 CP mer |Rp, D, (im)]|
—Fe—="02

+ > (



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2020

18

leads to

(47) HHE(M(T7m))”(u,ﬁ,y,k,e) S w.

Let w > 0 and wy,ws € F‘f/ﬂ’“’kﬁ) with [jw; (T, m, e)||(y75%k7€) < w for j = 1,2. Then, analogous
arguments as above entail

(48)
[Pl (r,m) — Helaon(m, m)| c oy RGOl [ K
elwi(T,Mm)) — el (T, M v €) = €
(v aide) 1<61<D1—1 (2m)1/2 I (d%@)
1<03<D3—1 ’

b2

Ay, |
n Z < topg 12 > ||w1(7',m,e)—wg(T,m,e)H(UWB%k,e).

~ dgo ko +k2(80, —p2
1§p2§532_1r %

Let €9 > 0 such that

5 .
A k1[1 ClCQ HCZMQ H(ﬁ,u) kgez

P2
| 6£2p2 |k2 ].
¢ + - < =
1<z;) 1 " (2m)1/2 r (d[k?m) 1< % (T [ dezkath2(e=p2) 2
11— _ _=2h2 0 4N el
1<03<Da—1 2 <pa<dy, T

Then, it holds that

1
(49)  He(wr(m,m) = Helwa(mm)ll ey < 5 1917 m,€) = a(mm, )l -

In view of (47) and (49), we get that the operator H,, restricted to B(0,w) C F(‘fj B k,c) bUIMS
out to be a contractive map in the complete metric space B(0,w) C F(‘f, B, j1kese) for the distante
d(z,y) = HH(V Bk The classical contractive mapping theorem guarantees the existence of a

unique fixed point, say wg(T,m, €) € Ftli/,b’,uk 0 with ng(T,m, G)H( < w.

U76’/’l”k7€)
O
As a result, and regarding the proof of the previous result, one attains the following state-

ment.

Corollary 1 Under the assumptions made in Proposition 2, the function w,‘:(T,m, €) is a solu-
tion of the auziliary equation (17). Moreover, for every e € &, it satisfies that

sl T2
1 ] F

(L fmr g oMy 4|z

k1 D)

kg)
)
€

(50) |wiz(T,m,e)] < Cy

!
€

R exp <—5|m| +u ‘ vy | —

for every T € Q1(e) x Qa(e) and m € R. The constant C,, > 0 can be chosen uniformly for all
ecé.

6 Analytic solutions of the main problem

The main aim in this section is to provide analytic solutions of (8) for each of the elements of a
family of sectors with respect to the perturbation parameter in the form of a truncated Laplace,
Laplace and Fourier transforms. We first fix the geometric elements in this construction.
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Definition 3 Let ¢ be an integer number, v > 2. Let £ = (Ep)o<p<i—1, where &, stands for a
finite open sector with vertex at the origin, radius smaller than e€y. We assume the intersection
of three different elements in € is empty, and Jy<,<, 1 Ep = U\ {0}, for some neighborhood of
the origin U C C. For the sake of simplicity, we arrange the sectors in order that nonempty
intersections of sectors in £ correspond to consecutive indices in the ring of integers modulo ¢.
Under this configuration, we say that £ describes a good covering in C*.

Definition 4 Let ¢ be an integer number, ¢ > 2, and let £ = (£,)o<p<,—1 be a good covering
in C*. Let Tj be an open sector with vertex at the origin in C and finite radius r7; > 0, for
J=1,2. For all 0 < p <. —1 we consider two bounded sectors Sy, , of bisecting direction ;,,
and small opening.

In the following statements, we identify the indices p =t and p = 0.

We say that the set

(51) {T1,72, &, (S0, )o<p<i—1, (o, Jo<p<i—1}

is admissible if there exists d > 0 such that for j = 1,2 one has
(52) ki(g — anglety)) € (=5 +8,5 —3),

for every 0 <p<i:—1,e€ &, t; €T; and § € R (which may depend on t; and €) such that
eSivV=T ¢ So;p- The directions 0, are given by 02, 1= da € R and 01 := dy according to the
choice made on the directions do and di = dy(€) in Lemma 3.

Let ¢« > 2 be an integer number. Let £ = (&)o<p<,—1 be a good covering and consider an
admissible set {71, 72, &, (So;, Jo<p<i—1, (Svy, Jo<p<i—1}, Which is associated to the good covering
£. We briefly discuss the feasibility of such a construction. Indeed, let 0 < p < ¢ — 1 be fixed.
We can first choose the direction vy ), (related to a fixed direction #; depending on p) such that
(52) holds for j = 1. Then, select the direction 5, = ds in order that (52) holds for j = 2
together with the condition stated in the second item of Lemma 3.

Let 0 < p <t—1. Foreach 0 < p <t — 1, we consider the main problem under study
(8) under the assumptions (5)-(7), and departing from the coefficients ¢, ¢, (2, €) and the forcing
term f(t,z,€) defined in Section 2.2. In virtue of the geometry of the problem described in
Section 3 and Corollary 1, in particular the assumption of condition (18) and the choice of A
and 7j(e) for j = 1,2 in (19) and (21) resp., one has that for every e € &, there exist a vector
of directions d), = (dp,1(€), dp2), a bounded sector with vertex at the origin Sy, , . and bisecting

direction d 1, with Sy, , . € D(0,71(¢)) and an infinite sector Sy , of bisecting direction dp 2

such that the problem (17) admits a solution, say w,‘:p (1,m,e€).
Let us write €, 1(€) := S, , . and Qa(€) := D(0,72(€)) U Sq,, ,-

In view of Corollary 1, one has that for every e € &,, the function (7,m) — wg”(r,m, €)

is continuous on €, 1(€) x ©,2(€) x R, holomorphic with respect to the first two variables on
Qp,.1(€) x Qp2(€) which satisfies that
k2>

(53)

for every 7 € Qp1(€) x Qp2(¢) and m € R. The constant C a, can be uniformly chosen for all
k

€€ &p.

W& (r,m, ) < C gy v =
R TG Uk mDE 4 | PR | PR

T2

T1 k1
exp —ﬁ|m\+v1‘?‘ + 1 -
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The application of a Fourier, Laplace and truncated Laplace transforms to the function
w;:p (1,m,¢€) leads to a solution of the main problem under study: for every 0 < p <:— 1 and
€ € &, we define the function wu,(t, z, €) by

1 0o k1 ko A duo d
(54) o / / / wi (u,m, €) exp | — <u1> ~ (uz> e C2 T gy,
(27‘1’) / oo JLg L, €ty €to U2 UL

The integration path Ly, , . stands for the segment [0, rh1(€)eY~101] (see Lemma 3 and (20)),

and Lg,, stands for a usual Laplace transform along the half line [0, co)eV 1z,

We observe that the choice of the admissible set, compatible with the good covering, together
with the bounds in (53) guarantee that (¢, z) — uy(t, 2, €) is holomorphic on the domain (77 N
D(0,1)) x (TN D(0,h")) x Hg, for 0 < ' < 8 and some A’ > 0. We recall that Hg stands for
the horizontal strip

Hg ={z € C:|Im(z)| < B}.

Indeed, the construction of w;:” (T,m,€) and the definition of u,(t,z,€) in (54) allow to affirm
that the function

(55) (t,z,€) = up(t, 2, €)

is holomorphic on the domain (7; N D(0, ")) x (TN D(0, ') x Hg x &, for every 0 < p < ¢—1.

The properties of Fourier transform (see Section 2.1) and Laplace transform (see Lemma 2),
together with the definition of the elements involved in the main equation guarantee that (55)
represents a solution of the main problem (8).

From now on, we refer to consecutive solutions of (8) to solutions associated to consecutive
sectors in the corresponding good covering, which have nonempty intersection.

The next property on the difference of two consecutive solutions will be crucial in order to
provide the asymptotic behavior of the solution at 0 regarding the perturbation parameter.

Theorem 1 Let £ = (£,)o<p<i—1 be a good covering and consider an admissible set (51) asso-

ciated to €. For every 0 < p <. —1, the function uy(t, z,€) in (54) is a holomorphic solution of

(8) defined in (T1 N D(0,h)) x (Ta N D(0,h')) x Hgr x &, for some h' >0 and all 0 < ' < .
Moreover, there exist K, M > 0 such that for every 0 < p < it —1, one has

M
(56) sup |up+1(t’za 6) - up(t, 2, 6)| S Kexp (—a> s
te(TiND(0,h) % (TaND(0,h')) € H g le|

for every e € £, N Epy, with

(57) o = min{ky(1 — Ne1dp, ), k(1 + Me2dp,)}.

Proof The first part of the proof is guaranteed from the construction of the function u,(t, z, €)
for every 0 <p <.¢—1.

Let 0 < p <t —1. For every € € &, N &1 we distinguish different situations depending on
the relative position of the directions dj 1, dp+1,1, and dp 2, dpi12.

Let € € & N &1 and assume that Lg,, . can be transformed into Lg, ,, . by a path
deformation and the same holds for Ly, , and Lg,,, , without meeting any (71, 72) € D(0,71(¢)) x
(C\ D(0,72(€))) with P, (71, 72) = 0 for m € R, i.e. the movable singularities in D(0,7;(€)) x
(C\ D(0,72(¢))) fall apart from the arguments between dp; and dp411 with respect to the
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first component, nor between dp 2 and d,412 with respect to the second component. Whenever
this configuration holds, Cauchy theorem ensures that u,(t,z,€) = upy1(t, 2, €) for all (¢,2) €
(TiNnD(0,h")) x (TaN D(0,h")) x Hg. The same argument can be applied to all € € £, N Epi1
concluding that the sectors &, and &£,41 can merge in the configuration of the good covering.

It is worth mentioning that the following cases state three equivalence classes regarding each
element in the good covering. A continuity argument yields that for all 0 < p < — 1, if there
exists € € £, N Ep41 such that one of the following mutually excluded cases holds for such €, then
the same case holds for every element in &£, N Epq1.
Case 1: Assume that Lg,, = Lqg,,, . and Ly, , differs from Ly, , ,. This situation occurs
in case that the first component of every singularity in the Borel plane does not fall between the
directions dp 1 and dp41,1 but at least the second component of one singular point in the Borel
plane occurs within angles between d, 2 and dj,11 2.

Then, one has

upi1(t, 2, €) — up(t, z,€) = I11 — 12,
where

1 * up \ ™ us \"™\ ., dug du
[, wmon (2 () et
(2m) —00JLa, e/ Lay, €1 €2 u2 Uy

L[~ h 2\ ndus d
L2 = 1/2/ / / w,’j”(u,m, €)exp | — (?) — (?) e &2 T gy
@m)V2 J oo Jig,, o L, €ty 25 uz Uy

for every € € &£, N &py1. Taking into account the first statement in Lemma 3, the functions

w:p(r,m, €) and w,‘:”“(r,m,e) define a common function , say wg(7,m,€) in D(0,71(€)) X

D(0,2r2(€)) with respect to the first two variables. This entails that a deformation of the
integration path in the second time variable can be performed in the previous difference in order
to obtain after the application of Cauchy theorem that for all 1 € Lg,, . and m € R

dpi1 ug \ "\ dusg d us \ ¥\ dus
/ w" " (u,mye)exp | — [ — — —/ wg” (u,m,€e)exp | — | — —
Ly €to U2 L eto U9
can be expressed in the form

dpi1 u2 k2 du2 U2 k2 dUQ
we"" (u,m,€) exp | — e —+ wi(uw, m,€e)exp | — o —
€t2 u2 Cp,p+1,7"2(6) €t2 u2
ko
d
_/ WZP(U,m, €) exp <— <u2> ) =2 Is + Iy — Is,
Ly

67f2 u9
p,2:72(€) = [T2(6)’OO)6\/TMP’2’ Ldp+1,2,7"2(6) = [r2(€)7oo)€\/jldp+1’2 and Cp,p+1,r2(e) stands

for the arc of circle centered at 0 and radius ro(e) which connects the points ro(e)eV =12

p+1,2 dp 2

(58)

J.

p+1,2:72(€)
p,2:72 (e)
where Ly

and 7 (e)e¥~19+12 Taking into account (53) and by construction of the solutions, the direction
dp+1,2 (depending on ety) is such that there exists d; > 0 with cos(k2(dp11,2 —arg(etz2))) > 61 >0
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for every € € £, N Eps1 and every t € (T N D(0, k') N (T2 N D(0,h’)). This entails that

59 exp(—pB|m exp | v
1= M I+ |m|)Hq 4 “uel ‘%1 e

00 52 ko .
/ 3 e <<32 ) (1/2 - cos(kQ(dpi,sz arg(etg)))>> dss
01+ (&) el t2] 52
k1>
() o)
2 T - .
ra(e) l€l e |to|k2 $9

We choose 0 < h/ < (81 /15)'/*2, to get that the previous expression is upper bounded by

71 . exX ——021
p e[F2(0—Mid,) |

u
ex 14
1—|—’m| 1+‘u1‘2k1 p(l)e

ot

€

<
< C’w:pH exp(—pBm|) iz ’ V1 ‘m ‘le exp <u1

2|

(60) C i exp(—S|m|) (

for some C9; > 0. The expression [15 is upper estimated following analogous arguments. We
consider I14, and apply (53) to analogous argument as above arriving at

k1>
72(6) dp+12 ko
¢ , ro(€ cos(ko (0 — arg(et
S - p(< 2|£|>> ( (ko : |k2g< 2>>>>>d9
1+ (7'2(6)) dp,2 2

le]
wby o G
p |6|k‘2(17)\k15D1) ’

€ exp Vl‘u
qENmT P c

ot

€

u1|
61) |[14] <C,. e m ‘ ex

2|

< ka,Z eXP( ,8|7TL|)

for some C,,, 2 > 0.
In view of (60) and (61), and regarding (52) we get that

(62)  Jupti1(t,z,€) —up(t, z,€)| < szp73W (/_OO exp((|Im(2)| — ﬁ)|m])(1+1|m‘)udm>

y /-nm (¢) % exp s1 k1 o 5 @ exp [ Co1
0 - < ) 2ky |6| 1 ’t1|k1 51 |6‘k2(1—/\k15pl)
Tel

for some C 4, , > 0. This is valid for all € € £,N&p11, t € (TLND(0,1')) x (T2N D(0, 1'))) and
z € Hg. VVe’c point out that

e 1
(63) /_oo exp(([1m(2)| = B)lm) sz < oo = € My

Finally, observe that the change of variable s; = |e|s and usual estimates yield
(64)

K11 (€) LIl k1 5 d - .
T N2k X el = 7k — < —————exp(—As")ds < oo,
/0 1+(ﬂ)2k1 p(<‘6‘> < ' |t1!k1)> s1 " Jo 1+ p( )

le
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for some A > 0. We conclude that
Ca
[upt1(t, z,€) —up(t, z,€)| < Cw:pﬁl exp <_’6’k‘2(1_)\k1(sD1)) ,

foralle € E,NEpr1, t € (TiND(0, 7)) x (T N D(0,k'))) and z € Har.
Case 2: Assume that Ly, = Lq, ,, and Lg,, . differs from Ly, , .. We only provide
details on the steps which differ from the proof of Case 1. We have

Up+1(t, z,€) —up(t, z,€) = Iog — Iao,
where

dpi1 up \ ™ up \ 2 m dug duy
Iy = 1/2/ / / wp" " (w,m,e)exp | — | — - = M= = dm,
Layyy1e Lay €ty €ty Uy U
k1 u9 2 dUQ du1
Ioo := (u, m, €) exp — = P
1/2 Ld 1€ Ld 2 6t1 eto Uz Uy

for every € € £, N Epy1.

We split the integration path on the second time variable into Ly, 2,0, (c)] := [0, 72 (e)]e\/jd%2
and Lg, 2 [ry(e),00) = [r2(€), oo)e‘/jldw. The first statement of Lemma 3 and Cauchy theorem
allow to write

Io1 — Ing = Ip3 — Ioa + Is,

where
/ Apii(u, €, t)dusduidm,
Lq,,

I3 —/ /
L r3(€),00)
Ioy —/ / / Ap(u, €, t)dugdurdm,
Ly 1 7 Ldy 5 11y e),00)
Ins —/ /

where C), 11 .r, (¢) I8 the arc of circle centered at the origin, radius x71(€) connecting the points
rkri(€)eY 11 and kry(e)eV ~r+11, Here, we have used the notation

A~:#wdj(ume)exp (= kl— =2 - e*m L je{p,p+1}
T (em2TR AT ety eto uiu’ 7 7

and A = A, = A, 41 whenever both functions coincide. In practice, this last consideration holds
if |11 < r1(e) and || < 2r2(e) as it follows from the first statement in Lemma 3.

The estimates for Is3 coincide with those for I3, together with the bounds provided after
(62) to get that

d+11€

/ A(u, €, t)dugduidm,

Coptinri () Lay, 2,[0,r5(e)]

Coy
|Io3] < C'wztp,4 exp <—|€|k2(1,\klépl)> )

foralle € E,NEpr1, t € (T1ND(0, 7)) x (T, N D(0,k'))) and z € Har.
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The expression Iz4 can be handled analogously. We finally provide upper bounds for |Ia5],
which can be estimated via (53) and the choice made in (52) by

(65) | los| < C ay , (/_oo exp(([Im(z)] — ﬁ)\m!)ml,mwdm>

kri(€)

dp+1,1 k1 _
y / b ] e (m‘ﬂe)) (Vl _ cos(k1 (0 ;ng(etﬂ))) "
bi 14 (DT el [ta]*

le]

ra(e) 5?2 k2 5 d
X / S C Xp -2 )22 ¢ ap , Toglo712s,
0 5\ 22 | | [taf*2 ) | 52 €4
L (3)

for some C' a, , > 0. I (resp. Isg) is upper bounded by a constant, see (63) (resp. a symmetric
k >
situation to that in (64)). We also have

k1
x k11 (€) o1
(66) [I27] < (dpt1,1 — dp1) <ig18 1 +x2k1> eXp (( €] > <V1 - |t1|k1>>

T Caa
< (d —d P —— e~
= ( p+1,1 p,l) (ig% 1+ x2k1> eXp ( |6|k1(1+/\k25D2)>

for 0 < h' < (61/v1)"*1, and some Cy > 0. This entails the existence of C ap ., Ca3 > 0 such
k
that

Cas
upia(t2,6) ~ (6 2,6)| < Oy exp ( ) ,

el

forall e € E,NEps1, t € (1N D(0,1)) x (TN D(0,h'))) and z € Hg, with a defined in (57).

Case 3: Assume that Lg4,, does not coincide with Lg,,, , and Lg, , . differs from Ly, , ..
For a more compact writing, we will only display the integration paths in which the integrals
involved are subdivided. Each of them can be reduced to the situation in case 1 or case 2 above.
In the following steps, we preserve the notation for A, A, and A, 1, and consider

up+1(t, 2, €) — up(t, 2, €) = I3 — I3,

dus d o0 dus d

/ Hﬂﬂdm, Iy ;:/ / A, Lz du gy,

Lq u1 —00J L Lq , u2 U1
P,

p+1,2 dp,1-€

where

ot

d+11€
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s

Cp,p+1,r2(e)

Figure 1: Deformation of the paths involved in the proof of Theorem 1

for every € € £,NEpy1. We deform and split the integration paths to obtain that I3; — I3z equals

oo
/ / / Adusduirdm —I—/ / / Aptrdugdurdm
La, 1,16 La, g 2,00,r9(0)] —00JLg, 41,6/ L

dp41,2;[r2(€),00)

/ / Adusduirdm —/ / / Apdugdurdm
L, La,,,2,00,79(e)] - Lay,1,€ J Lay,,

2,[ra(€),00)
/ / Adquuldm + / / / Ap+1du2du1dm
L La, 1.2,0,m00) La, q,1,¢ Y Lg
/ / Adusduidm —1—/ / / Adusdurdm
La, q,2,00,r5(0)] Lap1.€

/ p+1,2:[r2(€),00)
/ Cp.pt1, ro(e)
— / / / Apdugdurdm
Ly

d+117

b‘

b‘

p»2,[r2(e),00)
/p p+1,k7m1(€)

o0
/ Adquuldm—i-/ / / Apt1duaduydm
Lapy1.2,0,m3(0)] —00J L, 1.6/ Lg

p+1,2,['r2(e),oo)
/Ldp 1€ /p p+1,r9(€)

(o]
Adusdurdm —/ / / Apdugdurdm
—0o0 Ldp,lye L
= I33 + I34 + I35 — I36.

dp,2,[ra(e),00)

In the previous expression, we have extended in a natural manner the notation adopted for
the integration paths in Case 1 and Case 2. Analogous bounds as those stated for the integral
Iy5 (resp. Io3) are also valid for I33 (resp. I34), in Case 2. For the expression I35 (resp. Isg) one
can consider the estimates used to study Ij4 (resp. I3), involved in Case 1. We conclude the
existence of C,,, ¢, C24 > 0 such that

C
[up+1(t, z,€) —up(t, z,€)| < Cuy 6€xp <—|€|2;1) ,
for all e € E,NEpt1, t € (TN D(0,1))) x (TN D(0,1))) and z € Hp, with « defined in (57).
Figure 1 illustrates the deformation of the paths involved in the procedure.
O
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7 Parametric Gevrey asymptotic expansions of the analytic so-
lutions

In this section, we analyse the asymptotic behavior of the analytic solutions of the main problem
(8) obtained in the previous section, regarding the perturbation parameter approaching the
origin. The classical criterion for k—summability of formal power series with coefficients in a
Banach space, known as Ramis-Sibuya Theorem (see [1], p.121, or Lemma XI-2-6 in [2]) will
be used to describe the Gevrey asymptotic approximation of the solution.

The assumptions made in Section 2.2 and construction of the elements related to the main
problem under study (8) are maintained in this section.

We first give some words on this classical summability theory for the sake of completeness.

7.1 k—summable formal power series and Ramis-Sibuya Theorem

Let (E,||-||[g) be a complex Banach space.

Definition 5 Let k > 1 be an integer number. A formal power series f(e) = > n>0 fn€” € E[[€]]
is k—summable with respect to € along direction d € R if there exists a bounded holomorphic
function f defined in a finite sector Vg of bisecting direction d and opening larger than 7/k, and

with values in E, which admits f as its Gevrey asymptotic expansion of order 1/k on Vg, i.e.
for every proper subsector Vi of Vg, there exist K, M > 0 such that

N—-1
Hf(e) = > "
n=0

for every integer N > 1 and e € V1. Watson’s lemma guarantees uniqueness of such function,
known as the k—sum of the formal power series.

k

N
< KMNT < - 1) eV,
E

Theorem 2 (RS) Let ¢ > 2 and let (Ep)o<p<i—1 be a good covering in C*. For every 0 <
p < v —1 we consider a holomorphic function G, : £, — E, and define the function Op(€) :=
Gp+1(€) — Gp(€) holomorphic in Z, := &, N Epp1. We assume the following statements hold:

e G, is a bounded function for e € Z,, ¢ = 0 for all 0 <p < —1.

e O, is an exponentially flat function of order k in Z, for all 0 < p < ¢ —1, i.e. there exist
K, M > 0 such that |©p(€)||y < K exp <—%>, valid for all e € Zp,, and each 0 <p < ¢1—1.

Then, each of the functions Gp(€), for 0 < p < ¢ — 1 admits a common formal power series
G(e) € E[le] as Gevrey asymptotic expansion of order 1/k on &,. In addition to this, if the
opening of &y, is larger than w/k for some 0 < pg < v — 1, then Gy, (€) is unique, being the
k—sum of G(€) on &y, .

7.2 Asymptotic behavior of the solutions of (8) in the perturbation param-
eter

We are in conditions to describe the asymptotic behavior of the analytic solutions of the main
problem under study (8) with respect to the perturbation parameter, at the origin.

For this purpose, we consider a good covering £ = (&,)o<p<,—1, for some integer number
¢ > 2. We also fix an admissible set {71, 72, &, (o, , Jo<p<i—1, (So,, Jo<p<.—1}, Which is associated
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to the good covering &£, in accordance with the geometry of the problem (see Section 3) for each
0 <p<i—1, as described in Section 6.

Let (up)o<p<,—1 be the set of analytic solutions of (8), determined in Theorem 1. We recall
that for every 0 < p < ¢ — 1, the function (t,z,€) — up(t,z,€) is a holomorphic function in
Ti x Ta x Hgr x &, for all 0 < ' < .

Let E be the Banach space of holomorphic and bounded functions on the domain (7; N
D(0,1")) x (T2 "' D(0, k') x Hgr, endowed with the norm of the supremum.

Theorem 3 There exists a formal power series

(67) i(t2,0) = Y Hult,2)* < B[[d],

m>0

solution of (8), such that for every 0 < p < ¢ — 1, the function € — u,(t, z,€) constructed in
(54) admits € — u(t, z,€) as its Gevrey asymptotic expansion of order 1/c, as e — 0 with € € &,

regarding them as functions and formal power series with coefficients in E. Here, « is defined
by (57). More precisely, there exist C, M > 0 such that

m
!

N-1
€ N
(68) sup up(t, z,€) — mz_:OHm(t, Z)E < CMNT <1 + a> eV,

te((TiND(0,1))x (T2ND(0,1"))),z€ Hg

for every integer N >0, 0 <p <:—1 and all e € &,. In case the opening of &y, is larger than
m/a for some 0 < py < ¢ — 1, then u(t, z,€) turns out to be the a—sum of u(t, z,€) in &E,.

Proof For every 0 < p < ¢ —1, let G be the function € — wu,(t, z,€). It holds that G, : £, = E
is a holomorphic function in &, and moreover, in view of (56), it holds that

M
[6Gp1(6) = G0l < Kewp (105 ).
for some K, M > 0, and all € € £,NE,11. Regarding Ramis-Sibuya Theorem (RS), this entails the
existence of a formal power series in the form (67), such that € — u,(t, z, €) admits € — u(t, 2, €)
as its Gevrey asymptotic expansion of order 1/a. The function u,,(t, z,€) is the a—sum of
U(t, z, €) if the opening of &, is larger than m/a, for some 0 < py < ¢ — 1.

It is straight to check that the formal power series (67) is a formal solution of (8) by plugging it
into (8) and taking into account that, in accordance to the existence of the asymptotic expansion
in (68), it holds that

lim |0 up(t, z,€) — Hp(t,2)] =0, m>0.

e—0,e€&p
(t,2)€(TiND(0,h")) x (T2ND(0,h")) x H gr

We refer to Theorem 2 [6] for further details on this last part of the proof, which follows usual
reasonings. O

Remark: An example of equation which can be considered in this study is the following:
(69) (92 + M)ult, z,€) = €*(t10,)* (t301,)* (9 + Dult, z,€)
+ € (1100130011 (2, €) Ru1 (92 )ult, 2,€) + [(t, 2, €),

for some large M > 0, Ry1(X) € C[X] with deg(R11) < 4, and for some c¢11(z,€) and f(t, z,€)
constructed as in Section 2.2.
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