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Abstract: Safety assessment of structures can be obtained employing limit design to overcome 

uncertainties concerning actual response due to inelastic constitutive behavior and more generally 

to non-linear structural response and loads’ random variability. The limit analysis is used for 

evaluating the safety of the structures directly starting from load level without any knowledge of 

the load history. In the paper, the lower bound calculation is proposed where a new strain-based 

approach is used that allowed describing the residual stress and displacement in terms of 

permanent strain. The strategy used the permanent strain as the effective parameters of the 

procedure so that it was possible to assess the ductility requirements for the complete load program 

developed till collapse or shakedown. The procedure is compared to experimental results obtained 

on aluminum beams in shakedown. 

Keywords: shakedown; plasticity; limit design; ratcheting, experimental comparison, residual 

displacement, ductility assessment.  

 

 

 

1. Introduction  

The actual application of structural analysis deals with complex constructions subjected to 

randomly variable loads. Generally, the load intensity bounds are prescribed by standards and 

authorities and are evaluated starting from probabilistic and statistical considerations. It is almost 

impossible, in practical cases, to know actual load history and their distribution all over the structure 

considering that only their intensity range is estimated. 

Under these hypotheses, evaluating structural safety is a matter of overall consideration rather 

than the specific pointwise calculation of the response. 

Under the above-quoted circumstances, the main strategy for structural safety assessment is the 

calculation of load collapse limit, both under proportionally and randomly variable cases [1, 2]. 

The former case cited above concerns the evaluation of the usual collapse limit whereas the 

latter, besides collapse limit requires the calculation of the shakedown limit. Under variable loads, 

whenever the load reaches the collapse limit, the structure can undergo to a sudden collapse.  

Moreover, it is possible that although at no time collapse occurs, the structure is invested by plastic 

deformation that during load path increases in time. Now three phenomena can present on the 

structure: first, the displacement increases in time indefinitely and the structure fails at the end for 
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excessive strain (ratcheting); second, the plastic strain changes sign indefinitely during load path 

hence, although no excessive displacement occurs the structure fails for plastic fatigue; third, the 

plastic strain produces self-equilibrated stress that prevents the structure to accumulate further 

plastic strain and it starts to behave as elastic definitely. This latter case is called shakedown. The 

shakedown limit is the load level that the structure shakes down, whilst over it, the structure suffers 

ratcheting or plastic fatigue [2]. In this situation, some specification should be done about the velocity 

of the phenomenon to distinguish between elastic and plastic shakedown propagation, but here only 

statics will be considered [3, 4, 5]. 

Generally, the knowledge of the structural limit load is pursued using step by step or limit 

analyses. This latter method is based on the two approaches coming from the upper bound and of 

the lower bound theorems [6, 1]. These theorems are based on kinematic and static approach, 

respectively. The first is aimed at calculating the limit load as the maximum among any statically 

admissible loads and the second as the minimum among any kinematically admissible loads. Both 

calculations are independent of the actual load histories, and although this is useful in the real-life 

analysis where the loads are known only in terms of their intensity bounds, it constitutes a limitation 

for the use of the method since it cannot evaluate the dissipation during ultra-elastic deformation. It 

is possible, therefore, that the permanent deformation, required for the ultra-elastic load path to 

develop, attains its limit before the collapse. Such an eventuality causes the limit analysis to fail since 

the collapse occurs before the complete permanent deformation develops. This happens at an actual 

load level lower than the theoretical limit. 

This disadvantage is only apparently overcome by the step-by-step analysis since this approach 

is linked to the knowledge of the actual load history and gives results that cannot be generalized. 

In the modern application of structural engineering, the numerical formulation of the limit 

analysis allows the application of the methods to a wide range of structure. In particular, the Finite 

Element Method has wide application to two- and three-dimensional structures. In [7, 8] shakedown 

analysis for elastic-perfect plastic frames is discussed and an incremental-iterative solution is 

proposed. A general procedure dealing with finite element application for lower bound 

determination of collapse and ratcheting load is in [9]. As stated before, one of the most important 

weaknesses of limit analysis is that no direct information is given by the theoretical fundamentals of 

the analysis about the dissipation during the deformation process. It must be stressed that one of the 

hypotheses at the basis of the limit design is that the strain can develop completely until the load 

reaches its limit, namely the permanent strain must be limited within the admissible amount. Only 

the knowledge of the load history allows precisely evaluating the amount of dissipated energy until 

the limit is attained. 

Hence, many works estimate the ultimate dissipation and displacements during plastic loading 

of structures at the incoming plastic collapse or to ratcheting [10, 11, 12] starting from Ponter that 

proposes a limit on the dissipated work and residual displacement [13, 14]. In the present work, a 

procedure has been presented through the Melan’s theorem [6] of the shakedown. The procedure has 

used the “strain-based residual” stress that constitutes a basis of the vector space of the self-

equilibrated stresses. Such residual stress fulfills the Melan’s lower bound theorem and has been used 

to calculate upper bounds of the global and local dissipated work at the ultimate load level and 

pointwise permanent strain as well.  

The method has proposed, in the framework of discontinuous FEM, a linear optimization 

strategy that gives an upper bound of local dissipation and finally an estimate of local permanent 

displacement. In the paper, the numerical procedure has been applied to an academic example of 

one-dimensional structure. Concerning a one-dimensional example, the numerical procedure was 

compared also to the experimental results obtained by the authors in previous work [15]. The 

experiment has concerned an aluminum beam over three supports, loaded by randomly variable one-

point forces applied at the middle of each span. The structure has been loaded up to the shakedown 

limit and subsequently to ratcheting. The displacement has been measured during the loading 

process. The experimental results have been compared with the calculated ones and a good 

agreement has been shown between theoretical and experimental approaches. 
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2. Fundamentals of limit analysis. 

A structure collapses if the dissipation due to permanent deformation increases in time 

indefinitely. The dissipation increment can be produced by proportional increasing loads hence 

proper proportional collapse occurs. With no difference, the dissipation can increase in time 

alternating periods when no dissipation occurs and periods when dissipation gets further increase. 

In this latter case, it is possible that either the displacement becomes excessive for functionality and 

safety or the total dissipation reaches a limit that produces the material failure. The first is the 

ratcheting phenomenon the second the plastic fatigue rupture (also known as low cycle number 

fatigue) [16]. 

To evaluate the load collapse multiplier, the static collapse theorem states that: if under actual 

loads there exists any equilibrated stress that definitely belongs to the elastic domain, the permanent 

strain rate vanishes whenever time increasing, hence collapse does not occur [1]. In better words the 

structure does stabilize, i.e. the structure behaves as to be elastic after that a certain amount of 

permanent strain has been accumulated. Moreover, a limiting equation exists that gives an upper 

bound of the dissipated energy till stabilization occurs [14, 17].  

The present work has described a numerical procedure that implemented the Melan theorem. 

For the sake of completeness, the Melan theorem has been reported here after briefly. 

Let us consider a structure that occupies a domain 𝛺 with the boundary 𝜕𝛺 (Figure 1) The 

structure is in equilibrium under prescribed body forces, 𝑏𝑖 , in the interior of the solid, 𝛺
𝑜

, and 

prescribed tractions, 𝑡𝑖 , on the part of the boundary 𝜕𝛺𝑓 ; both forces vary in time within the 

prescribed limit with absolutely random time law. On the part of the boundary, 𝜕𝛺𝑢 = 𝜕𝛺\𝜕𝛺𝑓 , 

where the symbol \ denotes the complement of the manifold 𝜕𝛺  with respect to 𝜕𝛺𝑓  , the 

displacement is prescribed [18]. Due to the applied loads and displacements, the solid presents the 

stress, 𝜎𝑖𝑗   and the strain, 𝜀ℎ𝑘 , in the interior and reactive tractions, 𝑡𝑖
𝑠, on the boundary 𝜕𝛺𝑢. In the 

following, indicial notation is adopted hence a subscript ()i have denoted the ith component of a vector 

in the reference frame, two subscripts have referred to the two components of a second-order tensor 

and so on; moreover, subscripts following the comma indicate partial derivatives with respect to the 

coordinate directions. 

 

 

𝑢𝑖 = displacement 

𝑡𝒊
𝑎 = applied traction 

𝑡𝑖
𝑠 = reactive traction 

𝑏𝒊 = body force 
𝜕Ω𝑢 ∪ 𝜕Ω𝑓 = 𝜕Ω 

𝛺
𝑜

= Ω\ ∂Ω 

 

Figure 1 Structural domain with representation of loads, tractions, and constraints. 

 
Self-equilibrated stress, 𝜁𝑖𝑗 , is a stress field that satisfies the homogeneous balance equations and 

the corresponding homogeneous natural boundary conditions on the loaded boundary 𝜕𝛺𝑓. Only on 

the constrained boundary 𝜕𝛺𝑢 tractions can be non-null: 
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𝜁𝑖𝑗,𝑗 = 0 𝑖𝑛 𝛺

𝜁𝑖𝑗𝑛𝑗 = 0 𝑜𝑛 𝜕𝛺𝑓

𝜁𝑖𝑗𝑛𝑗 = 𝑡𝑖
𝑠 𝑜𝑛 𝜕𝛺𝑢

 (1) 

where in equation (1) 𝑛𝑗 are the components of the outward normal unit vector to 𝜕𝛺. 

The material constituting the structure is elastic-perfectly plastic, so the stress-strain law is:  

 𝜎𝑖𝑗 = 𝑆𝑖𝑗ℎ𝑘(𝜀ℎ𝑘 − 𝑝ℎ𝑘) (2) 

where 𝑆𝑖𝑗ℎ𝑘 is the fourth-order elastic tensor. 

The permanent strain, 𝑝ℎ𝑘 , results from the integration during the load process of the permanent 

strain rate, 𝑝̇ℎ𝑘, that is related to the stress through the constitutive associated flow rule: 

 {
𝑓(𝜎ℎ𝑘) = 0
𝜕𝑓

𝜕𝜎ℎ𝑘
𝜎̇ℎ𝑘 = 0

⇔ 𝑝̇ℎ𝑘 = λ̇
𝜕𝑓

𝜕𝜎ℎ𝑘
  (3) 

 

where 𝑓(𝜎ℎ𝑘) ≤ 0 is the compatibility condition on stress, equality holds for yielding,  
𝜕𝑓

𝜕𝜎ℎ𝑘
 is the 

gradient of the yield surface with respect to 𝜎𝑖𝑗 and 𝜆̇ is the plastic multiplier that accounts for the 

magnitude of the plastic strain rate, 𝑝̇ℎ𝑘 . 

During the loading process, the stress results by the superimposition of the one calculated on the 

structure supposed to be indefinitely elastic,  𝜎𝑖𝑗
𝐸 , and a self-equilibrated stress, 𝜁𝑖𝑗 , obtained by 

equations (1) here called ‘eigenstress’ [19], that can also be recognized to be the actual residual stress 

one finds in the structures whether it is unloaded during the load path, so it can be also called ‘actual 

residual stress’: 

 𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝐸 + 𝜁𝑖𝑗  (4) 

The actual strain field results from the following additive decomposition that can be interpreted 

through the decomposition (4) yielding to the equation: 

 𝜀ℎ𝑘 = 𝐶𝑖𝑗ℎ𝑘𝜎𝑖𝑗
𝐸 + 𝐶𝑖𝑗ℎ𝑘𝜁𝑖𝑗  + 𝑝ℎ𝑘  =  𝜀ℎ𝑘

𝐸 + 𝜀ℎ𝑘
0𝐸  + 𝑝ℎ𝑘 (5) 

where 𝐶𝑖𝑗ℎ𝑘 is the elastic compliance tensor, the inverse of 𝑆𝑖𝑗ℎ𝑘 . The equation (5) has the following 

mechanical interpretation: 𝜀ℎ𝑘, is the sum of the strain in the structure supposed to be indefinitely 

elastic, 𝜀ℎ𝑘
𝐸 , the strain corresponding to the eigenstress, 𝜀ℎ𝑘

0𝐸  and the permanent strain, 𝑝ℎ𝑘 . The 

permanent strain 𝑝ℎ𝑘  is the discontinuous part of the strain. It is possible to recognize the kinematical 

compatibility of the strain, namely: 𝜀ℎ𝑘
𝐸  is compatible since it is the elastic solution under the applied 

loads, the sum (𝜀ℎ𝑘
0𝐸  + 𝑝ℎ𝑘) is compatible as the strain 𝜀ℎ𝑘

0𝐸 is the elastic response to the discontinuity 

𝑝ℎ𝑘 , acting as an applied dislocation, to ensure its compatibility [2]. 

The stress 𝜁𝑖𝑗 is self-equilibrated stress by definition. To verify the statement, the equilibrium 

equation of the interior points of the solid body is recalled: 

 𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0  (7) 

By using equations (4) and (5), the equilibrium of internal points become: 

 (𝑆𝑖𝑗ℎ𝑘  𝜀ℎ𝑘
𝐸 + 𝑆𝑖𝑗ℎ𝑘𝜀ℎ𝑘

0𝐸),𝑗+ 𝑏𝑖 = 0  (8) 

The elastic stress is the stress in equilibrium in 𝛺, when the constitutive equation is assumed to 

be indefinitely elastic, subjected to the same loads than the actual structure. Consequently, the elastic 

stress, 𝜎ℎ𝑘
𝐸 , is in equilibrium with the applied forces so that the following equation holds: 

 (𝑆𝑖𝑗ℎ𝑘  𝜀ℎ𝑘
𝐸 ),𝑗+ 𝑏𝑖 = 0 (9) 

Comparing equation (8) with (9) the following equation is obtained confirming that the elastic-

plastic stress is self-equilibrated in the interior of the structure. 
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 𝑆𝑖𝑗ℎ𝑘𝜀ℎ𝑘
0𝐸 ,𝑗 = 0  (10) 

Moreover, the self-equilibrated stress satisfies the homogeneous boundary condition on the 

free boundary, 𝜕𝛺𝑓, of the structure. Finally, the equilibrium equation involving the stress 𝜁𝑖𝑗,𝑗 

reduces to equation (1). 

The above reasoning can be summarized as follows: the actual elastic-plastic stress solution, 

resulting from an applied body and boundary loads, differs from the pure elastic stress by self-

equilibrated stress. This self-equilibrated stress is due to elastic strain 𝜀ℎ𝑘
0𝐸  that results from the 

compatibility equation concerning the permanent discontinuous strain 𝑝ℎ𝑘  acting as Volterra’s 

dislocation. Dislocations are the kinematical effect equivalent to discontinuities of strain within the 

structure. A dislocation causes stress in the absence of loads. The stress produced by dislocation is 

hence an eigenstress and satisfy equations (1) and equation (11). The stress 𝜁𝑖𝑗 , that depends on 𝜀ℎ𝑘
0𝐸, 

through equation (10), emerges on the constrained boundary in terms of self-equilibrated traction, 𝑡𝑖
𝑠. 

 𝜁𝑖𝑗𝑛𝑗 = 𝑡𝑖
𝑠 𝑜𝑛 𝜕𝛺𝑢 (11) 

3. Lower bound limit analysis 

The shakedown is the phenomenon where under randomly repeated loads, the structure undergoes 

to elastic behavior definitely for increasing time. In other words, the permanent strain rate 𝑝̇ℎ𝑘  

approaches zero for t→∞ hence the permanent strain is bounded in time. In the present formulation 

the time is solely the measure of the evolution of the phenomenon, because of the rate of the quantities 

involved must be considered as their increment, no dynamics effects are considered. 

The shakedown is ruled by the Melan’s theorem. The theorem is formulated in term of self-

equilibrated stress of the form 𝜁𝑖𝑗. 

The line of reasoning of the Melan’s theorem is suitable as well for the application to the 

monotone load-induced collapse analysis. 

In the following formulation the 𝜁𝑖𝑗 is obtained from the 𝑝ℎ𝑘  as the resulting stress from the 

application of the 𝑝ℎ𝑘  as a Volterra’s dislocation. 

It is possible to solve the elastic problem of the structure subjected by a Volterra’s dislocation, 

𝑝ℎ𝑘 , at a point x and calculate, at any point y, the resulting stress 𝜁𝑖𝑗 . The linearity of the elastic 

problem allows writing the 𝜁𝑖𝑗  in terms of the linear operator 𝑍𝑖𝑗ℎ𝑘 . In numerical application a 

discrete approximation of the operator 𝑍𝑖𝑗ℎ𝑘  can be obtained using Boundary Integral Equation 

Method [20] 

Finally, the relationship between 𝑝ℎ𝑘  and 𝜁𝑖𝑗  can be written as follows 

 𝜁𝑖𝑗 = 𝑍𝑖𝑗ℎ𝑘  𝑝ℎ𝑘 (12) 

The condition of shakedown is stated by the Melan’s theorem in the following form: stabilization 

occurs under a load multiplier k if and only if there exists a self-equilibrated stress 𝜁𝑖𝑗 , time-

independent eigenstress, such that: 

 𝑓(𝑘 𝐶𝑖𝑗ℎ𝑘𝜀ℎ𝑘
𝐸 + 𝜁𝑖𝑗) ≤ 0  (13) 

at any time where  𝐶𝑖𝑗ℎ𝑘𝜀ℎ𝑘
𝐸  is the actual stress under the applied loads when the structure was 

supposed indefinitely elastic. 

By considering equation (12) the Melan’s theorem can be rewritten in terms of permanent strain 

𝑝ℎ𝑘
𝑟  such that  

 𝑓(𝑘 𝐶𝑖𝑗ℎ𝑘𝜀ℎ𝑘
𝐸 + 𝑍𝑖𝑗ℎ𝑘  𝑝ℎ𝑘

𝑟 ) < 0. (14) 

The optimization program that searches for the load limit multiplier, sc, is summarized in: 

 𝑠𝛼 =  sup
𝑃ℎ𝑘

𝑟
 𝑘 | 𝑓(𝑘 𝐶𝑖𝑗ℎ𝑘𝜀ℎ𝑘

𝐸 + 𝑍𝑖𝑗ℎ𝑘  𝑝ℎ𝑘
𝑟 ) < 0 (15) 
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The program (15) is a constrained optimization program that can be solved using standard linear 

programming routine, namely simplex method, if the constraints are a set of linear inequalities. This 

occurs when von Mises or Drucker-Prager limit domains describe the material behavior.  

The solution of the program (15) is the limit collapse multiplier that is either the proportional collapse 

multiplier, 𝛼 = 𝑐 , or the shakedown limit, 𝛼 = 𝑠 , provided the elastic stress corresponds to 

monotone or variable loads, moreover, the program furnishes a set of permanent time-independent 

strain  𝑝ℎ𝑘
𝑟  satisfying the theorem.  

As a corollary of the Melan’s theorem, see Koiter and Köning [1, 21, 16], an upper bound on total 

dissipated energy until stabilization is obtained as a function of the elastic strain energy 

corresponding to the Melan’s residual strain, 𝑝ℎ𝑘
𝑟 . 

 ∫ 𝜎𝑖𝑗𝑝𝑖𝑗 ⅆ𝑉
Ω

≤
𝑚

2(𝑚−1)
∫ 𝑆ℎ𝑘𝑖𝑗 𝑝ℎ𝑘

𝑟 𝑝ℎ𝑘
𝑟 ⅆ𝑉

Ω
  (16) 

where the term on the left-hand side of equation (16) is a lower bound of the total dissipation up to 

the load level having the safety factor 𝑚 > 1 with respect to the limit at the incoming collapse. 

 ED= ∫ ∫ 𝜎𝑖𝑗𝑝̇𝑖𝑗
𝜏

0
ⅆ𝑡ⅆ𝑉

Ω
≥ ∫ 𝜎𝑖𝑗𝑝𝑖𝑗 ⅆ𝑉

Ω
 (17) 

The inequality at the leftmost side of equation (17) holds if the material of the structures follows von 

Mises or Drucker-Prager associate constitutive law. The integral on the third side of equation (17) 

underestimates the case when the permanent strain reverses its sign and cancels. In the latter case, 

the time integration summed the work the stress did for increasing strain and that for the opposite 

strain. Conversely, the integral at the third side neglected this contribution. 

Moreover, the right-hand side of equation (16) is the elastic strain energy of the Melan’s residuals, 

 𝑊𝑟 =
1

2
∫ 𝑆ℎ𝑘𝑖𝑗 𝑝ℎ𝑘

𝑟 𝑝𝑖𝑗
𝑟 ⅆ𝑉

𝛺
  (18) 

Finally, in (16) the safety coefficient, m, of the actual load multiplier for the considered collapse is 

introduced: 

 𝑚 =
𝑘

𝑠𝛼
< 1, 𝑠𝛼 = {

𝑠𝑐

𝑠𝑠
 (19) 

The equation (17) constitutes a constraint which the actual permanent strain 𝑝𝑖𝑗 must satisfy during 

the loading process up to the load multiplier 𝑘 = 𝑚𝑠𝛼 . It is, then, possible to define a second 

optimization program by remembering equation (12): 

 sup
𝑃ℎ𝑘

𝑟
 𝑝𝑟𝑠(𝒙) |

𝑓(𝑚 𝑠𝑙  𝐶𝑖𝑗ℎ𝑘𝜀ℎ𝑘
𝐸 + 𝑍𝑖𝑗ℎ𝑘  𝑝ℎ𝑘

𝑟 ) < 0

𝑍𝑖𝑗ℎ𝑘  𝑝ℎ𝑘
𝑟 𝑝𝑖𝑗

𝑟 ≤ 𝐷 ≤
𝑚

(𝑚−1)
𝑊𝑟

 (20) 

that can be used to calculate residual displacement upper-bound at a specific point, x, of the structure. 

In equation (20) the objective function can be any linear combination of the permanent strain; hence 

any displacement can be calculated using (20) even if it is not a variable of the inequalities provided 

linear relationship holds between displacements and dislocations. 

4. Numerical example 

The described method has been applied to structures made of one-dimensional beams. The 

beams are plane and are subjected to flexural loads. Shear effects are negligible so that only bending 

moment has been considered. The compatibility condition has reduced to the simple limitation of the 

bending moment, namely 

 𝑀𝑦
− < 𝑀 < 𝑀𝑦

+ (21) 
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In equation (21), 𝑀𝑦
−  [𝑀𝑦

+] represents the negative [positive] limit bending moment of the beam 

cross-section, respectively. 

The results have been compared with the experimental ones presented in [15]. The experimental set 

up has been briefly recalled in the following. The tested structure was an aluminum beam, over three 

supports. The supports were equally spaced, the beam was loaded by one-point forces applied at the 

middle of each span. The forces, F1, F2, see Figure 4, has varied accordingly with the load program 

whose diagram has been drawn in Figure 2. In Figure 3, a flow-chart explains the numerical 

procedure used in the paper. 

 

Figure 2 Loading Domain 

 

 

Figure 3: Flow chart of the procedure 
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The structural scheme of the specimen is depicted in Figure 4 where the half span length was 

𝑙 =  400 mm. The mechanical constitutive constants of the specimen were reported in Table 1 where 

it is illustrated only the average of the parameters. 

The experimental report has furnished the relevant parameters of the material constituting the 

beam and the limit bending moment has been calculated from small specimens and one span bending 

tests previously developed. It has to be considered that some buckling of the cross-section of the beam 

occurs but the effects have been neglected in present work [22, 23]. 

 

Table 1: Material parameters 

 

The upper bound of the load programs, 𝐹𝑚𝑎𝑥 , has been progressively increased from the 

theoretical predicted elastic limit to ratcheting. During the test, the displacement was recorded at any 

load step. It has been possible, consequently, to record the loads for the displacement stabilized after 

a few cycles and ascribe it to be less than the shakedown limit. When the displacement average has 

increased in time indefinitely, the load bound was comprised between the shakedown and the 

collapse limits; however, the test has been concluded when no meaningful reduction of displacement 

increase occurred up to 10 cycles. Finally, when the load equated to the collapse limit, the structure 

failed suddenly at first load application. 

 

 
Figure 4: Structural scheme, loading position and constraints. 

 

The cross-section of the beam was box-shaped as reported in [15] and in Table 1 too, where the 

meaningful parameters have been highlighted. 

 

4.1 Numerical results 

The aluminum beam described in the previous section has been analyzed numerically with the 

proposed method. 

For the calculation of the structure, the formulation reported in the previous sections must be 

particularized to generalized stress and strain in bending beams. 

The generalized strain should be intended as the curvature of the beam’s axis and the stress the 

bending moment, 𝑀. The bending moment is decomposed into the pure elastic moment, 𝑀𝐸 and 

the equivalent to 𝜁𝑖𝑗 , 𝑀𝑟, residual bending moment. Finally, the permanent discontinuous strain, 

𝑝ℎ𝑘 , is the localized rotation discontinuity, ∆𝜑𝑖. 

Cross-section [mm] Mechanical constant Range of values 

 

Young modulus E 6250 − 6400 MPa 

Limit bending moment My 0.3276 − 0.3324 kNm 

Yield stress 𝜎𝑌 193.16 − 196.00 MPa 
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The first step to perform is the calculation of the Z matrix. It is pursued calculating the bending 

moment on the structure due to applied concentrated rotation at any point of it. 

To get numerical results at first one must choose a discrete set of points where apply the rotation 

and where read the moments. To get the discrete set of points some reasoning must be done about 

the variability of the response of the structure, namely: 

In the proposed example, the moment varies linearly along with the structure, having 

discontinuous slope at the points where active or reactive forces act. Consequently, at these points, 

the moment is expected to have its local minimum or maximum. Those points, moreover, are a 

candidate to develop concentrated rotation and must be chosen as control points where one should 

enforce the constraints and where the dislocations must be applied. The control points are indicated 

with A, B, C and D, Figure 4. The structure is divided into four elements at points A, B, C, D, as 

depicted in Figure 5. For the computational reason the calculation of all the relevant quantities 

involved in the routine, have been calculated at any endpoint of the elements 𝑃𝑖 , as well, concentrated 

rotations, ∆𝜑𝑖, have been applied on. Moreover, the constraint of optimization program (15) have 

been collocated on 𝑃𝑖 , too. 

The maximum elastic moment discrete values for any point have been collected in a vector 𝑴𝑚𝑎𝑥  

and the minimum in the vector 𝑴𝑚𝑖𝑛 ; in the case of one monotonically increasing load pattern, 

𝑴𝑚𝑎𝑥 = 𝑴𝑚𝑖𝑛 . 

 In the same manner, the rotations ∆𝜑𝑖  have been collected into a vector ∆𝝋 , so that the 

equation (15) transforms in a matrix form. 

 sup
∆𝝋

 𝑘 |
−𝒁∆𝝋 − 𝑘𝑴𝑚𝑖𝑛 < |𝑴𝑦

−|

𝒁∆𝝋 + 𝑘𝑴𝑚𝑎𝑥 < |𝑴𝑦
+|

 (22) 

 

In equation (22), 𝑴− is the negative limit bending moment vector ordered as points 𝑃𝑖 , and 𝑴+ 

is the positive one. 

The choice of the control points was dependent on the prediction of the local extrema of the 

internal stress. It is essential to consider that if the stress violates the compatibility equation at points 

not comprised in the control set, then the results overestimate the load multiplier. Consequently, one 

must consider setting up the procedure that converges from below in the domain of self-equilibrated 

stress but converges from above with the increase of the control points. In the proposed example, the 

position of the control points ensured that the compatibility was fulfilled everywhere in the structure. 

The mechanical parameters and the geometry of the beam have been introduced into the 

calculation of the operator Z. Since the formulation in term of generalized vectors of rotations and 

bending moments, the operator assumes the form of a square matrix here called influence matrix. 

The influence matrix can be calculated directly in case of one-dimensional structures applying the 

definition given in equation (12). 

The particularization of Equation (12) to the case of beams in bending gives the following 

representation of the residual bending moment in terms of Z: 

 𝑴𝑟 = 𝒁∆𝝋 (23) 

where the element Zij of Z is of the bending moment at 𝑃𝑖  due to the rotation ∆𝜑𝑗 at 𝑃𝑗. 

The optimization program (22) has been solved with the data of the reported example. As a result, 

together with the load multiplier 𝑠𝛼 , a set of rotation ∆𝝋̃ is furnished, this represents the Melan 

residual: 

 𝑴𝑚
𝑟 = 𝒁∆𝝋̃.  (24) 

 

Through the known Melan’s residual, the upper bound of the dissipation in equation (16) is 

calculated as: 

 ED≤
𝑚

2(𝑚−1)
∆𝝋̃𝑇𝑍∆𝝋̃ (25) 

To calculate an upper bound of the residual displacements on the structure at shakedown, the 

program Equation (20) has been rewritten accordingly to the position (21) and (22).  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 May 2020                   doi:10.20944/preprints202004.0020.v2

Peer-reviewed version available at Appl. Sci. 2020, 10, 3610; doi:10.3390/app10103610

https://doi.org/10.20944/preprints202004.0020.v2
https://doi.org/10.3390/app10103610


 10 of 17 

The dissipation, in the actual case of bending, can be calculated as the sum of the partial dissipation 

due to positive and negative part of the rotations Δ𝝋 , namely Δ𝝋 = Δ𝝋+ − Δ𝝋− . The objective 

function of the second optimization program can be assumed to be one of the desired permanent 

displacement in the form of a linear combination of dislocations through a constant parameters vector 

𝒄. 

 

 𝑢 = 𝒄𝑇(∆𝝋+ − ∆𝝋−) (26) 

From this position, a lower bound of the dissipated energy, ED, assumes the form: 

 

 ED≥ −𝑴𝑦
− ∙ ∆𝝋− + 𝑴𝑦

+ ∙ ∆𝝋+ (27) 

 

 sup
(∆𝝋+,∆𝝋−)

 𝒖 ||

−𝒁(∆𝝋+ − ∆𝝋−) −
𝑠𝑠𝑑

𝑚
𝑴𝑚𝑖𝑛 < |𝑴𝑦

−|

𝑍(∆𝝋+ − ∆𝝋−) +
𝑠𝑠𝑑

𝑚
𝑀𝑚𝑎𝑥 < |𝑴𝑦

+|

−𝑀𝑦
− ∙ ∆𝝋− + 𝑀𝑦

+ ∙ ∆𝝋+ ≤
𝑚

2(𝑚−1)
∆𝝋̃𝑇𝑍∆𝝋̃

 (28) 

 

 

Figure 5: Sample point numbering and position 

 

For the proposed example, the resulting Z, obtained using the assigned data was calculated and is: 

 

 

 

Z= 

0 0 0 0 0 0 0 0  

0 -4,18E+05 -4,18E+05 -8,36E+05 -8,36E+05 -4,18E+05 -4,18E+05 0  

0 -4,18E+05 -4,18E+05 -8,36E+05 -8,36E+05 -4,18E+05 -4,18E+05 0  

0 -8,36E+05 -8,36E+05 -1,67E+06 -1,67E+06 -8,36E+05 -8,36E+05 0  

0 -8,36E+05 -8,36E+05 -1,67E+06 -1,67E+06 -8,36E+05 -8,36E+05 0  

0 -4,18E+05 -4,18E+05 -8,36E+05 -8,36E+05 -4,18E+05 -4,18E+05 0  

0 -4,18E+05 -4,18E+05 -8,36E+05 -8,36E+05 -4,18E+05 -4,18E+05 0  

0 0 0 0 0 0 0 0  

The structure has been calculated for three load conditions as reported in Table 2: 

 

Table 2: Load pattern description 

 

Load condition Applied forces [N] 

1 F1=1000, F2=0 

2 F1=0, F2=1000 

3 F1=1000, F2=1000 

 

The bending moments calculated from the load conditions are reported in the following Table 3 

P1 P2

P3

P4 P5 P6

P7

P8
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Table 3 Elastic bending moment bounds 

 

Point Mmax[Nm] Mmin[Nm] 

P1 0.000 0.000 

P2 162.500 37.500 

P3 162.500 37.500 

P4 -75.000 150.000 

P5 -75.000 150.000 

P6 162.500 37.500 

P7 162.500 37.500 

P8 0.000 0.000 

 

The collapse load multipliers for each load condition (Table 4) are calculated by the optimization 

program and the shakedown multiplier as well. 

 

 

Table 4: Calculated load multipliers limits 

 

Load 

condition 
s 

1 2.493 

2 2.493 

3 2.493 

Shakedown 2.099 

 

Finally, the resulting Melan’s rotations are shown in Table 5: 

 

Table 5 Residuals permanent rotations 

 

𝑷𝒊 𝚫𝝋 

P1 0 

P2 0 

P3 0.02093 

P4 0 

P5 0 

P6 0 

P7 0 

P8 0 
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The second optimization program, equation (28) is implemented to calculate the upper bound of the 

vertical displacement, 𝒗𝑷𝟑
,  of point P3. The correlation between permanent rotation and 

displacement is obtained by solving the structure under applied dislocation in P3: 

 

 𝒗𝑷𝟑
=

13

64
(𝐿1 + 𝐿2)Δ𝜑3  (29) 

The result of optimization depending on m has been reported in the following Table 6: 

  

Table 6: Calculated displacement upper bound 

 

m 𝒗𝑷𝟑
 upper bound 

1.01 4.09 

1.03 4.52 

 
As a first comparison, step by step calculation following the actual load program has given the results 

in terms of actual residual displacement at P3, rotation and dissipated energy reported in Table 7: 

 

Table 7 Step by step results: displacement 𝑣𝑃3
, rotation Δ𝜑3 at P3 and dissipated energy ED 

 

𝑭[𝐤𝐍] 𝒗𝑷𝟑
 [𝒎] 𝚫𝝋𝟑 ED 

2.03  6.52 ∗ 10−4  5.21 ∗ 10−3  1.70 ∗ 10−3 

2.06  2.074 ∗ 10−3  0.0166  5.44 ∗ 10−3 

2.065  2.34 ∗ 10−3  0.0187  6.14 ∗ 10−3 

2.07  2.578 ∗ 10−3  0.0206  6.76 ∗ 10−3 

2.08  3.052 ∗ 10−3  0.0244  8.00 ∗ 10−3 

2.09  3.52 ∗ 10−3  0.0282            9.24 ∗ 10−3 

 

4.2 Experimental results  

The experimental analysis [15] shows the displacement record during the load path. The results have 

been reported here for the sake of clarity: in Table 8, the maximum applied load, and the 

corresponding residual displacement of the point P3 have been reported. The measures have been 

recorded when, after some cycles of loading, the displacement did cease increasing, and the load was 

removed, 𝒗̂𝑷𝟑

𝟎 . The measure has been repeated when the displacement, 𝒗̂𝑷𝟑

∞ , reduced, completing its 

a recovery. Finally, under the loads indicated by the (*), the displacement did not stabilize. In this 

case, the experiment finished after many cycles, and the residual displacement has been recorded. 

Even in this case, a new measure has been recorded after time to keep the memory of the recovering 

effect. Table 8contains the experimental results, as reported in [15]. 
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Table 8: Experimental residual displacements, before recovery 𝒗̂𝑷𝟑

𝟎 , complete recovery 𝒗̂𝑷𝟑

∞ ,  (*) indicates 

ratcheting load 

 

𝑭[𝐤𝐍] 𝒗̂𝑷𝟑

𝟎 [𝐦𝐦]  𝒗̂𝑷𝟑

∞ [𝐦𝐦]  

2.032 4.07 3.61 

2.069 4.67 4.32 

2.099 5.48 5.25 

2.139*  7.06 6.72 

2.180* 11.42 11.31 

 
   

The experimental results denote that the actual residual displacements are greater than the calculated 

through step by step procedure. Indeed, in the analysis, the average limit bending moment has been 

used, the experimental report describes that the qualification tests to evaluate the mechanical 

properties of the specimens, produced non-uniform results and the average reported value, as shown 

in Figure 6, is affected by a meaningful standard deviation. 

 

 

Figure 6 Time displacement diagrams: shakedown (on the left) and ratcheting (on the right)  

 
In conclusion, during the experiment, the structure underwent to ratcheting for loads greater 

than 2.099 kN. The recorded displacement rate did not vanish, and the measured values refer to the 

end of the experiment. For loading less to 2.099, the permanent displacement increment vanishes 

definitely, i.e. it tends to remain constant in time after two or three cycles, hence the shakedown has 

occurred. The proposed method has been applied to the structure the program Equation (22) has been 

used to calculate the shakedown multiplier and the residual rotations. 

Moreover, the resulting Melan’s residuals have been introduced to formulate the program equation 

(28) where the displacement at the middle of the right span has been calculated in term of the residual 

rotation. The upper bound of the displacement has been calculated for two different values of the 

factor m. Table 9 contained the comparison between the experimentally recorded displacement and 

the upper bound calculated through the present proposed procedure. 

 
Table 9: Displacement of P3 from experimental measures, 𝑣𝑃3

𝑒𝑥𝑝; calculated residual by step-by-step 

approach, 𝑣𝑃3

𝑠𝑏𝑠; and upper bound through optimization programs, 𝑣𝑃3

𝑜𝑝 

 

m 𝐅[𝐤𝐍] 𝒗𝑷𝟑

𝒆𝒙𝒑
[𝐦𝐦] 𝒗𝑷𝟑

𝒔𝒃𝒔[𝐦𝐦] 𝒗𝑷𝟑

𝒐𝒑
 [𝐦𝐦] 

 

1.033 2.032 3.61 0.652 4.09 

1.014 2.069 4.32 2.578 4.52 

1.000 2.099 5.25 3.52 / 

 2.139 6.72 6.52 / 

 2.180 11.31  / 
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Figure 7 represents the load-displacement experimental curve where the calculated displacement 

upper bound has been reported.  

 

    

Figure 7 Comparison between experimental and calculated residual displacements (Redline: Experimental 

displacements [15] 𝒗𝑷𝟑

𝒆𝒙𝒑
, Yellow points: Calculated displacements trough Step-by-step analysis, Green 

points: Calculated upper bound displacements ). 

 

4. Discussion  

The proposed method has furnished an upper bound of the permanent displacements developed 

without collapse. The procedure, based on the limit analysis theorems, has calculated the load 

collapse multiplier and the residual strain. Moreover, starting from the residual strain, it has been 

possible to evaluate the upper bounds of residual displacement at the stabilization. The limit analysis 

is since it furnished results independently to the actual load path. This characteristic is a great 

advantage but, in a sense, a weakness as well. The exact evaluation of the structural response is, 

indeed, impossible, on the other hand, however, often the load path is unknown itself. Hence the 

overall assessment of structural behavior is the only result one can expect. Under this perspective, 

the proposed method has constituted a possibility of estimate the order of magnitude of the residual 

displacement of structures under shakedown and more generally under plastic deformation before 

the collapse. The method has formulated the limit analysis in the space of strain, [24, 25, 26]. It gives 

a somewhat accurate estimate of the required displacement under randomly variable loads within a 

prescribed limit. The results here presented have been compared with the experimental ones obtained 

from an already published work [15]. The experiment has been compared with the calculated results 

from the step-by-step analysis. The step-by-step solution is based on the same load program of the 

tests and has been obtained using the experimental data. The calculated residual displacements, the 

experimental results, and the calculated upper bounds showed that, since the uncertainties of the 

structural data and the loading process, the estimate by limit analysis method gives comparable 

results to deterministic calculation. Another most considerable interest of the proposed procedure is 

that the evaluation of limit load multiplier using limit analysis has a significant drawback in the 

hypothesis that the application of the theorems requires indefinite ductility of the material. The 

proposed method allowed evaluating an upper bound of any residual displacement one is aimed to 

check to verify the ductility requirements were fulfilled. 

5. Conclusions  
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The calculation carried on using the proposed method furnished an upper bound of the 

displacement of the mid-span of the beam. The obtained results depended on the load level linked to 

the safety factor m. The obtained results compared with the experimental ones from [15] allows 

confirming the applicability of the method as a way to estimate the ductility requirements of the 

structures and the applicability of the limit analysis for assessing the limit loads of structures. The 

calculation of the displacement upper-bound is of great importance when a structural analysis is 

applied to seismic engineering one of the examples of such importance is the modern strategy of 

static nonlinear analysis, achieved through the Push-Over procedure [27]. It has been shown that the 

procedure furnished a good estimation of a permanent displacement upper bound and can be 

assumed as the basis for the evaluation of the ductility performance of the beam. The proposed 

strategy has been applied limiting to the flexural behavior of beams; however, it is quite general and 

can be extended to 2D and 3D structures using numerical formulation such as Boundary Integral 

Equation Method or Boundary Element Method [20]. 
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