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Abstract: Safety assessment of structures can be obtained employing limit design to overcome
uncertainties concerning actual response due to inelastic constitutive behavior and more generally
to non-linear structural response and loads’ random variability. The limit analysis is used for
evaluating the safety of the structures directly starting from load level without any knowledge of
the load history. In the paper, the lower bound calculation is proposed where a new strain-based
approach is used that allowed describing the residual stress and displacement in terms of
permanent strain. The strategy used the permanent strain as the effective parameters of the
procedure so that it was possible to assess the ductility requirements for the complete load program
developed till collapse or shakedown. The procedure is compared to experimental results obtained
on aluminum beams in shakedown.

Keywords: shakedown; plasticity; limit design; ratcheting, experimental comparison, residual
displacement, ductility assessment.

1. Introduction

The actual application of structural analysis deals with complex constructions subjected to
randomly variable loads. Generally, the load intensity bounds are prescribed by standards and
authorities and are evaluated starting from probabilistic and statistical considerations. It is almost
impossible, in practical cases, to know actual load history and their distribution all over the structure
considering that only their intensity range is estimated.

Under these hypotheses, evaluating structural safety is a matter of overall consideration rather
than the specific pointwise calculation of the response.

Under the above-quoted circumstances, the main strategy for structural safety assessment is the
calculation of load collapse limit, both under proportionally and randomly variable cases [1, 2].

The former case cited above concerns the evaluation of the usual collapse limit whereas the
latter, besides collapse limit requires the calculation of the shakedown limit. Under variable loads,
whenever the load reaches the collapse limit, the structure can undergo to a sudden collapse.
Moreover, it is possible that although at no time collapse occurs, the structure is invested by plastic
deformation that during load path increases in time. Now three phenomena can present on the

structure: first, the displacement increases in time indefinitely and the structure fails at the end for
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excessive strain (ratcheting); second, the plastic strain changes sign indefinitely during load path
hence, although no excessive displacement occurs the structure fails for plastic fatigue; third, the
plastic strain produces self-equilibrated stress that prevents the structure to accumulate further
plastic strain and it starts to behave as elastic definitely. This latter case is called shakedown. The
shakedown limit is the load level that the structure shakes down, whilst over it, the structure suffers
ratcheting or plastic fatigue [2]. In this situation, some specification should be done about the velocity
of the phenomenon to distinguish between elastic and plastic shakedown propagation, but here only
statics will be considered [3, 4, 5].

Generally, the knowledge of the structural limit load is pursued using step by step or limit
analyses. This latter method is based on the two approaches coming from the upper bound and of
the lower bound theorems [6, 1]. These theorems are based on kinematic and static approach,
respectively. The first is aimed at calculating the limit load as the maximum among any statically
admissible loads and the second as the minimum among any kinematically admissible loads. Both
calculations are independent of the actual load histories, and although this is useful in the real-life
analysis where the loads are known only in terms of their intensity bounds, it constitutes a limitation
for the use of the method since it cannot evaluate the dissipation during ultra-elastic deformation. It
is possible, therefore, that the permanent deformation, required for the ultra-elastic load path to
develop, attains its limit before the collapse. Such an eventuality causes the limit analysis to fail since
the collapse occurs before the complete permanent deformation develops. This happens at an actual
load level lower than the theoretical limit.

This disadvantage is only apparently overcome by the step-by-step analysis since this approach
is linked to the knowledge of the actual load history and gives results that cannot be generalized.

In the modern application of structural engineering, the numerical formulation of the limit
analysis allows the application of the methods to a wide range of structure. In particular, the Finite
Element Method has wide application to two- and three-dimensional structures. In [7, 8] shakedown
analysis for elastic-perfect plastic frames is discussed and an incremental-iterative solution is
proposed. A general procedure dealing with finite element application for lower bound
determination of collapse and ratcheting load is in [9]. As stated before, one of the most important
weaknesses of limit analysis is that no direct information is given by the theoretical fundamentals of
the analysis about the dissipation during the deformation process. It must be stressed that one of the
hypotheses at the basis of the limit design is that the strain can develop completely until the load
reaches its limit, namely the permanent strain must be limited within the admissible amount. Only
the knowledge of the load history allows precisely evaluating the amount of dissipated energy until
the limit is attained.

Hence, many works estimate the ultimate dissipation and displacements during plastic loading
of structures at the incoming plastic collapse or to ratcheting [10, 11, 12] starting from Ponter that
proposes a limit on the dissipated work and residual displacement [13, 14]. In the present work, a
procedure has been presented through the Melan’s theorem [6] of the shakedown. The procedure has
used the “strain-based residual” stress that constitutes a basis of the vector space of the self-
equilibrated stresses. Such residual stress fulfills the Melan’s lower bound theorem and has been used
to calculate upper bounds of the global and local dissipated work at the ultimate load level and
pointwise permanent strain as well.

The method has proposed, in the framework of discontinuous FEM, a linear optimization
strategy that gives an upper bound of local dissipation and finally an estimate of local permanent
displacement. In the paper, the numerical procedure has been applied to an academic example of
one-dimensional structure. Concerning a one-dimensional example, the numerical procedure was
compared also to the experimental results obtained by the authors in previous work [15]. The
experiment has concerned an aluminum beam over three supports, loaded by randomly variable one-
point forces applied at the middle of each span. The structure has been loaded up to the shakedown
limit and subsequently to ratcheting. The displacement has been measured during the loading
process. The experimental results have been compared with the calculated ones and a good
agreement has been shown between theoretical and experimental approaches.
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2. Fundamentals of limit analysis.

A structure collapses if the dissipation due to permanent deformation increases in time
indefinitely. The dissipation increment can be produced by proportional increasing loads hence
proper proportional collapse occurs. With no difference, the dissipation can increase in time
alternating periods when no dissipation occurs and periods when dissipation gets further increase.
In this latter case, it is possible that either the displacement becomes excessive for functionality and
safety or the total dissipation reaches a limit that produces the material failure. The first is the
ratcheting phenomenon the second the plastic fatigue rupture (also known as low cycle number
fatigue) [16].

To evaluate the load collapse multiplier, the static collapse theorem states that: if under actual
loads there exists any equilibrated stress that definitely belongs to the elastic domain, the permanent
strain rate vanishes whenever time increasing, hence collapse does not occur [1]. In better words the
structure does stabilize, i.e. the structure behaves as to be elastic after that a certain amount of
permanent strain has been accumulated. Moreover, a limiting equation exists that gives an upper
bound of the dissipated energy till stabilization occurs [14, 17].

The present work has described a numerical procedure that implemented the Melan theorem.
For the sake of completeness, the Melan theorem has been reported here after briefly.

Let us consider a structure that occupies a domain 2 with the boundary 82 (Figure 1) The

o

structure is in equilibrium under prescribed body forces, b;, in the interior of the solid, 2, and
prescribed tractions, t;, on the part of the boundary d{); both forces vary in time within the
prescribed limit with absolutely random time law. On the part of the boundary, 902, = d02\d{,
where the symbol \ denotes the complement of the manifold 0 with respect to 90 , the
displacement is prescribed [18]. Due to the applied loads and displacements, the solid presents the
stress, 0;; and the strain, &y, in the interior and reactive tractions, t;, on the boundary d£,,. In the
following, indicial notation is adopted hence a subscript (): have denoted the it component of a vector
in the reference frame, two subscripts have referred to the two components of a second-order tensor
and so on; moreover, subscripts following the comma indicate partial derivatives with respect to the
coordinate directions.

u; = displacement
{ = applied traction
; = reactive traction
b; = body force
08, U 0Qf = 0Q
o

0 =0\ 00

o~
"
Il

o~
w
Il

Figure 1 Structural domain with representation of loads, tractions, and constraints.

Self-equilibrated stress, {; j, 15 a stress field that satisfies the homogeneous balance equations and
the corresponding homogeneous natural boundary conditions on the loaded boundary 9£2;. Only on
the constrained boundary 9.2, tractions can be non-null:
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Zij,j =0in{
(ijnj =0on O.Qf (1)
Zijnj = tis on a.Qu

where in equation (1) n; are the components of the outward normal unit vector to 9.
The material constituting the structure is elastic-perfectly plastic, so the stress-strain law is:

0ij = Sijnk (Enk — Dni) ()

where S;;. is the fourth-order elastic tensor.
The permanent strain, ppy, results from the integration during the load process of the permanent
strain rate, p,, that is related to the stress through the constitutive associated flow rule:

f(o-ark) = 0 . : of
Y s =0T Pk = Aau,,k ®)
0o

where f(0,) < 0 is the compatibility condition on stress, equality holds for yielding, % is the

gradient of the yield surface with respect to ¢;; and A is the plastic multiplier that accounts for the
magnitude of the plastic strain rate, p,.

During the loading process, the stress results by the superimposition of the one calculated on the
structure supposed to be indefinitely elastic, 6%, and a self-equilibrated stress, {;;, obtained by
equations (1) here called “eigenstress’ [19], that can also be recognized to be the actual residual stress
one finds in the structures whether it is unloaded during the load path, so it can be also called “actual
residual stress’:

oy = o + 4)

The actual strain field results from the following additive decomposition that can be interpreted
through the decomposition (4) yielding to the equation:

enk = Cijnk0i; + Cijniclij + Prk = €nx + €nk + Pk )

where C;jp is the elastic compliance tensor, the inverse of S;jn,. The equation (5) has the following
mechanical interpretation: &gy, is the sum of the strain in the structure supposed to be indefinitely
elastic, €f,, the strain corresponding to the eigenstress, eJf and the permanent strain, py. The
permanent strain pyy, is the discontinuous part of the strain. It is possible to recognize the kinematical
compatibility of the strain, namely: &f, is compatible since it is the elastic solution under the applied
loads, the sum (gpf + py,) is compatible as the strain epr is the elastic response to the discontinuity
Pni, acting as an applied dislocation, to ensure its compatibility [2].

The stress {;; is self-equilibrated stress by definition. To verify the statement, the equilibrium
equation of the interior points of the solid body is recalled:

Uij,j+bi =0 @)
By using equations (4) and (5), the equilibrium of internal points become:
(Sijhk Eﬁk + Sijhkgglf)rj'i_ bi = 0 (8)

The elastic stress is the stress in equilibrium in (2, when the constitutive equation is assumed to
be indefinitely elastic, subjected to the same loads than the actual structure. Consequently, the elastic
stress, g, is in equilibrium with the applied forces so that the following equation holds:

(Sijni €hi)rj+ by =0 )

Comparing equation (8) with (9) the following equation is obtained confirming that the elastic-
plastic stress is self-equilibrated in the interior of the structure.
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Sijhkef?zf'j =0 (10)

Moreover, the self-equilibrated stress satisfies the homogeneous boundary condition on the
free boundary, 912, of the structure. Finally, the equilibrium equation involving the stress {j; ;
reduces to equation (1).

The above reasoning can be summarized as follows: the actual elastic-plastic stress solution,
resulting from an applied body and boundary loads, differs from the pure elastic stress by self-
equilibrated stress. This self-equilibrated stress is due to elastic strain epf that results from the
compatibility equation concerning the permanent discontinuous strain pp; acting as Volterra’s
dislocation. Dislocations are the kinematical effect equivalent to discontinuities of strain within the
structure. A dislocation causes stress in the absence of loads. The stress produced by dislocation is
hence an eigenstress and satisfy equations (1) and equation (11). The stress {;;, that depends on &gy,
through equation (10), emerges on the constrained boundary in terms of self-equilibrated traction, t;.

{ijnj = tf on O.Qu (11)

3. Lower bound limit analysis

The shakedown is the phenomenon where under randomly repeated loads, the structure undergoes
to elastic behavior definitely for increasing time. In other words, the permanent strain rate py
approaches zero for t—eo hence the permanent strain is bounded in time. In the present formulation
the time is solely the measure of the evolution of the phenomenon, because of the rate of the quantities
involved must be considered as their increment, no dynamics effects are considered.

The shakedown is ruled by the Melan’s theorem. The theorem is formulated in term of self-
equilibrated stress of the form ;.

The line of reasoning of the Melan’s theorem is suitable as well for the application to the
monotone load-induced collapse analysis.

In the following formulation the {;; is obtained from the py, as the resulting stress from the
application of the py; as a Volterra’s dislocation.

It is possible to solve the elastic problem of the structure subjected by a Volterra’s dislocation,
Prk, at a point x and calculate, at any point y, the resulting stress ¢;;. The linearity of the elastic
problem allows writing the {;; in terms of the linear operator Z;j,,. In numerical application a
discrete approximation of the operator Z;j,, can be obtained using Boundary Integral Equation
Method [20]

Finally, the relationship between pp, and {;; can be written as follows

Cij = Zijhk Pri (12)

The condition of shakedown is stated by the Melan’s theorem in the following form: stabilization
occurs under a load multiplier k if and only if there exists a self-equilibrated stress {;;, time-
independent eigenstress, such that:

fk Cijurehy +3j) <0 (13)

at any time where C(; jhks,fk is the actual stress under the applied loads when the structure was
supposed indefinitely elastic.

By considering equation (12) the Melan’s theorem can be rewritten in terms of permanent strain
phx such that

f(k Cijniehy + Zijnx Phi) < 0. (14)

The optimization program that searches for the load limit multiplier, s., is summarized in:

S¢ = SPQP k | f(k Cijnrehx + Zijue Dhic) < O (15)
hk
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The program (15) is a constrained optimization program that can be solved using standard linear

programming routine, namely simplex method, if the constraints are a set of linear inequalities. This
occurs when von Mises or Drucker-Prager limit domains describe the material behavior.
The solution of the program (15) is the limit collapse multiplier that is either the proportional collapse
multiplier, @ = c, or the shakedown limit, @ =s, provided the elastic stress corresponds to
monotone or variable loads, moreover, the program furnishes a set of permanent time-independent
strain Py, satisfying the theorem.

As a corollary of the Melan’s theorem, see Koiter and Koning [1, 21, 16], an upper bound on total
dissipated energy until stabilization is obtained as a function of the elastic strain energy
corresponding to the Melan’s residual strain, pj.

fn 0;jpij AV < %fgshkij PhiPricdV (16)

where the term on the left-hand side of equation (16) is a lower bound of the total dissipation up to
the load level having the safety factor m > 1 with respect to the limit at the incoming collapse.

Eo= fﬂ Iy o1pyj dtdV > fn 0ipij AV (17)

The inequality at the leftmost side of equation (17) holds if the material of the structures follows von
Mises or Drucker-Prager associate constitutive law. The integral on the third side of equation (17)
underestimates the case when the permanent strain reverses its sign and cancels. In the latter case,
the time integration summed the work the stress did for increasing strain and that for the opposite
strain. Conversely, the integral at the third side neglected this contribution.

Moreover, the right-hand side of equation (16) is the elastic strain energy of the Melan’s residuals,

1 ~ ~
W, = ;fﬂ Shkij DhicPi; AV (18)

Finally, in (16) the safety coefficient, m, of the actual load multiplier for the considered collapse is
introduced:

Sc

. (19)

Kk
m=—<1,sa={
Sa

The equation (17) constitutes a constraint which the actual permanent strain p;; must satisfy during
the loading process up to the load multiplier k = ms,. It is, then, possible to define a second
optimization program by remembering equation (12):

f(m s, Cijnefn + Zijni Ph) <0
sup prs(x)
pr

m (20)
T Zijnk PhiPij <D < mWr

that can be used to calculate residual displacement upper-bound at a specific point, x, of the structure.
In equation (20) the objective function can be any linear combination of the permanent strain; hence
any displacement can be calculated using (20) even if it is not a variable of the inequalities provided
linear relationship holds between displacements and dislocations.

4. Numerical example

The described method has been applied to structures made of one-dimensional beams. The
beams are plane and are subjected to flexural loads. Shear effects are negligible so that only bending
moment has been considered. The compatibility condition has reduced to the simple limitation of the
bending moment, namely

My <M < My (21)
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In equation (21), M, [M;] represents the negative [positive] limit bending moment of the beam
cross-section, respectively.

The results have been compared with the experimental ones presented in [15]. The experimental set
up has been briefly recalled in the following. The tested structure was an aluminum beam, over three
supports. The supports were equally spaced, the beam was loaded by one-point forces applied at the
middle of each span. The forces, F1, F2, see Figure 4, has varied accordingly with the load program
whose diagram has been drawn in Figure 2. In Figure 3, a flow-chart explains the numerical
procedure used in the paper.

Fu

LOADING
DOMAIN

Fu-

Figure 2 Loading Domain

Procedure flow chart

|

Build the dislocation influence matrix

Zijhk

|

Load multiplier solves the optimal program

Sq = b:&p k |f(k Cijnihe + Zijne Phi) <0
hk

Out L{S“
UEPYE

1

Calculate strain energy of residuals

1 o
W, = Ej.shkij Phifi; dV
i7]

!

Chose aload level m = j—“ >1

Chose a permanent displacement as a linear
combination of permanent strain

v (x) = AipkPhx

!

Residual displacement upper bound is the
solution of the optimization program

S(m sy Cijnuti + Zijne Phie) <0

Zijnk Phably < D <,
ij yEYEsmmon

sup v;(x)
Pl

Figure 3: Flow chart of the procedure
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The structural scheme of the specimen is depicted in Figure 4 where the half span length was

[ = 400 mm. The mechanical constitutive constants of the specimen were reported in Table 1 where
it is illustrated only the average of the parameters.

The experimental report has furnished the relevant parameters of the material constituting the
beam and the limit bending moment has been calculated from small specimens and one span bending
tests previously developed. It has to be considered that some buckling of the cross-section of the beam
occurs but the effects have been neglected in present work [22, 23].

Table 1: Material parameters

Cross-section [mm] Mechanical constant Range of values
. % Young modulus E 6250 — 6400 MPa
‘ Limit bending moment My 0.3276 — 0.3324 kNm
Q Yield stress oy 193.16 — 196.00 MPa
¥‘/’ s
40

The upper bound of the load programs, F,,,, has been progressively increased from the
theoretical predicted elastic limit to ratcheting. During the test, the displacement was recorded at any
load step. It has been possible, consequently, to record the loads for the displacement stabilized after
a few cycles and ascribe it to be less than the shakedown limit. When the displacement average has
increased in time indefinitely, the load bound was comprised between the shakedown and the
collapse limits; however, the test has been concluded when no meaningful reduction of displacement
increase occurred up to 10 cycles. Finally, when the load equated to the collapse limit, the structure
failed suddenly at first load application.

A L1 =400 mm B L2 =400 mm C Ls =400 mm D L+ =400 mm E

Figure 4: Structural scheme, loading position and constraints.

The cross-section of the beam was box-shaped as reported in [15] and in Table 1 too, where the
meaningful parameters have been highlighted.

4.1 Numerical results

The aluminum beam described in the previous section has been analyzed numerically with the
proposed method.

For the calculation of the structure, the formulation reported in the previous sections must be
particularized to generalized stress and strain in bending beams.

The generalized strain should be intended as the curvature of the beam’s axis and the stress the
bending moment, M. The bending moment is decomposed into the pure elastic moment, M and
the equivalent to {;;, M", residual bending moment. Finally, the permanent discontinuous strain,
Pnk. is the localized rotation discontinuity, Ag;.
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The first step to perform is the calculation of the Z matrix. It is pursued calculating the bending
moment on the structure due to applied concentrated rotation at any point of it.

To get numerical results at first one must choose a discrete set of points where apply the rotation
and where read the moments. To get the discrete set of points some reasoning must be done about
the variability of the response of the structure, namely:

In the proposed example, the moment varies linearly along with the structure, having
discontinuous slope at the points where active or reactive forces act. Consequently, at these points,
the moment is expected to have its local minimum or maximum. Those points, moreover, are a
candidate to develop concentrated rotation and must be chosen as control points where one should
enforce the constraints and where the dislocations must be applied. The control points are indicated
with A, B, C and D, Figure 4. The structure is divided into four elements at points A, B, C, D, as
depicted in Figure 5. For the computational reason the calculation of all the relevant quantities
involved in the routine, have been calculated at any endpoint of the elements P;, as well, concentrated
rotations, Ag;, have been applied on. Moreover, the constraint of optimization program (15) have
been collocated on P;, too.

The maximum elastic moment discrete values for any point have been collected in a vector M™%*
and the minimum in the vector M™"; in the case of one monotonically increasing load pattern,
Mmax — pgmin.

In the same manner, the rotations Ag; have been collected into a vector A¢, so that the
equation (15) transforms in a matrix form.

min -

sup k —ZAp — kM™" < |M;| )

re | ZA@ + kM™ < M|

In equation (22), M~ is the negative limit bending moment vector ordered as points P;, and M*
is the positive one.

The choice of the control points was dependent on the prediction of the local extrema of the
internal stress. It is essential to consider that if the stress violates the compatibility equation at points
not comprised in the control set, then the results overestimate the load multiplier. Consequently, one
must consider setting up the procedure that converges from below in the domain of self-equilibrated
stress but converges from above with the increase of the control points. In the proposed example, the
position of the control points ensured that the compatibility was fulfilled everywhere in the structure.

The mechanical parameters and the geometry of the beam have been introduced into the
calculation of the operator Z. Since the formulation in term of generalized vectors of rotations and
bending moments, the operator assumes the form of a square matrix here called influence matrix.
The influence matrix can be calculated directly in case of one-dimensional structures applying the
definition given in equation (12).

The particularization of Equation (12) to the case of beams in bending gives the following
representation of the residual bending moment in terms of Z:

M = ZAg (23)

where the element Z;j of Z is of the bending moment at P; due to the rotation Ag; at P;.
The optimization program (22) has been solved with the data of the reported example. As a result,
together with the load multiplier s,, a set of rotation A is furnished, this represents the Melan
residual:

My, = ZAp. (24)

Through the known Melan’s residual, the upper bound of the dissipation in equation (16) is
calculated as:

Eo<- s ApTZAp (25)

To calculate an upper bound of the residual displacements on the structure at shakedown, the
program Equation (20) has been rewritten accordingly to the position (21) and (22).
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The dissipation, in the actual case of bending, can be calculated as the sum of the partial dissipation
due to positive and negative part of the rotations A@, namely A@ = A@p* — A@~. The objective
function of the second optimization program can be assumed to be one of the desired permanent
displacement in the form of a linear combination of dislocations through a constant parameters vector
c.

u=c"(Ap* — Ag7) (26)

From this position, a lower bound of the dissipated energy, Eb, assumes the form:

Eo> —M; -2~ + M - 2gp* (27)

| —Z(A@* —Ap™) — =4 Mmin < M|

sup u Z(A(p+ —ApT) + SS?deax < |M;| 28
(otien) = - + + m ~T A=
=My - Ap™ + My - AT < 2m-D) AP ZAP
Pl P2 P4 P5 PG Pg
P A 5

Figure 5: Sample point numbering and position

For the proposed example, the resulting Z, obtained using the assigned data was calculated and is:

0 0 0 0 0 0
-4,18E+05  -4,18E+05  -8,36E+05 -8,36E+05 -4,18E+05 -4,18E+05
-4,18E+05  -4,18E+05 -8,36E+05 -8,36E+05 -4,18E+05  -4,18E+05
-8,36E+05  -8,36E+05 -1,67E+06  -1,67E+06  -8,36E+05  -8,36E+05
-8,36E+05  -8,36E+05  -1,67E+06  -1,67E+06  -8,36E+05  -8,36E+05
-4,18E+05  -4,18E+05  -8,36E+05 -8,36E+05 -4,18E+05 -4,18E+05
-4,18E+05  -4,18E+05 -8,36E+05 -8,36E+05 -4,18E+05  -4,18E+05

0 0 0 0 0 0

o O O o o o o o
o o O o o o o o

The structure has been calculated for three load conditions as reported in Table 2:

Table 2: Load pattern description

Load condition Applied forces [N]

1 F1=1000, F2=0
F1=0, F>=1000

3 F1=1000, F=1000

The bending moments calculated from the load conditions are reported in the following Table 3
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Table 3 Elastic bending moment bounds

Point Mmx[Nm] Mmin[Nm]

P: 0.000 0.000
P2 162.500 37.500
Ps 162.500 37.500
P4 -75.000 150.000
Ps -75.000 150.000
Ps 162.500 37.500
Py 162.500 37.500
Ps 0.000 0.000

The collapse load multipliers for each load condition (Table 4) are calculated by the optimization

program and the shakedown multiplier as well.

Table 4: Calculated load multipliers limits

Load
condition s
1 2.493
2 2.493
3 2.493
Shakedown 2.099

Finally, the resulting Melan'’s rotations are shown in Table 5:

Table 5 Residuals permanent rotations

P; Ag
P 0

P2 0

Ps 0.02093
Ps 0

Ps 0

Ps 0

P7 0

Ps 0
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The second optimization program, equation (28) is implemented to calculate the upper bound of the
vertical displacement, wvp,, of point Ps. The correlation between permanent rotation and

displacement is obtained by solving the structure under applied dislocation in Ps:

13
Vp; = ¢, (Ly + Ly)Ags (29)

The result of optimization depending on m has been reported in the following Table 6:

Table 6: Calculated displacement upper bound

m vp, upper bound
1.01 4.09
1.03 4.52

As a first comparison, step by step calculation following the actual load program has given the results
in terms of actual residual displacement at P3, rotation and dissipated energy reported in Table 7:

Table 7 Step by step results: displacement vp,, rotation Ap; at Ps and dissipated energy Eo

F[KN] vp, [M] Ags Eo
2.03 6.52 * 10~* 5.21% 1073 1.70 * 1073
2.06 2.074 %1073 0.0166 5.44 % 1073
2.065 2.34%1073 0.0187 6.14 * 1073
2.07 2.578 x 1073 0.0206 6.76 * 1073
2.08 3.052 %1073 0.0244 8.00 * 1073
2.09 3.52 %1073 0.0282 9.24 %1073

4.2 Experimental results

The experimental analysis [15] shows the displacement record during the load path. The results have
been reported here for the sake of clarity: in Table 8, the maximum applied load, and the
corresponding residual displacement of the point Ps have been reported. The measures have been
recorded when, after some cycles of loading, the displacement did cease increasing, and the load was
removed, p,. The measure has been repeated when the displacement, ¥y,, reduced, completing its
a recovery. Finally, under the loads indicated by the (*), the displacement did not stabilize. In this
case, the experiment finished after many cycles, and the residual displacement has been recorded.
Even in this case, a new measure has been recorded after time to keep the memory of the recovering

effect. Table 8contains the experimental results, as reported in [15].
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Table 8: Experimental residual displacements, before recovery ﬁgs, complete recovery Dp, (*) indicates

ratcheting load
F[KN] D, [mm] Dy, [mm]
2.032 4.07 3.61
2.069 4.67 4.32
2.099 5.48 525
2.139* 7.06 6.72
2.180* 11.42 11.31

The experimental results denote that the actual residual displacements are greater than the calculated
through step by step procedure. Indeed, in the analysis, the average limit bending moment has been
used, the experimental report describes that the qualification tests to evaluate the mechanical
properties of the specimens, produced non-uniform results and the average reported value, as shown
in Figure 6, is affected by a meaningful standard deviation.

ip

o

Figure 6 Time displacement diagrams: shakedown (on the left) and ratcheting (on the right)

In conclusion, during the experiment, the structure underwent to ratcheting for loads greater

than 2.099 kN. The recorded displacement rate did not vanish, and the measured values refer to the
end of the experiment. For loading less to 2.099, the permanent displacement increment vanishes
definitely, i.e. it tends to remain constant in time after two or three cycles, hence the shakedown has
occurred. The proposed method has been applied to the structure the program Equation (22) has been
used to calculate the shakedown multiplier and the residual rotations.
Moreover, the resulting Melan’s residuals have been introduced to formulate the program equation
(28) where the displacement at the middle of the right span has been calculated in term of the residual
rotation. The upper bound of the displacement has been calculated for two different values of the
factor m. Table 9 contained the comparison between the experimentally recorded displacement and
the upper bound calculated through the present proposed procedure.

Table 9: Displacement of Ps from experimental measures, v,fsxp ; calculated residual by step-by-step
sbs.

approach, v3%; and upper bound through optimization programs, vgf

m F[kN] vy, [mm] v [mm)] vy, [mm]
1.033 2.032 3.61 0.652 4.09
1.014 2.069 4.32 2.578 4.52
1.000 2.099 5.25 3.52 /

2.139 6.72 6.52 /

2.180 11.31 /
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Figure 7 represents the load-displacement experimental curve where the calculated displacement
upper bound has been reported.

2.2
2.18
2.16
2.14

2.12

LOAD [KkN]

2.1
2.08
2.06

2.04
- "
2.02
0 2 - 6 8 10 12

RESIDUAL DISPLACEMENT [mm]

Figure 7 Comparison between experimental and calculated residual displacements (Redline: Experimental
displacements [15] vff;p, Yellow points: Calculated displacements trough Step-by-step analysis, Green

points: Calculated upper bound displacements ).

4. Discussion

The proposed method has furnished an upper bound of the permanent displacements developed
without collapse. The procedure, based on the limit analysis theorems, has calculated the load
collapse multiplier and the residual strain. Moreover, starting from the residual strain, it has been
possible to evaluate the upper bounds of residual displacement at the stabilization. The limit analysis
is since it furnished results independently to the actual load path. This characteristic is a great
advantage but, in a sense, a weakness as well. The exact evaluation of the structural response is,
indeed, impossible, on the other hand, however, often the load path is unknown itself. Hence the
overall assessment of structural behavior is the only result one can expect. Under this perspective,
the proposed method has constituted a possibility of estimate the order of magnitude of the residual
displacement of structures under shakedown and more generally under plastic deformation before
the collapse. The method has formulated the limit analysis in the space of strain, [24, 25, 26]. It gives
a somewhat accurate estimate of the required displacement under randomly variable loads within a
prescribed limit. The results here presented have been compared with the experimental ones obtained
from an already published work [15]. The experiment has been compared with the calculated results
from the step-by-step analysis. The step-by-step solution is based on the same load program of the
tests and has been obtained using the experimental data. The calculated residual displacements, the
experimental results, and the calculated upper bounds showed that, since the uncertainties of the
structural data and the loading process, the estimate by limit analysis method gives comparable
results to deterministic calculation. Another most considerable interest of the proposed procedure is
that the evaluation of limit load multiplier using limit analysis has a significant drawback in the
hypothesis that the application of the theorems requires indefinite ductility of the material. The
proposed method allowed evaluating an upper bound of any residual displacement one is aimed to
check to verify the ductility requirements were fulfilled.

5. Conclusions
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The calculation carried on using the proposed method furnished an upper bound of the
displacement of the mid-span of the beam. The obtained results depended on the load level linked to
the safety factor m. The obtained results compared with the experimental ones from [15] allows
confirming the applicability of the method as a way to estimate the ductility requirements of the
structures and the applicability of the limit analysis for assessing the limit loads of structures. The
calculation of the displacement upper-bound is of great importance when a structural analysis is
applied to seismic engineering one of the examples of such importance is the modern strategy of
static nonlinear analysis, achieved through the Push-Over procedure [27]. It has been shown that the
procedure furnished a good estimation of a permanent displacement upper bound and can be
assumed as the basis for the evaluation of the ductility performance of the beam. The proposed
strategy has been applied limiting to the flexural behavior of beams; however, it is quite general and
can be extended to 2D and 3D structures using numerical formulation such as Boundary Integral
Equation Method or Boundary Element Method [20].
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