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Abstract: In this paper we describe and exploit a geometric framework for Gibbs probability
densities and the associated concepts in statistical mechanics, which unifies several earlier works
on the subject, including Souriau’s symplectic model of statistical mechanics, its polysymplectic
extension, Koszul model, and approaches developed in quantum information geometry. We emphasize
the role of equivariance with respect to Lie group actions and the role of several concepts from
geometric mechanics, such as momentum maps, Casimir functions, coadjoint orbits, and Lie-Poisson
brackets with cocycles, as unifying structures appearing in various applications of this framework to
information geometry and machine learning. For instance, we discuss the expression of the Fisher
metric in presence of equivariance and we exploit the property of the entropy of the Souriau model as
a Casimir function to apply a geometric model for energy preserving entropy production. We illustrate
this framework with several examples including multivariate Gaussian probability densities, and the
Bogoliubov-Kubo-Mori metric as a quantum version of the Fisher metric for quantum information on
coadjoint orbits. We exploit this geometric setting and Lie group equivariance to present symplectic
and multisymplectic variational Lie group integration schemes for some of the equations associated to
Souriau symplectic and polysymplectic models, such as the Lie-Poisson equation with cocycle.

Keywords: Momentum Maps; Cocycles; Lie Group Actions; Coadjoint Orbits; Variational Integrators;
(Multi)symplectic Integrators; Fisher Metric; Gibbs Probability Density; Entropy; Lie Group Machine
Learning; Casimir Functions.

1. Introduction

A geometric theory of statistical mechanics was developed by Souriau, [79], motivated by the
observation that Gibbs equilibrium states do not satisfy the usual physical covariance assumptions.
This geometric theory, called by him Lie Groups Thermodynamics, is based on a Hamiltonian action of
a Lie group on a symplectic manifold, to which are associated generalized Gibbs states, indexed by
a Lie algebra parameter β playing the role of a geometric (Planck) temperature. Usual Gibbs states
defined from a Hamiltonian appear as special cases in which the Lie group is a one-parameter group.
The generalized Gibbs states become compatible with Galileo relativity in classical mechanics and with
Poincaré relativity in relativistic mechanics, and the maximum entropy principle is preserved. See [64]
for an exposition of Souriau’s approach.

A natural equilibrium state is characterized by an element β of the Lie algebra of the Lie group,
determining the equilibrium temperature. In this geometric setting, the logarithm of the partition
function, identified with the Massieu potential Φ(β), is defined on this Lie algebra. Its derivative, called
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the thermodynamic heat Q(β), gives the mean value of the energy and is an element of the dual of the
Lie algebra. From this, two important quantities are defined. First the geometric heat capacity, given by
minus the derivative of Q and giving the Fisher metric of the generalized Gibbs probability densities,
second the entropy defined on the dual of the Lie algebra as the Legendre transform of the Massieu
potential.

This geometric setting of Souriau was exploited and developed in [8,12–14,16–19] towards
applications in information geometry and Lie group machine learning. Different tools developed based
on Souriau Lie groups thermodynamics are explored in artificial intelligence for “Supervised Machine
Learning” and “Non-Supervised Machine Learning” approaches. For “Supervised Machine Learning”,
neural network natural gradient from information geometry could be extended on Lie algebra based on
Fisher extension with respect to Souriau covariant maximum entropy Gibbs density on coadjoint orbits.
For “Non-Supervised Machine Learning”, Souriau-Fisher metric transforms problems of learning on Lie
groups to more classical problems of learning on metric spaces: extension of mean/median barycenter
on Lie groups by Fréchet definition of geodesic barycenter, solved by Hermann Karcher flow and by
exponential map (based on Souriau algorithm for matrix characteristic polynomial computation). For
“Non-Supervised Machine Learning”, extension of “mean-shift” for homogeneous symplectic manifolds
and Souriau-Fisher metric space. We can also make reference to GEOMSTATS libraries [70] developing
codes for machine learning on Riemannian manifolds and Lie groups.

In this paper we describe a geometric framework for the study of Gibbs probability densities in
statistical mechanics and information geometry, as well as the associated concepts of thermodynamic
heat, entropy, and Fisher metric, inspired by Souriau’s symplectic model of statistical mechanics. This
geometric framework unifies several earlier works on the subject, including Souriau’s symplectic model
of statistical mechanics, its polysymplectic extension, Koszul model, and approaches developed in
quantum information geometry. This approach helps to identify the common geometric structures
appearing in various examples and provides a body of geometric tools for information geometry and
Lie group machine learning. The emphasis is put on the role of the equivariance with respect to Lie
group actions. For instance, we discuss the expression of the Fisher metric in presence of equivariance,
we consider the associated Lie-Poisson equations with cocycle (also called affine Lie-Poisson equations)
as well as their field theoretic versions, and we exploit the property of the entropy of the Souriau model
as a Casimir function, to apply a geometric model for energy preserving entropy production on Lie
algebras. In our developments, we make heavily use of several concepts from geometric mechanics,
such as momentum maps, Casimir functions, coadjoint orbits, and Lie-Poisson brackets, as unifying
concepts appearing in various applications of this framework to information geometry and machine
learning. We consider in details the Koszul model, the polysymplectic extension of the Souriau model,
the case of the multivariate Gaussian probability densities, models of information geometry for quantum
systems. We exploit the geometric framework to build geometric numerical integrator schemes for
some of the equations associated to Souriau’s model and its polysymplectic extension. This is achieved
by identifying the variational principles underlying these equations and by discretizing these principles,
following the techniques of variational discretization, which result in schemes that preserve coadjoint
orbits, (multi)symplectic structures, and discrete versions of Noether theorems.

The content of the paper is the following. In §2.1 we present the general geometric framework for
Gibbs probability densities that will be used in the paper. In particular, we review the definition of the
Massieu potential, the thermodynamic heat, the entropy, the identification of the Fisher metric with the
Hessian of the Massieu potential, and the maximum entropy principle. These results are independent of
the existence of Lie group symmetries of the theory. The implications of such symmetries are studied in
details §2.2 where we present a Lie group equivariant setting that includes as special cases the Souriau
model, its polysymplectic extension, and the case of multivariate Gaussian probability densities. The
Souriau model is reviewed in §2.3 where we show that the associated entropy is a Casimir function for
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the Lie-Poisson bracket with cocycle and, motivated by an approach developed in quantum information
geometry, we take advantage of this property to formulate a geometric model for entropy production.
The polysymplectic model is reviewed in §2.4, where we show that the entropy also satisfies a natural
extension of the Casimir property and we formulate a polysymplectic extension of the Lie-Poisson
equations with cocycle. Finally, in §2.5 we give a general expression of the Fisher metric on orbits
when equivariance is assumed. In §3 we apply the framework considered in §2 to various examples
and identify common underlying geometric structures. We start in §3.1 with the case of multivariate
Gaussian probability densities as an illustration of the general framework for which a cocycle is needed
and which does not fall into the setting of the Souriau model. We apply Noether theorem to derive
invariant quantities for geodesics of the Fisher metric. We then enlighten in §3.2 the strong analogies
with quantum information geometry by considering Lie algebras with unitary representation and
show that the Fisher metric as defined from the generalized heat capacity in §2.1, coincides with the
Bogoliubov-Kubo-Mori metric. In this particular case the equation with Casimir dissipation/production
reproduces a dissipative model used in quantum information geometry. Finally, in §3.3 we consider in
details the case of the Euclidean group of the plane SE(2), the associated Fisher metric, Lie-Poisson
equations with cocycle and entropy production equations. In §4, we make use of this geometric setting
to propose geometric integrators for some of the equations associated to the Souriau model and its
polysymplectic extension. We first review some facts on variational integrators on Lie groups in §4.1
and about central extensions of Lie groups and the associated Euler-Poincaré equations in §4.2. This
allows to obtain a variational formulation for the Lie-Poisson equations with cocycle. Based on this, we
present a symplectic integrator for the Lie-Poisson equation with cocycle in §4.3 and a multisymplectic
integrator for the Lie-Poisson field equations with cocycle in §4.4.

2. A general framework for Lie group statistical mechanics and symmetries

2.1. A class of generalized Gibbs probability densities, its associated entropy and Fisher metric

In this section we present a general framework for Gibbs probability densities in statistical
mechanics and information geometry, that includes the classes considered for instance in the Koszul and
Souriau models, as well as multivariate exponential families. In particular, we review the importance of
the logarithm of the characteristic function, identified as the Massieu potential, from which the entropy
arises as its Legendre transform and the Fisher information metric as its Hessian. We also discuss the
relation of these Gibbs sates with the maximum entropy principle. While the concepts manipulated here
are standard, our aim is to organize them in a general setting that is appropriate for the developments
made in this paper.

The results described in this paragraph are independent of possible Lie group symmetries of the
theory whose implications will be discussed in §2.2.

Let E be a vector space, whose elements will be denoted β since they are generalisations of the
inverse temperature. The duality pairing between elements ν of the dual space E∗ and elements β ∈ E
is denoted as 〈ν, β〉. Besides the vector space E, the setting also involves a manifold M, endowed with a
volume form dµ.

Let U : M→ E∗ be a smooth function defined on M with values in E∗. For each β ∈ E such that
the integrals ∫

M
e−〈U(m),β〉dµ ∈ R and

∫
M

U(m)e−〈U(m),β〉dµ ∈ E∗ (2.1)

converge, consider the probability densities on M given by

pβ(m) =
1

ψ(β)
e−〈U(m),β〉. (2.2)
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Denote by Ω ⊂ E the largest open set such that for all β ∈ Ω the two integrals in (2.3) converge.
The class of probability densities

{pβ}β∈Ω

defined in (2.2) is referred to as generalized Gibbs probability densities.

We denote by ψ : Ω→ R the associated partition function (or characteristic function), given by

ψ(β) =
∫

M
e−〈U(m),β〉dµ (2.3)

The Massieu potential is the function Φ : Ω→ R defined by

Φ(β) = − log(ψ(β)) (2.4)

from which we can write the generalized Gibbs probability densities as

pβ(m) = eΦ(β)−〈U(m),β〉, ∀ β ∈ Ω.

The thermodynamic heat Q : Ω→ E∗ is the first derivative of the Massieu potential, i.e.,

Q(β) := DΦ(β) =
∫

M
U(m)pβ(m)dµ = Eβ[U] ∈ E∗, (2.5)

where Eβ denotes the expectation with respect to pβ.

We denote by Ω∗ the image of the function Ω by Q and assume that Q = DΦ : Ω → Ω∗ is a
diffeomorphism. In this case, we can define the entropy s : Ω∗ → R as the Legendre transform of the
Massieu potential Φ : Ω→ R, namely,

s(ν) := 〈ν, β〉 −Φ(β), (2.6)

where β = Q−1(ν). In other words, β ∈ Ω in (2.6) is such that

DΦ(β) = ν.

The name entropy for this Legendre transform is justified by the following result.

Lemma 1. For every β ∈ Ω, we have the equality

s(Q(β)) = S(pβ),

where Q(β) is the thermodynamic heat and

S(p) = −
∫

M
p log p dµ

is the entropy of the probability density p.

Proof. On one hand, using the definition of s in (2.6) and Φ in (2.4), we have

s(Q(β)) = 〈Q(β), β〉 −Φ(β) =
∫

M
〈U(m), β〉 pβ(m)dµ + log(ψ(β)).
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On the other hand, we compute

S(pβ) = −
∫

M
pβ(m) log(pβ(m))dµ = −

∫
M

pβ(m) (− log(ψ(β))− 〈U(m), β〉) dµ

= log(ψ(β))
∫

M
pβ(m)dµ +

∫
M
〈U(m), β〉 pβ(m)dµ

= log(ψ(β)) +
∫

M
〈U(m), β〉 pβ(m)dµ.

These expressions are equal. �

Equation (2.6) is referred to as the Clairaut equation, see [36].

The generalized heat capacity is the symmetric tensor field K : Ω→ sym(E), defined as minus the
Hessian matrix of the Massieu potential, i.e.,

K(β) := −D2Φ(β) = D2 log ψ(β) : E× E→ R.

A direct computation gives, for all vectors δβ1, δβ2 ∈ E,

K(β)(δβ1, δβ2) = −D2Φ(β)(δβ1, δβ2) = −
d
dε

∣∣∣∣
ε=0

DΦ(β + εδβ1) · δβ2

= − d
dε

∣∣∣∣
ε=0

∫
M

〈U(m), δβ2〉
ψ(β + εδβ1)

e−〈U(m),β+εδβ1〉dµ

= Eβ

[
〈U, δβ1〉 〈U, δβ2〉

]
−Eβ

[
〈U, δβ1〉

]
Eβ

[
〈U, δβ2〉

]
hence the generalized heat capacity is

K(β) = Eβ

[
(U −Eβ(U))⊗ (U −Eβ(U))

]
= Eβ

[
(U −Q(β))⊗ (U −Q(β))

]
.

As a consequence, K(β) is positive semidefinite for all β ∈ Ω. Being the derivative of Q : Ω→ Ω∗, it is
positive definite if Q is a diffeomorphism.

Recall that in information geometry, the Fisher metric associated to the family pβ, β ∈ Ω, of
probability densities is the symmetric tensor field K : Ω→ sym(E) defined by

I(β) = −Eβ[D2 log pβ].

In our setting we have the following identification.

Proposition 2. The generalized heat capacity of pβ cocincides with the Fisher metric of pβ:

I(β) = K(β).

In other words, the Fisher metric is the Hessian of the characteristic function logarithm K(β) = D2 log ψ(β).

Proof. From (2.2), we have
log(pβ(m)) = − log ψ(β)− 〈U(m), β〉

hence, taking the second derivative with respect to β we get.

−D2 log pβ = D2 log ψ(β) = −D2Φ(β)
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Note that this equality does not depend on m, which proves that

I(β) = −Eβ[D2 log pβ] = −Eβ(D2Φ(β)) = −D2Φ(β) = K(β).

Hence the result is proved. �

Proposition 3. Let us assume that Q : Ω→ Ω∗ is a diffeomorphism. The inverse of the Fisher metric, i.e., the
cometric on Ω∗ induced from the Fisher metric on Ω, is given by minus the Hessian of the entropy:

−D2s(ν) : E∗ × E∗ → R, ∀ ν ∈ Ω∗.

Proof. From the definition of the thermodynamic heat, we have DΦ(Q−1(ν)) · δβ = 〈ν, δβ〉, for every
ν ∈ Ω∗ and δβ ∈ Ω. Taking the derivative with respect to ν, we get

D2Φ(Q−1(ν))
(
DQ−1(ν−1) · δν, δβ

)
= 〈δν, δβ〉 . (2.7)

Taking now the derivative of (2.6), we get Ds(ν) = Q−1(ν) hence D2s(ν) = DQ−1(ν). This can be
used in (2.7) and shows that D2Φ(β) ·D2s(ν) = idE∗ , where ν = Q(β). The result follows then from
Proposition 2. �

The following result shows that the generalized Gibbs probability densities satisfy the maximum
entropy principle, [55].

Proposition 4 (Maximum entropy principle). Let U : M → E∗ be a smooth function and ν ∈ Ω∗ ⊂ E∗

a given element. The generalized Gibbs probability density pβ in (2.2) with β = Q−1(ν) is a solution of the
maximum entropy principle:

max
q

[
−
∫

M
q log q dµ

]
such that


∫

M
q dµ = 1∫

M
Uq dµ = ν.

Proof. Given a probability density q, we have

−
∫

M
(q log q− q log pβ)dµ = −

∫
M

q log
q
pβ

dµ ≤ −
∫

M
q
(

1−
pβ

q

)
dµ

= −
∫

M
(q− pβ)dµ = 0.

Hence, if q satisfies the constraints we get

−
∫

M
q log qdµ ≤ −

∫
M

q log pβdµ =
∫

M
q (log ψ(β) + 〈U(m), β〉) dµ

= log ψ(β) +

〈∫
M

Uqdµ, β

〉
= −Φ(β) + 〈ν, β〉

=
〈

ν, Q−1(β)
〉
−Φ(Q−1(ν)) = S(ν) = s(pβ).

In the fourth equality we used β = Q−1(ν), in the fifth equality we used definition (2.6), and in the last
equality we used Lemma 1. �

Koszul-Vinberg characteristic function. We now quickly describe a particular case of the above
setting, which is related to Hessian geometry and in which the characteristic function (2.3) recovers
the Koszul-Vinberg characteirstic function, see [57–59,84,85] and the references in [8]. In this case, the
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Fisher information metric of information geometry coincides with the canonical Koszul Hessian metric
given by Koszul forms. Analogies between Koszul-Vinberg model and Souriau symplectic model of
statistical mechanics were enlightened in [8]. Here we will show how these two models precisely arise
as special cases of the general setting presented in §2.1.

Let E be a vector space and Ω ⊂ E an open convex cone in E. The cone Ω is assumed to be
regular, i.e., Ω contains no straight line, which is equivalent to the condition Ω ∩ (−Ω) = {0}. We
chose M = Ω∗ ⊂ E∗ as the dual cone defined by

Ω∗ :=
{

ξ ∈ E∗ | 〈ξ, β〉 > 0, ∀ β ∈ Ω− {0}
}

,

and we choose the function U : M = Ω∗ → E∗ as the identity function on Ω∗. We take the volume form
as the Lebesgue measure dξ. The generalized Gibbs probability densities defined in (2.2) are

pβ(ξ) =
1

ψ(β)
e−〈ξ,β〉, (2.8)

with characteristic function (2.3) given by

ψ(β) =
∫

Ω∗
e−〈ξ,β〉dξ. (2.9)

This expression recovers the Koszul-Vinberg characteristic function of the cone Ω, see [57–61,84,85]. We
call (2.8) the Koszul density of the cone Ω.

The Koszul 1-form, [58], defined as the differential of − log ψ(β) coincides with the thermodynamic
heat Q : Ω→ Ω∗ of the general setting above. It reads

Q(β) =
∫

Ω∗
ξ pβ(ξ)dξ = Eβ(ξ).

The Koszul metric defined as the second derivative of log ψ(β) coincides with the Fisher metric of
information geometry from Proposition 2. It reads

I(β)(δβ1, δβ2) =
∫

Ω∗
〈ξ, δβ1〉 〈ξ, δβ2〉 pβ(ξ)dξ −

∫
Ω∗
〈ξ, δβ1〉 pβ(ξ)dξ

∫
Ω∗
〈ξ, δβ2〉 pβ(ξ)dξ.

From Proposition 4, given ν ∈ Ω∗, the Koszul density of the cone Ω with β = Q−1(ν), satisfies the
maximum entropy principle

max
q

[
−
∫

Ω∗
q log q dξ

]
such that


∫

Ω∗
qdξ = 1∫

Ω∗
ξq dξ = ν,

see [8] for a direct proof.

An important example is Ω := sym+(n) ⊂ E = sym(n), the cone of symmetric positive definite
n× n matrices. The dual space is chosen as E∗ = sym(n) with duality pairing 〈ν, β〉 = Tr(νTβ). In this
case, it is well-known that Ω∗ = Ω. The generalized Gibbs probability densities are

pβ : sym+(n)→ R, pβ(ξ) =
1

ψ(β)
e−〈ξ,β〉,
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where the Koszul-Vinberg characteristic function can be explicitly computed as

ψ(β) =
∫

sym+(n)
e−〈ξ,β〉dξ = det(β)−

n+1
2 ψ(In).

The Massieu potential is deduced as

Φ(β) = − log(ψ(β)) =
n + 1

2
log(det(β))− log(ψ(In)) (2.10)

and the thermodynamic heat and entropy are

Q(β) = DΦ(β) =
n + 1

2
β−1 = Eβ(ξ)

s(ν) =
n + 1

2
log(det(ν)) +

n(n + 1)
2

(
1− log

n + 1
2

)
+ log(ψ(In)).

We can thus write the generalized Gibbs probability densities as

pβ(ξ) =
1

ψ(β)
e−〈ξ,β〉 = det(β)

n+1
2

1
ψ(In)

e−〈ξ,β〉.

Finally, the expression of the Fisher metric on Ω is found by using (2.10) as

I(β)(δβ1, δβ2) = −D2Φ(β)(δβ1, δβ2) =
n + 1

2
Tr(β−1δβ1β−1β2), (2.11)

for every δβ1, δβ2 ∈ E.

2.2. Equivariance with respect to Lie group actions

In this section, we study the consequences of the equivariance of the function U appearing in
the generalized Gibbs probability densities. More precisely, given a Lie group G, we assume that
U : M → E∗ is G-equivariant with respect to an action of the Lie group on M and an affine action of
the Lie group on E∗. This setting includes as special cases the Souriau symplectic model of statistical
mechanics [80], its polysymplectic extension [13], the case of multivariate Gaussian densities, as treated
for instance in [12], and approaches developed in quantum information geometry [73], for which the
Fisher metric will be shown to coincide with the Bogoliubov-Kubo-Mori metric in §3.2.

Let G be a Lie group, and let

φg : G×M→ M, (g, m) 7→ φg(m)

be a left action of G on M, i.e., φ satisfies

φe = idM and φg ◦ φh = φgh,

for every g, h ∈ G, with idM the identity on M. We denote by g the Lie algebra of G. The infinitesimal
generator of the action corresponding to ξ ∈ g is the vector field ξM on M defined by

ξM(m) =
d
dε

∣∣∣∣
ε=0

φexp(εξ)(m), (2.12)

for every m ∈ M, where exp : g→ G is the Lie group exponential map.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2020                   doi:10.20944/preprints202003.0458.v1

Peer-reviewed version available at Entropy 2020, 22, 498; doi:10.3390/e22050498

https://doi.org/10.20944/preprints202003.0458.v1
https://doi.org/10.3390/e22050498


9 of 49

We also consider a left linear action

ρ : G× E→ E, (g, β) 7→ ρg(β)

of G on the vector space E, ρg ∈ L(E, E). We denote by ρ∗ : G× E∗ → E∗ the linear right action of G
induced on the dual space E∗〈

ρ∗g(ν), β
〉
=
〈
ν, ρg(β)

〉
, ∀ β ∈ E, ν ∈ E∗, g ∈ G. (2.13)

We recall that a group one-cocycle with respect to ρ∗ is a map θ ∈ C∞(G, E∗) such that

θ(gh) = θ(g) + ρ∗g−1(θ(h)), (2.14)

for every g, h ∈ G. Equivalently, a group one-cocycle θ ∈ C∞(G, E∗) with respect to ρ∗ is such that
A : G× E∗ → E∗ defined by

Ag(ν) = ρ∗g−1(ν) + θ(g) (2.15)

is an affine left action of G on E∗.

Finally, we recall that the Jacobian of the action φg : M→ M relative to the volume form dµ is the
function Jφg : M→ R defined by φ∗gdµ = Jφgdµ, where φ∗g denotes the pull-back of the n-form dµ by
the diffeomorphism φg. We will be interested in actions which satisfy Jφg = c(g) is a constant on M.
Note that c(gh) = c(g)c(h), for every g, h ∈ G. The particular case c(g) = 1 corresponds to volume
preserving diffeomorphisms.

Proposition 5. Assume that the action φ of G on M satisfies φ∗gµ = c(g)µ and the function U is G-equivariant:

U(φg(m)) = ρ∗g−1(U(m)) + θ(g), (2.16)

for all g ∈ G and m ∈ M, where θ ∈ C∞(G, E∗) is a group one-cocycle. Then the open subset Ω ⊂ E is
invariant under the action of G on E, the partition function ψ satisfies

ψ(ρg(β)) = ψ(β)c(g)e〈θ(g−1),β〉

for every g ∈ G, and the probability density pβ satisfies

φ∗g pβ = p
ρ−1

g (β),

for every g ∈ G, where φ∗g pβ = (pβ ◦ φg)Jφg = (pβ ◦ φg)c(g) is the pull-back of a density.

As a consequence, the Massieu potential Φ(β), the thermodynamic heat Q(β), the entropy s(ν), and the
heat capacity K(β) satisfy the following equivariance properties

Φ(ρg(β)) = Φ(β)− log(c(g))−
〈

θ(g−1), β
〉

(2.17)

Q(ρg(β)) = ρ∗g−1(Q(β)) + θ(g) (2.18)

s(ρ∗g−1(ν) + θ(g)) = s(ν) + log(c(g)) (2.19)

K(ρg(β))
(
ρg(δβ1), ρg(δβ2)

)
= K(β)

(
δβ1, δβ2

)
, (2.20)

for every g ∈ G.
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Proof. Using (2.16) and a change of variables, we have

ψ(ρg(β)) =
∫

M
e−〈U(m),ρg(β)〉dµ =

∫
M

e−〈ρ
∗
g(U(m)),β〉dµ

=
∫

M
e−
〈

U(φg−1 (m))−θ(g−1),β
〉

dµ =
∫

M
e−
〈

U(φg−1 (m)),β
〉

dµ e〈θ(g−1),β〉

=
∫

M
e−〈U(m),β〉 Jφgdµ e〈θ(g−1),β〉 = ψ(β)c(g)e〈θ(g−1),β〉.

The other statement are checked in a similar way, by using (2.13), (2.14), (2.15), and (2.16). �

This proposition unifies in a single statement, several Lie group equivariance properties observed
in several models for information geometry and Lie group machine learning, see, e.g., [8,12,13,16,17].
Before discussing the symplectic and polysymplectic models we illustrate below these equivariance
properties for the Koszul model recalled above.

Equivariance in the Koszul model. For the Koszul model recalled above, see [8] and references therein,
G = Aut(Ω) is the group of linear isomorphism that preserves Ω ⊂ E. Given g ∈ Aut(Ω), we have
ρg : Ω→ Ω and it is clear that the dual action ρ∗g preserves the dual cone Ω∗. In this very special case,
M = Ω∗ and the G action on M is chosen as φg := ρ∗g−1 . Since U : Ω∗ → E∗ is the identity, there is
no cocycle. However, we have c(g) = Jφg which is not equal to one in general and, for instance, the
transformation (2.17) of the Massieu potential reads

Φ(ρg(β)) = Φ(β)− log(c(g)).

Let us consider as special case the cone of symmetric positive definite matrices Ω = sym+(n) ⊂
E = sym(n). The dual space is chosen as E∗ = sym(n) with duality pairing 〈ν, β〉 = Tr(νTβ) and we
have Ω∗ = Ω.

We consider the left action of GL(n) on E = sym(n) given by

ρA(β) = A−TβA−1. (2.21)

So, we have
ρ∗A(ν) = A−1νA−T and φA(ξ) = ρ∗A−1(ξ) = Aξ AT. (2.22)

Proposition 5 directly yields the following equivariance properties

ψ(A−TβA−1) = ψ(β)c(A)

pβ(Aξ AT)c(A) = pATβA(ξ)

Φ(A−TβA−1) = Φ(β)− log c(A)

Q(A−TβA−1) = AQ(β)AT

s(AνAT) = s(ν) + log c(A),

for all A ∈ GL(n), where c(A) = (det A)n+1.

2.3. Souriau symplectic model of statistical mechanics

We shall show that the Souriau symplectic model of statistical mechanics [80] arises as a special
case of the preceding setting, by considering (M, ω) a symplectic manifold and dµ the Liouville form
associated to ω.
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We then exploit this setting to show that the entropy in the Souriau model is a Casimir function
of the Lie-Poisson bracket with Lie algebra cocycle associated with the nonequivariance cocycle of
the momentum map, i.e., it Poisson commutes with every functions. Based on this we formulate a
dynamical geometric model for dissipation/production of this Casimir, following the Lie algebraic
setting proposed in [37,38]. This allows us to clarify the link between the geometry underlying Souriau
symplectic models and that underlying models proposed in [73] in the framework of quantum physics
by information geometry for some Lie algebras, see also [5]. Details will be given in §3.2.

In order to present the Souriau model, we first quickly recall below the notion of momentum
map and nonequivariance cocycle for symplectic manifolds, see, e.g., [1,63,68]. Consider a symplectic
manifold (M, ω), i.e., a manifold M endowed with a closed non-degenerate two form ω. The associated

Liouville form is dµ = (−1)n(n−1)/2

n! ω ∧ ...∧ω (n times), where 2n = dim M. Given a function h : M→ R,
the Hamiltonian vector field associated to H is the vector field Xh defined by

iXh ω = dh. (2.23)

Recall that the symplectic form ω defines the Poisson bracket (see Remark 7)

{ f , g} = ω(X f , Xg) (2.24)

on functions f , g ∈ C∞(M).

A Lie group action φ : G×M → M of G on M is symplectic, if it preserves the symplectic form,
i.e., φ∗gω = ω, for every g ∈ G. Taking the derivative of this identity with respect to g at g = e, we get
£ξM ω = 0, for every ξ ∈ g, where ξM is the infinitesimal generator associated to the Lie algebra element
ξ ∈ g, see (2.12), and £ is the Lie derivative. Equivalently, we have

d(iξM ω) = 0,

for every ξ ∈ g, i.e., the one-form iξM ω is locally exact. If it is globally exact, i.e., if ξM is a Hamiltonian
vector field for every ξ ∈ g, then the action is called Hamiltonian and admits a momentum map J : M→ g∗,
which satisfies

iξM ω = dJξ ,

where Jξ : M→ R is defined by Jξ(m) := 〈J(m), ξ〉, for every ξ ∈ g.

When M is connected, there is a well-defined group one-cocycle θ : G → g∗, called the
nonequivariance cocycle, given by

θ(g) = J(Φg(m))−Ad∗g−1(J(m)),

where m ∈ M can be arbitrarily chosen. It characterizes the nonequivariance of the momentum map
with respect to the action of G on M and the coadjoint action of G on g∗. The group one-cocycle property
is

θ(gh) = θ(g) + Ad∗g−1(θ(h)),

for every g, h,∈ G. We consider its differential Θ := Teθ seen as a map Θ : g× g→ R, i.e.

Θ(ξ, η) = 〈Teθ(ξ), η〉 = d
dε

∣∣∣∣
ε=0
〈θ(exp(εξ)), η〉 . (2.25)
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Taking the derivative of the relation above, we get

Θ(ξ, η) = J[ξ,η] − {Jξ , Jη}, (2.26)

where the last term uses the Poisson bracket (2.24). The map Θ : g× g→ R is bilinear, skew-symmetric,
and, as can be readily verified, satisfies the Lie algebra two-cocycle identity

Θ([ξ, η], ζ) + Θ([η, ζ], ξ) + Θ([ζ, ξ], η) = 0. (2.27)

We refer to [1,63,68] for detailed introductions to these concepts.

Remark 6 (Lie group and Lie algebra cohomology). A group one-cocycle θ ∈ C∞(G, g∗) is called a
group one-coboundary if there is a λ ∈ g∗ such that

θ(g) = λ−Ad∗g−1 λ

for every g ∈ G. The quotient space of one-cocycles modulo one-coboundaries is called the first group
cohomology of G and is denoted by H1(G, g∗). These definitions extend to arbitrary representation of G
on a vector space, as in (2.14).

A Lie algebra two-cocycle Θ is called a Lie algebra two-coboundary if there is λ ∈ g∗ such that

Θ(ξ, η) = 〈λ, [ξ, η]〉 ,

for all ξ, η ∈ g. The quotient space of Lie algebra two-cocycles by Lie algebra two-coboundaries is called
the second Lie algebra cohomology of g and is denoted by H2(g,R).

2.3.1. Souriau symplectic model of satistical mechanics

The Souriau symplectic model of statistical mechanics is obtained by considering the following specific
situation in the setting described in §2.2:

M : a symplectic manifold

dµ : the Liouville volume

φg : a Hamiltonian action

E = g : the Lie algebra of G

ρg = Adg : the adjoint action of G on g

U = J : M→ g∗ : a momentum map.

In particular, the thermodynamic heat becomes Q(β) = Eβ(J) and the Fisher metric on Ω ⊂ g is

I(β) = Eβ

(
(J−Eβ(J))⊗ (J−Eβ(J))

)
∈ sym(g).

Proposition 5 directly yields the following equivariance properties

Adg Ω = Ω, ψ(Adg β) = ψ(β)e〈θ(g−1),β〉, pβ ◦ φg = pAdg−1 β
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and

Φ(Adg β) = Φ(β)−
〈

θ(g−1), β
〉

(2.28)

Q(Adg β) = Ad∗g−1(Q(β)) + θ(g) (2.29)

s(Ad∗g−1 ν + θ(g)) = s(ν) (2.30)

K(Adg β)
(

Adg δβ1, Adg δβ2
)
= K(β)

(
δβ1, δβ2

)
, (2.31)

for every g ∈ G. Note also that Ω∗ is invariant under the affine action ν 7→ Ad∗g−1 ν + θ(g).

From Proposition 4, given ν ∈ Ω∗ ⊂ g∗, the generalized Gibbs probability density

pβ(m) =
1

ψ(β)
e−〈J(m),β〉,

with β = Q−1(ν), satisfies the maximum entropy principle

max
q

[
−
∫

M
q log q dµ

]
such that


∫

M
q dµ = 1∫

M
Jq dµ = ν.

We refer to [64] for a detailed presentation of Souriau’s model. We refer to [27] for recent developments
exploiting Souriau’s model.

2.3.2. Property of the entropy in Souriau’s model

From (2.30), we note that the entropy s is constant on the affine coadjoint orbits defined by

O = {Ad∗g−1 µ0 + θ(g) | g ∈ G}, (2.32)

for µ0 ∈ g∗. It is well-known that affine coadjoint orbits are symplectic manifolds, with symplectic form
given by

ωO(µ)
(

ad∗ξ µ−Θ(ξ, ·), ad∗η µ−Θ(η, ·)
)
= 〈µ, [ξ, η]〉 −Θ(ξ, η), (2.33)

for µ ∈ O, ξ, η ∈ g. This is an extension to the affine case of the well-known Kirilov-Kostant-Souriau
symplectic form on coadjoint orbits. The connected components of the affine coadjoint orbits (2.32) are
the symplectic leaves in the Poisson manifold (g∗, { , }Θ), where { , }Θ is the Lie-Poisson bracket with
cocycle (or affine Lie-Poisson bracket)

{ f , g}Θ(µ) =

〈
µ,
[

δ f
δµ

,
δg
δµ

]〉
−Θ

(
δ f
δµ

,
δg
δµ

)
, f , g : g∗ → R, (2.34)

see, e.g., [63].

The Hamiltonian system (see Remark 7) associated to the Lie-Poisson bracket with cocycle (2.34)
and to a given Hamiltonian function h : g∗ → R is given by the Lie-Poisson equations with cocycle (or
affine Lie-Poisson equations)

d
dt

f = { f , h}Θ, ∀ f : g∗ → R, (2.35)

which yield the dynamical system

d
dt

µ + ad∗δh
δµ

µ = Θ
(

δh
δµ

, ·
)

, (2.36)
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for a curve µ(t) ∈ g∗. The Lie-Poisson equations with cocycle have important applications, in particular
they appear in the geometric formulation of complex fluids, see [41–43], and geometrically exact
(Cosserat) rods, see [33,39]. See [74] for another point of view on Lie-Poisson equations with cocycle.
These equations are also referred to as Lie-Poisson equations with non-zero cohomology.

Remark 7 (Poisson brackets and reduction, see [68]). Recall that a Poisson bracket on a manifold M is a
Lie algebra structure {·, ·} on C∞(M) which is a derivation in each factors: { f g, h} = f {g, h}+ { f , h}g.
For instance, a symplectic structure ω on M defines the Poisson bracket { f , g} = ω(X f , Xg) for
f , g ∈ C∞(M). Another example is the Lie-Poisson bracket

{ f , g}(µ) = ±
〈

µ,
[

δ f
δµ

,
δg
δµ

]〉
f , g ∈ C∞(g∗) (2.37)

on the dual of any Lie algebra g, as well as its affine modified version (2.34) by a two-cocycle Θ.
The Hamiltonian system associated to a Poisson bracket and a given Hamiltonian h ∈ C∞(M) is the
dynamical system characterized by the condition

d
dt

f = { f , h}

for every functions f ∈ C∞(M), see for instance (2.35) and (2.36) .
An important point for applications in mechanics is the understanding of such Poisson structures

as being induced from a canonical symplectic form (or, equivalently, from the associated canonical Poisson
bracket) on a cotangent bundle, via reduction by symmetry relative to a Lie group action. This is the
case for the Lie-Poisson bracket (2.37) which is induced by the canonical symplectic form on T∗G and
the action of G on T∗G given by the cotangent lifted action of right or left translation. The Lie-Poisson
bracket with cocycle (2.34) is induced by the canonical symplectic form on T∗G and an affine modified
cotangent lifted action of right or left translation ([41]). �

Corollary 8. The entropy s of the Souriau model is a Casimir function for the Lie-Poisson bracket with cocycle
(2.36), i.e., it satisfies

{s, f }Θ = 0,

for every smooth functions f : g∗ → R.

Proof. From (2.30), we have 〈
δs
δµ

,− ad∗ξ µ + Θ(ξ, ·)
〉

= 0

for all ξ ∈ g. This is equivalent to ad∗δs
δµ

µ−Θ
(

δs
δµ , ·

)
= 0, which shows that {s, f }Θ = 0, for all f . �

As a consequence of the above, the information manifold foliates into level sets of the entropy, given
by affine coadjoint orbits, that could be interpreted in Thermodynamics: motion remaining on theses
level sets is non-dissipative, whereas motion transversal to these level sets is dissipative. The affine
Kirillov-Kostant-Souriau form makes each orbit into a homogeneous symplectic manifold. Hamiltonian
motion on these affine coadjoint orbits is given by the solutions of the Lie-Poisson equations with
cocycle (2.36). We shall introduce below a geometric way to introduce dissipation and hence, motion
through affine coadjoint orbits.

Elementary examples. A particularly simple case of Souriau symplectic model is when the symplectic
manifold is a cotangent bundle M = T∗Q endowed with the canonical symplectic form. Let G be a Lie
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group acting on the left on Q. Then its cotangent lifted action on T∗Q is symplectic and admits the
momentum map J : T∗Q→ g∗ given by〈

J(αq), ξ
〉
=
〈
αq, ξQ(q)

〉
. (2.38)

In this case there is no cocycle, which yields obvious simplifications in the properties (2.28)–(2.30).
Another case without cocycle is when M is an affine coadjoint orbit M = O = {Ad∗g−1 µ + θ(g) |

g ∈ G} endowed with the symplectic form (2.33). In this case, the momentum map is simply the
inclusion J : O → g∗ of the affine coadjoint orbit in the dual of the Lie algebra g∗, [63]. While
this example is simple, it plays an important role in the applications, e.g., [17,65]. An example with
nonequivariance cocycle will be treated in details in §3.3 for the special Euclidean group of the plane.

2.3.3. Dynamics with Casimir dissipation/production

We take advantage of the Casimir function s associated to the Souriau model, to formulate a
dynamical geometric model for dissipation/production of this Casimir. This allows us to clarify the
link between Souriau symplectic models and models proposed in [73] in the framework of quantum
physics by information geometry for some Lie algebras, see also [5].

We follow the general Lie algebraic approach developed in [37,38] for Casimir dissipation, slightly
extended here to take into account of a cocycle, and to a wider class of dissipation.

Given a symmetric positive bilinear form γ : g× g→ R, a Hamiltonian h : g∗ → R, a parameter
Λ 6= 0, and a function k : g∗ → R such that [

δh
δµ

,
δk
δµ

]
= 0, (2.39)

we consider the modification of the Lie-Poisson equations with cocycle (2.35) given by

d
dt

f = { f , h}Θ −Λ γ

([
δ f
δµ

,
δk
δµ

]
,
[

δs
δµ

,
δk
δµ

])
(2.40)

for every f . We denote by [ : g 7→ g∗ the flat operator associated to γ. That is, the linear form ξ[ ∈ g∗

is given by ξ[(η) = γ(ξ, η), for all ξ, η ∈ g. Note that the flat operator need not be either injective or
surjective. Using the equality

−γ

([
δ f
δµ

,
δk
δµ

]
,
[

δs
δµ

,
δk
δµ

])
= −

〈[
δs
δµ

,
δk
δµ

][
,
[

δ f
δµ

,
δk
δµ

]〉
=

〈
ad∗δk

δµ

[
δs
δµ

,
δk
δµ

][
,

δ f
δµ

〉
,

equation (2.40) yields the dynamical system

d
dt

µ + ad∗δh
δµ

µ = Θ
(

δh
δµ

)
+ Λ ad∗δk

δµ

[
δs
δµ

,
δk
δµ

][
. (2.41)

For Θ = 0 and h = k, this is the model proposed in [37,38] and applied there in the infinite dimensional
setting, with applications to geophysical fluids and magnetohydrodynamics.

The main properties of system (2.41) are the following.

(i) Energy conservation: taking f = h in (2.40), we obtain

d
dt

h = {h, h}Θ −Λ γ

([
δh
δµ

,
δk
δµ

]
,
[

δs
δµ

,
δk
δµ

])
= 0
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because of (2.39) and since {h, h}Θ = 0. Hence the total energy h is preserved.
(ii) Casimir dissipation (Λ > 0) or production (Λ < 0): taking f = s in (2.40), and using {s, f }Θ = 0, we

obtain

d
dt

s = {s, h}Θ −Λ γ

([
δs
δµ

,
δh
δµ

]
,
[

δs
δµ

,
δk
δµ

])
= −Λ

∥∥∥∥[ δs
δµ

,
δk
δµ

]∥∥∥∥2
≤ 0 / ≥ 0,

where ‖ξ‖2 = γ(ξ, ξ).

We will explain in §3.2 how system (2.41) recovers the model proposed in [73] in the context of
information geometry for quantum systems for Lie algebras with unitary representation.

2.4. Polysymplectic model of statistical mechanics

Polysymplectic geometry, as developed in [46], arises as a special case of multisymplectic geometry
which is the natural geometric setting of classical field theories, see, e.g., [45]. When used in conjunction
with the general setting developed in §2.1 and §2.2, the polysymplectic setting furnishes a natural
generalisation of the Souriau symplectic model, to which many properties extend. This extension was
proposed in [13]. Here we emphazise this model as a specific case of the general framework described
in §2.1 and §2.2. This allows to transpose immediately all the properties of this framework to the
polysymplectic model. In particular, we will see that the entropy of the polysymplectic model enjoys a
natural extension of the Casimir property observed in §2.3.2. The relevant equation is here an Lie-Poisson
field equation with cocycle that we will describe in details below.

This model is motivated by higher-order model of statistical physics. For instance, for small data
analytics (rarified gases, sparse statistical surveys,...), the density of maximum entropy should consider
higher order moments constraints, so that the Gibbs density is not only defined by first moment but
fluctuations request 2nd order and higher moments, as introduced in [48–50,52,54,54].

Polysymplectic manifolds. We only need a restricted amount of notions from polysymplectic geometry
which are straighforward extensions of those recalled above in the symplectic context. We refer to
[46] for more information. A polysymplectic manifold (M, ω) is a manifold M endowed with a closed
nondegenerate Rn-valued 2-form. We can identify ω with a collection (ω1, ..., ωn), of closed 2-forms
with

⋂n
i=1 ker ωi = {0}.

A Lie group action φ : G×M → M of G on M is polysymplectic, if Φ∗gωi = ωi, for every g ∈ G
and i = 1, ..., n. Similarly as before, this implies that iξM ω is a closed Rn-valued one-form on M. If
this form is exact, then the action is called Hamiltonian and admits a polysymplectic momentum map
J : M→ L(g,Rn), which satisfies

iξM ω = dJξ ,

where Jξ : M→ Rn is defined by Jξ(m) = J(m) · ξ. In a similar way with the symplectic case, if M is
connected, there is group one-cocycle θ ∈ C∞(G, L(g,Rn)), θ = (θ1, ..., θn), defined by

θi(g) = Ji(Φg(m))−Ad∗g−1(J
i(m)).

and one defines the map Θ : g× g→ Rn by

Θ(ξ, η) :=
d
dε

∣∣∣∣
ε=0

θ(exp(εξ))(η) ∈ Rn. (2.42)

Taking the derivative of the relation above, we get

Θ(ξ, η)i = Ji
[ξ,η] −ωi(ξM, ηM). (2.43)
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As a consequence Θ is skew-symmetric, and satisfies the two-cocycle identity

Θ([ξ, η], ζ) + Θ([η, ζ], ξ) + Θ([ζ, ξ], η) = 0, (2.44)

see [46].

Polysymplectic model. The polysymplectic model of statistical mechanics is obtained by considering the
following specific situation in the equivariant setting described in §2.2:

M : a polysymplectic manifold

dµ : a volume form

φg : a volume preserving Hamiltonian action

E = L(Rn, g) : the linear maps from Rn to the Lie algebra of G

ρg = (Adg)
n : the action induced on L(Rn, g) by the adjoint

action of G on g

U = J : M→ E∗ = L(g,Rn) : a polysymplectic momentum map.

Here the space E = L(Rn, g) of linear maps is identified with the Cartesian product gn = g× ...× g and
(Adg)n acts on β ∈ E as

(Adg)
n(β1, ..., βn) = (Adg β1, ..., Adb βn).

The thermodynamic heat becomes a map Q : Ω ⊂ L(Rn, g) → Ω∗ ⊂ L(g,Rn) with Q(β) = Eβ(J) ∈
Ω∗ ⊂ L(g,Rn) and the Fisher metric on Ω ⊂ L(Rn, g) is

I(β) = Eβ

(
(J−Eβ(J))⊗ (J−Eβ(J))

)
∈ sym

(
L(Rn, g)

)
.

Proposition 5 directly yields the following equivariance properties

(Adg)
nΩ = Ω, ψ((Adg)

nβ) = ψ(β)e〈θ(g−1),β〉, pβ ◦ φg = p(Adg−1 )n β

and

Φ((Adg)
nβ) = Φ(β)−

〈
θ(g−1), β

〉
(2.45)

Q((Adg)
nβ) = (Ad∗g−1)

n(Q(β)) + θ(g) (2.46)

s((Ad∗g−1)
nν + θ(g)) = s(ν) (2.47)

K((Adg)
nβ)
(
(Adg)

nδβ1, (Adg)
nδβ2

)
= K(β)

(
δβ1, δβ2

)
, (2.48)

for every g ∈ G. Note also that Ω∗ is invariant under the affine action ν ∈ L(g,Rn) 7→ (Ad∗g−1)nν +

θ(g) ∈ L(g,Rn).

From Proposition 4, given ν ∈ Ω∗ ⊂ L(g,Rn), the generalized Gibbs probability density

pβ(m) =
1

ψ(β)
e−〈J(m),β〉,
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with β = Q−1(ν), satisfies the maximum entropy principle

max
q

[
−
∫

M
q log q dµ

]
such that


∫

M
q dµ = 1∫

M
J q dµ = ν.

Particular cases. A particularly simple case of polysymplectic Souriau model is given by the manifold
M = T∗Q ⊕ ...⊕ T∗Q (Whitney sum with n factors) endowed with the polysymplectic form Ω =

(Ω1, ..., Ωn), with Ωk = (πk)∗Ωcan. Here πk : T∗Q⊕ ...⊕ T∗Q → T∗Q is the projection onto the kth

factor of the sum and Ωcan is the canonical symplectic form on T∗Q. Let G be a Lie group acting on
the left on Q. Then its naturally induced action on T∗Q⊕ ...⊕ T∗Q is polysymplectic and admits the
polysymplectic momentum map J : T∗Q⊕ ...⊕ T∗Q→ L(g,Rn) given by

J(α1
q, ..., αn

q ) = (J(α1
q), ..., J(αn

q )),

where J : T∗Q→ g∗ is the momentum map associated to the cotangent lifted action of G on T∗Q given
in (2.38). In this case there is no cocycle.

Another case without cocycle in the polysymplectic momentum map is when M is chosen as an
orbit M = O = {(Ad∗g−1)nµ + θ(g) | g ∈ G}, µ ∈ L(g,Rn), of the affine left action of G on L(g,Rn)

given by µ 7→ (Ad∗g−1)nµ + θ(g), with θ ∈ C∞(G, L(g,Rn)) a group one-cocycle. This orbit M is

endowed with a natural polysymplectic form ω = (ω1, ..., ωn) with ωi defined by

ωi(µ)
(

ad∗ξ µ−Θ(ξ, ·), ad∗η µ−Θ(η, ·)
)
=
〈

µi, [ξ, η]
〉
−Θi(ξ, η)

with Θ defined in (2.42), which is the polysymplectic version of (2.33). In this case, the polysymplectic
momentum map is simply the inclusion J : O → L(g,Rn) of the orbit in L(g,Rn).

Property of the entropy and polysymplectic Lie-Poisson equations with cocycle. In the context of
the polysymplectic model, a natural generalisation of the Lie-Poisson equations with cocycle (2.36) are

n

∑
k=1

∂

∂xk µk +
n

∑
k=1

ad∗δh
δµk

µk =
n

∑
k=1

Θk
(

δh
δµk , ·

)
, (2.49)

for a map µ : x = (x1, ..., xn) ∈ U ⊂ Rn 7→ µ(x) = (µ1(x), ..., µn(x)) ∈ L(g,Rn), with h : L(g,Rn)→ R
a given Hamiltonian. In absence of the cocycle, such a field theoretic version of the Lie-Poisson equation
appears, for instance, for the spacetime Lagrangian and Hamiltonian theoretic description of Cosserat
rods and molecular strands, see [33,39].

From the invariance property (2.47), we have

n

∑
k=1

〈
δs

δµk ,− ad∗ξ µk + Θk(ξ, ·)
〉

= 0

for all ξ ∈ g. This is equivalent to

n

∑
k=1

ad∗δs
δµk

µk −
n

∑
k=1

Θi( δs
δµk , ·

)
= 0.
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For h = s, equations (2.49) thus reduce to ∑n
k=1

∂
∂xk µk = 0. This is the natural extension of the Casimir

property of s observed in the Souriau model in §2.3.2, given there by the condition ad∗δs
δµ

µ−Θ
(

δs
δµ , ·

)
= 0,

giving d
dt µ = 0.

2.5. The Fisher metric on orbits and equivariance

We give here a general expression of the Fisher metric on orbits of the action ρ : G× E → E, in
the general setting described in §2.1 and §2.2. This clarifies the link between the Fisher metric and the
metric on adjoint orbits considered by Souriau, as enlightened in [12].

As in §2.1 we consider a manifold M, a vector space E, a function U : M → E∗, and the class of
generalized Gibbs probability densities

pβ(m) =
1

ψ(β)
e−〈U(m),β〉, β ∈ Ω.

As in §2.2 given a Lie group G we consider an action φ : G×M→ M and a representation ρ : G× E→ E.
We denote by

ξE(β) :=
d
dε

∣∣∣∣
ε=0

ρexp(εξ)(β) and ξE∗(ν) :=
d
dε

∣∣∣∣
ε=0

ρ∗exp(εξ)(ν),

β ∈ E, ν ∈ E∗ the infinitesimal generators of the representations ρg and ρ∗g associated to ξ ∈ g. We will
use the equality 〈ξE∗(ν), β〉 = 〈ν, ξE(β)〉. Given the group one-cocycle θ ∈ C∞(G, E∗) associated to the
function U, see (2.16), we define Θ ∈ C∞(g, E∗) by

〈Θ(ξ), β〉 = d
dε

∣∣∣∣
ε=0
〈θ(exp(εξ)), β〉 , (2.50)

for ξ ∈ g and β ∈ E. Recall that the Fisher metric is I(β) = −Eβ[D2 log pβ] and coincides with the
generalized heat capacity, see Proposition 2.

Proposition 9. On the G-orbit through β ∈ Ω, the Fisher metric is written in terms of Θ and Q as follows

I(β)(ξE(β), ζE(β)) = − 〈Θ(ξ), ζE(β)〉+ 〈ξE∗(Q(β)), ζE(β)〉 . (2.51)

Proof. Taking the derivative with respect to g at e of the equality (2.18) given by〈
Q(ρg(β)), γ

〉
=
〈

ρ∗g−1(Q(β)), γ
〉
+ 〈θ(g), γ〉

for every γ ∈ E, we get

〈DQ(β) · ξE(β), γ〉 = 〈Θ(ξ), γ〉 − 〈ξE∗(Q(β)), γ〉 ,

for every ξ ∈ g. For γ = ζE(β) ∈ TβO, we get

〈DQ(β) · ξE(β), ζE(β)〉 = 〈Θ(ξ), ζE(β)〉 − 〈ξE∗(Q(β)), ζE(β)〉 .

So, from Proposition 2, we can write

I(β)(ξE(β), ζE(β)) = −D2Φ(β)(ξE(β), ζE(β)) = − 〈Θ(ξ), ζE(β)〉+ 〈ξE∗(Q(β)), ζE(β)〉 ,

which proves the result. �
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We illustrate this result for the Souriau model, its polysymplectic extension, and the Koszul model.

Souriau Lie group statistical model. In this case M is endowed with a symplectic structure ω, we take
E = g and U = J : M → g∗ with nonequivariance cocycle θ ∈ C∞(G, g∗), i.e., θ(g) = J(φg(m))−
Ad∗g−1 J(m) ∈ g∗. The map Θ defined in (2.50) becomes here a two cocycle Θ : g × g → R, see
(2.25)–(2.27), via the relation 〈Θ(ξ), η〉 = Θ(ξ, η). Proposition 9 immediately yields the following result
as a corollary, which is obtained by noting that ξE(β) = adξ β and ξE∗(ν) = ad∗ξ ν and is a consequence
of (2.29).

Corollary 10. On the adjoint orbit through β in g, the Fisher metric is written as follows

I(β)(adξ β, adζ β) = −Θ(ξ, adζ β) +
〈

ad∗ξ Q(β), adζ β
〉

. (2.52)

Note that (2.52) can be written as

I(β)(adξ β, adζ β) = −Θβ(ξ, adζ β),

where Θβ(ξ, η) := Θ(ξ, η)−
〈

ad∗ξ Q(β), η
〉
= Θ(ξ, η)− 〈Q(β), [ξ, η]〉 is a two-cocycle. In particular

the last term is a coboundary. We refer to [64] for more information.

Polysymplectic Lie group statistical model. In this case M is endowed with a polysymplectic structure
ω = (ω1, ..., ωn), we take E = L(Rn, g) and U = J : M → L(g,Rn) with nonequivariance cocycle
θ ∈ C∞(G, L(g,Rn)):

θ(g) = J(φg(m))− (Ad∗g−1)
nJ(m) ∈ L(g,Rn).

The map Θ ∈ C∞(g, L(g,Rn)) defined in (2.50) is identified here with the map Θ : g× g→ Rn defined
in (2.42), with the properties (2.43) and (2.44). The identification being Θ(ξ)(η) = Θ(ξ, η), where
Θ(ξ) ∈ L(g,Rn) is applied to η ∈ g. We note the equality 〈Θ(ξ), (η1, ..., ηn)〉 = ∑n

i=1 Θi(ξ, ηi), for
(η1, ..., ηn) ∈ gn identified with L(Rn, g), where 〈 , 〉 on the left hand side is the duality pairing between
L(Rn, g) and L(g,Rn).

We now apply Proposition 9, which follows here from (2.46). We have the infinitesimal generators
ξE(β) = (adξ β1, ..., adξ βn) and ξE∗(ν) = (ad∗ξ ν1, ..., ad∗ξ νn), and we get

〈Θ(ξ), ζE(β1, ..., βn)〉 =
〈
Θ(ξ), (adζ β1, ..., adζ βn)

〉
=
〈

Θi(ξ, adζ βi)
〉

and
〈ξE∗Q(β), ζE(β)〉 = ∑

i

〈
ad∗ξ Q(β)i, adζ βi

〉
.

So, the following result is obtained.

Corollary 11. On the adjoint orbit through β in L(Rn, g), the Fisher metric is written as follows

I(β)
(
(adξ β1, ..., adξ βn), (adζ β1, ..., adζ βn)

)
= −∑

i
Θi(ξ, adζ βi) + ∑

i

〈
ad∗ξ Q(β)i, adζ βi

〉
. (2.53)

Koszul model. For the Koszul model with Ω = sym(n)+ the cone of positive definite matrices and the
Lie group G = GL(n), the actions (2.21) and (2.22) have the associated infinitesimal generators

ξE(β) = −ξTβ− βξ and ξE∗(ν) = −ξν− νξT.
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In this case Θ = 0 and Proposition 9 is satisfied by noting the equalities

I(β)(ξE(β), ζE(β)) = (n + 1)Tr
(
ξζ + β−1ξTβζ

)
= 〈ξE∗(Q(β)), ζE(β)〉 .

3. Applications

In this section we show how the framework considered in §2 applies to various examples and
helps identifying common underlying geometric structures. We start with the case of multivariate
Gaussian probability densities as an illustration of the general framework, for which a cocycle is needed
and which does not fall into the setting of the Souriau model. We then enlighten the strong analogies
with quantum information geometry by considering Lie algebras with unitary representation and
show that the Fisher metric as defined from the generalized heat capacity in §2.1, coincides with the
Bogoliubov-Kubo-Mori metric. In this particular case the equation with Casimir dissipation/production
considered in §2.3.3 reproduces a dissipative model of [73]. Finally, we consider in details the case of
the Euclidean group of the plane SE(2) since it allows explicit and relatively easy computations while
exhibiting the interesting feature of having cocycle. This example fits into the setting of the Souriau
symplectic model.

3.1. Multivariate Gaussian probability densities

In this paragraph we study in details the case of multivariate Gaussian densities, following the
approach developed in §2.1-§2.2. A first treatment in this spirit was given in [12, §8]. Here we clarify
several steps in this approach by following systematically the general setting presented in §2.1-§2.2,
while we note that this example is not a particular case of the Souriau model. We present explicitly
the cocycle, which is here defined on the general affine group, with values in the Cartesian product of
symmetric matrices and the Euclidean space.

Gaussian probability densities in generalized Gibbs form. Consider a multivariate Gaussian density
with symmetric and positive definite covariance matrix R ∈ sym+(n) and mean m ∈ Rn. The Gaussian
probability density is written in the generalized Gibbs form pβ discussed above in §2.1 as follows:

p(R,m)(z) =
1

(2π)n/2 det(R)1/2 e−
1
2 (z−m)TR−1(z−m)

=
1

(2π)n/2 det(R)1/2e
1
2 mTR−1m

e−(
1
2 zTR−1z−mTR−1z)

=
1

(2π)n/2 det(R)1/2e
1
2 mTR−1m

e−〈(zzT,z),( 1
2 R−1,−R−1m)〉

=:
1

ψ(β)
e−〈U(z),β〉 =: pβ(z),

for every z ∈ Rn. In the last equality above, we have defined the energy function

U : Rn → sym(n)×Rn, U(z) = (zzT, z),

the vector β ∈ sym+(n)×Rn in terms of (R, m) as

β = (β1, β2) := (
1
2

R−1,−R−1m) ⇔ R =
1
2

β−1
1 , m = −1

2
β−1

1 β2, (3.1)

and the partition function

ψ(β) = (2π)n/2 det(R)1/2e
1
2 mTR−1m = πn/2 det(β1)

−1/2e
1
4 Tr(βT2 β−1

1 β2).
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The general theory of §2.1 will be applied here with the manifold M = Rn, the vector space E =

sym(n)×Rn, and the open subset Ω = sym+(n)×Rn . It is important to note that the element β of the
general theory is not given by the couple (R, m), but related to (R, m) via (3.1). This plays a main role
in the understanding of the equivariance properties below.

Characteristic function, thermodynamic heat, and entropy. The Massieu potential is computed in
terms of β ∈ Ω as

Φ(β) = − log(ψ(β)) = −n
2

log(2π)− 1
2

log(det(R))− 1
2

mTR−1m

= K +
1
2

log(det(β1))−
1
4

βT2 β−1
1 β2,

where we defined the constant K = − n
2 log(π). To compute the derivative, we consider the dual space

E∗ = sym(n)×Rn, with duality pairing

〈(ν1, ν2), (β1, β2)〉 = Tr(ν1β1) + ν2 · β2,

(ν1, ν2) ∈ E∗, (β1, β2) ∈ E∗. With respect to this duality pairing we have

δΦ
δβ1

=
1
2

β−1
1 +

1
4

β−1
1 β2(β−1

1 β2)
T = R + mmT,

δΦ
δβ2

= −1
2

β−1
1 β2 = m,

so we get the thermodynamic heat Q : Ω ⊂ E→ Ω∗ ⊂ E∗ as

β = (β1, β2) 7→ Q(β1, β2) =
(1

2
β−1

1 +
1
4

β−1
1 β2(β−1

1 β2)
T,−1

2
β−1

1 β2
)
= (ν1, ν2).

In terms of the covariance matrix R and the mean m, this is written as

(
1
2

R−1,−R−1m) ∈ Ω ⊂ E 7→ (R + mmT, m) ∈ Ω∗ ⊂ E∗.

The entropy in terms of β = (β1, β2) and (R, m) is computed by taking the Legendre transform of Φ as

s(β1, β2) =
n
2
(1 + log π)− 1

2
log(det(β1))

s(R, m) =
n
2
(1 + log(2π)) +

1
2

log(det(R)).

Its expression s : Ω∗ → R in terms of (ν1, ν2) is found by using

Q−1(ν1, ν2) =
(1

2
(ν1 − ν2νT2 )

−1,−(ν1 − ν2νT2 )
−1ν2

)
.
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Fisher information metric. We compute the generalized heat capacity K(β) := −D2Φ(β) as follows,
see §2.1:

K(β) = −D2Φ(β1, β2)((δβ1, δβ2), (∆β1, ∆β2))

= − d
dε

∣∣∣∣
ε=0

DΦ(β1 + ε∆β1, β2 + ε∆β2)(δβ1, δβ2)

= − d
dε

∣∣∣∣
ε=0

1
2

Tr(β−1
1 δβ1)−

1
4

Tr(β−1
1 β2βT2 β−1

1 δβ1) +
1
2

Tr(βT2 β−1
1 δβ2)

=
1
2

Tr(β−1
1 ∆β1β−1

1 δβ1) +
1
2

Tr(β−1
1 ∆β1β−1

1 β2βT2 β−1
1 δβ1)

− 1
2

Tr(β−1
1 ∆β2βT2 β−1

1 δβ1)−
1
2

Tr(β−1
1 δβ2βT2 β−1

1 ∆β1)

+
1
2

Tr(∆βT2 β−1
1 δβ2).

From Proposition 2 this coincides with the Fisher metric. Let us verify that this is the case by rewriting
these five terms in terms of the mean and covariance matrix (m, R). The above expression equals

=
1
2

Tr(∆RR−1δRR−1)

+ Tr(R−1δRR−1mmTR−1∆R)

− Tr(R−1δRR−1mmTR−1∆R) + Tr(∆mmTR−1δRR−1)

− Tr(R−1∆RR−1mmTR−1δR) + Tr(δmmTR−1∆RR−1)

+ Tr(R−1∆RR−1mmTR−1δR)− Tr(δmmTR−1∆RR−1)

− Tr(∆mTR−1δRR−1m) + Tr(∆mTR−1δm)

=
1
2

Tr(∆RR−1δRR−1) + Tr(∆mTR−1δm),

which gives the Fisher metric I(R, m) for multivariate Gaussian densities.

Equivariance with respect to the general affine group. We consider the general affine group

GA(n) = GL(n)sRn

defined as the semidirect product of the general linear group and Rn. The group multiplication is

(A, a)(B, b) = (AB, Ab + a)

and the inverse of an element is (A, a)−1 = (A−1,−A−1a). The Lie algebra is the semidirect product
Lie algebra ga(n) = gl(n)sRn with Lie brackets [(U, u), (V, v)] = (UV −VU, Uv−Vu).

The group GA(n) acts on the left on the covariance matrix and the mean (R, m) ∈ sym+(n)×Rn

as follows:
Ψ(A,a)(R, m) = (ARAT, Am + a). (3.2)

We consider the left action of GA(n) on Rn given by

φ(A,a)(z) = Az + a.

We note that Jφ(A,a) = det(A), a constant function on Rn, hence φ satisfies the hypothesis of Lemma 5.
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It is instructive to observe that the expression

Φ(Ψ(A,a)(R, m))−Φ(R, m)

is not linear in (R, m), compare with (2.17). However, such a statement is true when it is expressed in
terms of the variables (β1, β2). We first need the expression of the action of GL(n) on (β1, β2). This is
done in the next lemma.

Lemma 12. The left action of GA(n) induced on (β1, β2) ∈ sym(n)×Rn by the action Ψ in (3.2) is given by

ρ(A,a)(β1, β2) =
(

A−Tβ1 A−1, A−Tβ2 − 2A−Tβ1 A−1a
)
.

Its dual left action is
ρ∗(A,a)−1(ν1, ν2) =

(
Aν1 AT + [2Aν2aT]sym, Aν2

)
Proof. This is a direct computation using (3.1). �

The situation is illustrated in the following commuting diagram.

Ψ(A,a)
(R, m) ∈ sym(n)×Rn - sym(n)×Rn

? ?
(β1, β2) ∈ sym(n)×Rn sym(n)×Rn-

ρ(A,a)

The following result shows that the equivariant setting developed in §2.2 applies here with the
action φ(A,a) and the representation ρ(A,a) (not Ψ(A,a)).

Lemma 13. The energy function U(z) = (zzT, z) satisfies the relation

U(φ(A,a)(z)) = ρ∗(A,a)−1(U(z)) + θ(A, a) (3.3)

for the group one-cocycle θ : GA(n)→ sym(n)×Rn given by

θ(A, a) = (aaT, a).

The Massieu potential, the thermodynamic heat, and the entropy satisfy the equivariance properties

Φ(ρ(A,a)(β1, β2))−Φ(β1, β2) = − log(det(A)) +
〈

θ((A, a)−1), (β1, β2)
〉

Q(ρ(A,a)(β1, β2)) = ρ∗(A,a)−1(Q(β1, β2)) + θ(A, a)

s
(
ρ∗(A,a)−1(ν1, ν2) + θ(A, a)

)
= s(ν1, ν2) + log(det(A)).

Proof. To prove (3.3) we note that

U(φ(A,a)(z))− ρ∗(A,a)−1(U(z)) = U(Az + a)− ρ∗(A,a)−1(zzT, z)

= ((Az + a)(Az + a)T, Az + a)− (AzzTAT + [2AzaT]sym, Az)

= (aaT, a).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2020                   doi:10.20944/preprints202003.0458.v1

Peer-reviewed version available at Entropy 2020, 22, 498; doi:10.3390/e22050498

https://doi.org/10.20944/preprints202003.0458.v1
https://doi.org/10.3390/e22050498


25 of 49

The other results follow from Proposition 5 and from Jφ(A,a) = det(A). Alternatively, we can compute
explicitly

Φ(ψ(A,a)(β1, β2))

= Φ(A−Tβ1 A−1, A−Tβ2 − 2A−Tβ1 A−1a)

= K +
1
2

log(det(A−Tβ1 A−1))

− 1
4

Tr
(
(A−Tβ1 A−1)−1(A−Tβ2 − 2A−Tβ1 A−1a)(A−Tβ2 − 2A−Tβ1 A−1a)T

)
= K +

1
2

log(det(A)−2β1)

− 1
4

Tr
(

β−1
1 (β2 − 2β1 A−1a)(βT2 − 2aTA−Tβ1)

)
= K− log(det(A)) +

1
2

log(det(β1))

− 1
4

Tr
(

β−1
1 β2βT2

)
+

1
2

Tr
(

β2aTA−T
)
+

1
2

Tr
(

A−1aβT2
)
− Tr

(
A−1aaTA−Tβ1

)
= Φ(β1, β2)− log(det(A)) +

〈
(−A−1aaTA−T, A−1a), (β1, β2)

〉
which shows the result since (−A−1aaTA−T, A−1a) = θ((A, a)−1). �

The identity relating the Fisher information metric, the cocycle, and the thermodynamic heat
follows from the general formula (2.51) as

I(β)(ξE(β), ζE(β)) = − 〈Θ(ξ), ζE(β)〉+ 〈ξE∗(Q(β)), ζE(β)〉 ,

where (β1, β2) ∈ sym+(n) × Rn, ξ = (ξ1, ξ2), ζ = (ζ1, ζ2) ∈ ga(n), Θ(ξ1, ξ2) = (0, ξ2) and the
infinitesimal generators are

ξE(β) =
(
− ξT1 β1 − β1ξ1,−ξT1 β2 − 2β1ξ2

)
ξE∗(ν) =

(
− ξ1ν1 − ν1ξT1 − 2[ν2ξT2 ]

sym,−ξ1ν2
)
.

Geodesics on multivariate Gaussian densities and Noether theorem. Let us consider the Lagrangian
L : TΩ = Ω× E→ R given by the kinetic energy of the Fisher metric

L(R, Ṙ, m, ṁ) =
1
2

Tr((R−1Ṙ)2) + ṁTR−1ṁ. (3.4)

The associated Euler-Lagrange equations are{
R̈ + ṁṁT − ṘR−1Ṙ = 0

m̈− ṘR−1ṁ = 0.
(3.5)

In accordance with Proposition 5, see (2.20), the Fisher metric is invariant with respect to the action
of GA(n) on (R, m) ∈ Ω given in (3.2). As a consequence, the Lagrangian is invariant under the tangent
lifted action of GA(n) on TΩ given by

ΦT
(A,a)(R, Ṙ, m, ṁ) = (ARAT, AṘAT, Am + a, Aṁ).
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From Noether theorem, the corresponding momentum map is conserved. The momentum map JL :
TΩ→ ga(n)∗ associated to this Lagrangian and this action is given by

JL(R, Ṙ, m, ṁ) = J
(

R,
∂L
∂Ṙ

, m,
∂L
∂ṁ

)
= J

(
R, R−1ṘR−1, m, 2R−1ṁ

)
with J : T∗Ω → ga(n)∗ the momentum map of the cotangent lifted action of GA(n) relative to the
canonical symplectic form, see (2.38). Using the expression of the infinitesimal generator of Ψ given by

(U, u)Ω(R, m) =
(

R, UR + RUT, m, Um + u
)
,

for (U, u) ∈ ga(n), we get J(R, m, pR, pm) =
(
2pRR + pmmT, pm

)
, so that

JL(R, Ṙ, m, ṁ) =
(
2R−1Ṙ + 2R−1ṁmT, 2R−1ṁ

)
.

From Noether theorem, we have the conservation laws{
R−1Ṙ + R−1ṁmT = cste

R−1ṁ = cste.

We also refer to [34,35].

3.2. Unitary representations and quantum Fisher metric

In this paragraph, we highlight the strong analogies between the equivariant setting considered
in this paper, and techniques in quantum information geometry, as developed in [73], see also [8]. In
particular, when this setting is considered in the quantum context, the Fisher metric, as defined from the
derivative of the generalized heat capacity, coincides with the Bogoliubov-Kubo-Mori metric. We also
illustrate how the general equations with Casimir dissipation/production considered above reproduce
the dissipative model proposed in [73].

In [73] information geometry was studied for some Lie algebras where for certain unitary
representations, the statistical manifold of states was defined as convex cone for which the partition
function is finite, making reference to Bogoliubov-Kubo-Mori metric. Note that only the case with zero
cohomology for the Lie algebras g = so(3) and g = sl(2,R) was studied.

Let G be a Lie group, acting on a complex Hilbert space by a unitary left representation, Ug : H →
H. We denote by βH the associated infinitesimal generator, giving the Lie algebra representation, and
consider the self-adjoint operator iβH. We assume dimH < ∞. The following class of density matrices
is considered

ρβ =
1

ψ(β)
exp(−iβH), (3.6)

for β ∈ g, with partition function ψ(β) = Tr(exp(−iβH)). We have adopted in (3.6) a general form for
the class of density matrices, which includes the class considered in [73] and reference therein.

As in §2.1, we adopt the following definitions

Φ(β) = − log(ψ(β)), Q(β) = DΦ(β), K(β) = −D2Φ(β)

corresponding to the Massieu potential, the thermodynamic heat, and the generalized heat capacity.
We note that

〈Q(β), δβ〉 = Tr(ρβiδβH) = 〈iδβH〉ρβ
,
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for all δβ ∈ g, which gives the expectation value of the observable iδβH in the quantum state ρβ. A
result analogue to (2.5) in the classical case. The generalized heat capacity is computed as

K(β)(δβ1, δβ2) = −D2Φ(β)(δβ1, δβ2)

= Tr
(
ρβi(δβ1)Hi(δβ2)H

)
− Tr

(
ρβi(δβ1)H

)
Tr
(
ρβi(δβ2)H

)
,

thereby giving the covariance of the observables i(δβ1)H and i(δβ2)H in the quantum state ρβ. In [73],
K is called the Bogoliubov-Kubo-Mori metric and chosen as the quantum version to the Fisher metric.
Such a choice is geometrically natural in view of the result of Proposition 2 which identifies K with the
Fisher metric in the classical case.

The von Neumann entropy of the density matrix can be expressed in terms of Φ and Q as
−Tr(ρβ log ρβ) = Tr(ρβiβH) + log ψ(β) = 〈Q(β), β〉 − Φ(β) = s(ν), for ν = Q(β) = 〈i(·)H〉β ∈ g∗.
This is analogue to the result of Lemma 1 giving the entropy as the Legendre transform of Φ(β), thus
giving a quantum version of the Clairaut equation.

Using (Adg β)H = UgβHUg−1 , we have the following equivariance properties, which are obtained
as in Proposition 5,

ψ(Adg β) = ψ(β)

Φ(Adg β) = Φ(β)

ρAdg β = Ug ◦ ρβ ◦Ug−1

Q(Adg β) = Ad∗g−1(Q(β))

s(Ad∗g−1 ν) = s(ν)

K(Adg β)(Adg δβ1, Adg δβ2) = K(β)(δβ1, δβ2),

for every g ∈ G. In particular ψ and Φ are constant on adjoint orbits and s is a Casimir for the
Lie-Poisson bracket on g∗

{ f , g}(µ) =
〈

µ,
[

δ f
δµ

,
δg
δµ

]〉
, (3.7)

where we identify g∗ with g using the duality pairing 〈ν, β〉 = Tr(ν∗β) and view g as a Lie subalgebra
of u(H). Note that with this pairing, we have Ad∗g−1 = Adg and ad∗β µ = [µ, β], so adjoint and coadjoint
orbits are identified, and the Kirillov-Kostant-Souriau symplectic form on coadjoint orbits becomes

ωO(µ)(adξ µ, adη µ) = 〈µ, [ξ, η]〉 .

Relation (2.51) and ad∗ξ µ = [µ, ξ] gives here the following expression of the Bogoliubov-Kubo-Mori
metric on (co)adjoint orbits

K(µ)
(

adξ µ, adη µ
)
=
〈

ad∗ξ Q(µ), adη µ
〉
= 〈Q(µ), [ξ, [η, µ]]〉 = 〈µ, [[Q(µ), ξ], η]〉 .

Casimir dissipation/production. The general equations for Casimir dissipation/production (2.40)
applied here with g ⊂ u(H), g∗ = g, and γ(ν, β) = 〈ν, β〉 = Tr(ν∗β), become

d
dt

f = { f , h} −Λ
〈[

δ f
δµ

,
δk
δµ

]
,
[

δs
δµ

,
δk
δµ

]〉
(3.8)
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for every f , with { f , g} the Lie-Poisson bracket (3.7). Since ad∗ξ µ = [µ, ξ], equations (2.41) yield

d
dt

µ +

[
µ,

δh
δµ

]
= Λ

[[
δs
δµ

,
δk
δµ

]
,

δk
δµ

]
. (3.9)

Such equations where proposed in [73] with h(µ) = 〈iH, µ〉, k(µ) = 〈iT, µ〉, s(µ) = 1
2 〈µ, µ〉, with T and

H two commuting self-adjoint operator [T, H] = 0, thereby yielding the system

d
dt

µ + i [µ, H] = −Λ [[µ, T] , T] , (3.10)

with energy conservation and entropy production (Λ < 0)

d
dt

h = 0 and
d
dt

s = −Λ
∥∥[µ, T]

∥∥2.

3.3. Souriau symplectic model for SE(2), Lie-Poisson equations with cocycle, and Casimir dissipation

In this paragraph, we illustrate many aspects of the geometric setting by considering the special
Euclidean group of the plane, as it allows explicit and relatively easy computations while having a
nonequivariant momentum map. We present the Lie-Poisson equations with cocycle (affine Lie-Poisson
equations) with Casimir dissipation/production associated to the entropy of the Souriau symplectic
model.

Momentum map and cocycle. Consider the special Euclidean group of the plane SE(2) = SO(2)sR2

with semidirect product group multiplication

(Rϕ, a)(Rψ, b) = (RϕRψ, Rϕb + a),

where Rϕ is a rotation of angle ϕ. It acts on the plane R2 as

φ(θ,a)(x) = Rθ x + a (3.11)

with infinitesimal generator
(λ, u)R2(x) = −λJx + u

for (λ, u) ∈ se(2) = so(2)sR2, where we identify so(2) with R and with

J =

[
0 1
−1 0

]
.

We consider on R2 the symplectic form ω(x, y) = x · Jy. It is easy to see that the action (3.11) is
symplectic and admits the momentum map

J(x) =
(
− 1

2
|x|2, Jx).

This momentum map is not equivariant, with nonequivariance cocycle given by

θ(Rϕ, a) =
(
− 1

2
|a|2, Ja

)
. (3.12)
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Gibbs densities, entropy, and Fisher metric. The generalized Gibbs probability densities are here
given on M = R2 by

pβ(x) =
1

ψ(β)
e−〈J(x),β〉 =

1
ψ(β)

e
1
2 λ|x|2−u·Jx,

where β = (λ, u) ∈ Ω ⊂ se(2), with Ω = (−∞, 0)×R2 and the partition function and Massieu potential
are computed to be

ψ(β) = −2π

λ
e−

1
2λ |u|

2
, Φ(β) = − log(2π) + log(−λ) +

1
2λ
|u|2, β = (λ, u) ∈ Ω.

From this, we get the thermodynamic heat Q : Ω ⊂ se(2)→ Ω∗ ⊂ se(2)∗ as

Q(λ, u) = DΦ(λ, u) =
( 1

λ
− |u|

2

2λ2 ,
1
λ

u
)

and we note that Ω∗ = {(µ, m) ∈ se(2)∗ | µ + |m|2
2 < 0}. The entropy s : Ω∗ → R is obtained as the

Legendre transform of Φ : Ω→ R as

s(µ, m) = 1 + log(2π) + log
(
− µ− |m|

2

2
)
. (3.13)

We note the relation
δs
δm

=
δs
δµ

m,
δs
δµ

=
(
µ +
|m|2

2
)−1,

between the partial derivatives of s. From Proposition 2, the Fisher metric is found as

I(β)(δβ1, δβ2) = −D2Φ(β)(δβ1, δβ2)

=
1

λ2

(
1− |u|

2

λ

)
δλ1δλ2 +

1
λ2 (u · δu1δλ2 + u · δu2δλ1)−

1
λ

δu1 · δu2,

for every β = (λ, u) ∈ Ω ⊂ se(2), i.e.,

I(β) =
1

λ2

[
1− |u|

2

λ uT

u λI2

]
.

Affine Lie-Poisson equations and Casimir dissipation. The affine coadjoint action associated to (3.12)
is found as

Ad∗(ϕ,a)−1(µ, m) + θ(ϕ, a) =
(
µ− Rϕm · Ja− 1

2
|a|2, Rϕm + Ja

)
,

from which we directly observe that the entropy (3.13) is constant on affine coadjoint orbitsOΘ ⊂ se(2)∗

and hence is a Casimir of the Lie-Poisson bracket with cocycle on se(2)∗.
Using the expression Θ((λ, u), (γ, v)) = −ω(u, v) of the associated two cocycle, we get the

Lie-Poisson bracket with cocycle

{ f , g}Θ(µ, m) =

〈
(µ, m),

[(
δ f
δµ

,
δ f
δm

)
,
(

δg
δµ

,
δg
δm

)]〉
−Θ

((
δ f
δµ

,
δ f
δm

)
,
(

δg
δµ

,
δg
δm

))
=

δg
δµ

m · J δ f
δm
− δ f

δµ
m · J δg

δm
+

δ f
δm
· J δg

δm

=
δg
δµ

ω
(
m,

δ f
δm
)
− δ f

δµ
ω
(
m,

δg
δm
)
+ ω

( δ f
δm

,
δg
δm
)
.
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Given a Hamiltonian h : se(2)∗ → R, one gets the Lie-Poisson equations with cocycle as the following
system of ODEs

ḟ = { f , h}Θ ⇐⇒


d
dt

µ + m · J δh
δm

= 0

d
dt

m +
δh
δµ

Jm = J
δh
δm

.
(3.14)

These equations determine Hamiltonian dynamics on affine coadjoint orbits that are the level sets
of the entropy. From the point of view of thermodynamics, motion remaining on these surfaces is
non-dissipative, whereas motion transversal to these surfaces is dissipative. We apply below the
geometric approach to include dissipation and hence, motion through affine coadjoint orbits, as
considered in general in §2.3.3.

Given the entropy (3.13) and a function k : se(2)∗ → R which commutes with the Hamiltonian, i.e.

δk
δµ

J
δh
δm

=
δh
δµ

J
δk
δm

⇐⇒ δk
δµ

δh
δm

=
δh
δµ

δk
δm

(for instance k = h), the Casimir dissipative/production equation (2.40) gives here

d
dt

f = { f , h}Θ −Λ
( δk

δµ
J

δ f
δm
− δ f

δµ
J

δk
δm
)
·
( δk

δµ
J

δs
δm
− δs

δµ
J

δk
δm
)

= { f , h}Θ −Λ
( δk

δµ

δ f
δm
− δ f

δµ

δk
δm
)
·
( δk

δµ

δs
δm
− δs

δµ

δk
δm
)

for every f , therefore, the following equations emerge
d
dt

µ + m · J δh
δm

= Λ
δs
δµ

(
δk
δµ

m− δk
δm

) · δk
δm

d
dt

m +
δh
δµ

Jm = J
δh
δm
−Λ

δs
δµ

(
δk
δµ

m− δk
δm

)
δk
δµ

,
(3.15)

which have the property of preserving the Hamiltonian while dissipating/producing entropy as

d
dt

s = −Λ
∣∣∣ δk
δµ

δs
δm
− δs

δµ

δk
δm

∣∣∣2 = −Λ
δs
δµ

2∣∣∣ δk
δµ

m− δk
δm

∣∣∣2
= − Λ

(µ + |m|2
2 )2

∣∣∣ δk
δµ

m− δk
δm

∣∣∣2.

They are the SE(2) version of the equations (3.9) proposed in the quantum context.

4. Variational principles and (multi)symplectic integrators

In this section we make use of the geometric setting presented above to propose geometric
integrators for some of the equations described earlier. Geometric integrators are numerical schemes
designed with the aime to preserve as much possible the geometric structures underlying the equations
they discretize [47]. One efficient way to derive geometric integrators is to exploit the variational
formulation of the continuous equations and to mimic this formulation at the spatial and/or temporal
discrete level. For instance, for the ODEs of classical mechanics, a time discretization of the Lagrangian
variational formulation permits the derivation of numerical schemes, called variational integrators, that
are symplectic, exhibit good energy behavior, and inherit a discrete version of Noether’s theorem which
guarantees the exact preservation of momenta arising from symmetries, see [69]. These methods are
especially well-suited for systems on Lie group, [67].
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Variational integrators were extended to PDEs in various ways, one way being given by
multisymplectic variational integrators ([30,32,62,66]) in which the starting point is a spacetime
discretization of the Hamilton principle. Here also, a discrete version of Noether’s theorem for
field theories is available in presence of symmetries. We refer to [29,32,40] for recent applications
of multisymplectic variational discretizations.

In this section we will present a geometric discretization of the Lie-Poisson equations with cocycle,
see §2.3, that is symplectic and preserves the affine coadjoint orbits. We will then extend this approach
to treat the case of the polysymplectic version of these Lie-Poisson equations with cocycle, see §2.4,
by constructing a multisymplectic integrator. In order to achieve these goals, we will first present the
variational principles attached to these equations, by looking at them from the Lagrangian side. Then
these variational principles will be discretized in time or in space and time.

4.1. Preliminaries on variational Lie group integrators

We very briefly recall the broad idea of variational integrators and refer to [69] for the detailed
description. They are based on a discrete version of the Hamilton principle given, for a Lagrangian
L : TQ→ R, as

δ
∫ T

0
L(q(t), q̇(t))dt = 0, (4.1)

for arbitrary variations of the curve q(t) with fixed extremities at t = 0, T.

Euler-Poincaré and Lie-Poisson equations. We will be especially interested in the case where the
configuration manifold is a Lie group, Q = G, and the Lagrangian L : TG → R is right G-invariant. In
this case L induces a reduced Lagrangian ` on the quotient space (TG)/G identified with the Lie algebra
g, i.e., we get ` : g → R defined by the relation L(g, ġ) = `(ġg−1). The Euler-Lagrange equations for
L are equivalent to equations on g written in terms of the reduced Lagrangian ` : g → R, called the
Euler-Poincaré equations. They are obtained by computing the variational principle for ` induced by the
Hamilton principle (4.1). It is given by

δ
∫ T

0
`(ξ(t))dt = 0, for δξ = ∂tη + [η, ξ] (4.2)

and yields the Euler-Poincaré equations

d
dt

δ`

δξ
+ ad∗ξ

δ`

δξ
= 0 (4.3)

for the curve ξ(t) ∈ g. In (4.2), η(t) is an arbitrary curve in g vanishing at the extremities. If the
Lagrangian is hyperregular, one can rewrite the Euler-Lagrange equations and the Euler-Poincaré
equations in terms of the Hamiltonian associated to L or `. In terms of the Hamiltonian h : g∗ → R
obtained by the Legendre transform of `, equations (4.3) become the Lie-Poisson equations

d
dt

µ + ad∗δh
δµ

µ = 0, (4.4)

see [68].

Variational integrators. Let Q be a configuration manifold and let L : TQ → R be a Lagrangian.
Suppose that a time step ∆t has been fixed, denote by {tk = k∆t | k = 0, ..., N} the sequence of time,
and by qd : {tk}N

k=0 → Q, qd(tk) = qk a discrete curve. A discrete Lagrangian is a map Ld : Q×Q→ R,
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Ld = Ld(qk, qk+1) that approximates the action integral of L along the curve segment between qk and
qk+1, that is, we have

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt,

where q(tk) = qk and q(tk+1) = qk+1. Usually this approximation is related to some numerical
quadrature rule of the integral above. The discrete analogue of Hamilton’s principle (4.1) reads

δ
N−1

∑
k=0

Ld(qk, qk+1) = 0 (4.5)

for all variations δqd of qd with vanishing endpoints. After taking variations and applying a discrete
integration by parts formula (change of indices), we obtain the discrete Euler-Lagrange equations:

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0, ∀ k ∈ {1, . . . , N − 1}. (4.6)

These equations define, under appropriate conditions, an algorithm which solves for qk+1 knowing the
two previous configuration variables qk and qk−1.

To define the discrete momentum maps, one first needs to consider the discrete Legendre
transforms defined by

F+Ld(qk, qk+1) := D2Ld(qk, qk+1) ∈ T∗qk+1
Q

F−Ld(qk, qk+1) := −D1Ld(qk, qk+1) ∈ T∗qk
Q.

(4.7)

Then, given a Lie group action Φ : G × Q → Q, the discrete Lagrangian momentum maps J+Ld
, J−Ld

:
Q×Q→ g∗ are defined by〈

J+Ld
(qk, qk+1), ξ

〉
=
〈

D2Ld(qk, qk+1), ξQ(qk+1)
〉

〈
J−Ld

(qk, qk+1), ξ
〉
=
〈
−D1Ld(qk, qk+1), ξQ(qk)

〉
.

(4.8)

If the discrete curve {qj}N
j=0 satisfies the discrete Euler-Lagrange equations then we have the equality

J+Ld
(qk−1, qk) = J−Ld

(qk, qk+1), for all j = 1, ..., N − 1. (4.9)

If the discrete Lagrangian Ld is G-invariant under the diagonal action of G induced by Φ on Q× Q,
then the two discrete momentum maps coincide, J−Ld

= J+Ld
=: JLd , therefore from (4.9), we obtain that

JLd is a conserved quantity along the discrete curve solution of (4.6), that is,

JLd(qk, qk+1) = JLd(qk−1, qk), for all j = 1, ..., N − 1. (4.10)

This result is referred to as the discrete Noether’s theorem.

The symplectic character of the integrator is obtained by showing that the scheme (qk−1, qk) 7→
(qk, qk+1) preserves the discrete symplectic two-forms Ω±Ld

:= (F±Ld)
∗Ωcan on Q× Q, where Ωcan is

the canonical symplectic two-form on T∗Q, see [69].

Discrete Euler-Poincaré equations. For Lie groups, variational discretization and the associated
discrete Lagrangian reductions, was started in [24,67], and referred to as Lie group variational integrators.
The essential idea behind such integrators is to discretize Hamilton’s principle and to update group
elements using group operations. For the case of invariant systems on Lie group, on chooses a discrete
Lagrangian that inherits the invariance of the continuous Lagrangian, i.e., Ld : G× G → R satisfies
Ld(gkh, gk+1h) = Ld(gk, gk+1), for all h ∈ G.
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From this invariance, one defines the reduced discrete Lagrangian Ld on the associated quotient
space (G× G)/G identified with G with quotient map (gk, gk+1) ∈ G× G 7→ gk+1g−1

k ∈ G, i.e., the two
discrete Lagrangians are related as Ld(gk, gk+1) = Ld(gk+1g−1

k ), this is the point of view developed in
[67]. The discrete Hamilton principle (4.5) for Ld induces a discrete Euler-Poincaré variational principle
for Ld that yields the discrete Euler-Poincaré equations on G. Numerically speaking it is desirable to
obtain the algorithm on a vector space rather than on a Lie group. For this aim, a local diffeomorphism
τ : g → G with τ(0) = e is introduced to express small discrete changes in the group configuration
through unique Lie algebra elements. Such a map is referred to as a retraction map ([25,51]). The discrete
reduced Lagrangian is transported into a discrete Lagrangian `d defined on a neighborhood of 0 in g

via the relation
`g(ξk) = Ld(gk+1g−1

k ), with τ(∆tξk) = gk+1g−1
k . (4.11)

The relation on the right in (4.11) is thought of as a discrete version of ξ = ġg−1.

The discrete Euler-Poincaré equations for `d are obtained by computing the discrete variational
principle induced on the discrete action ∑N−1

k=0 `d(ξk) from the discrete Hamilton principle
δ ∑N−1

k=0 L(gk, gk+1) = 0 recalled above in (4.5). The main step in this process is to compute the variations
δξk of ξk =

1
∆t τ−1(gk+1g−1

k ) induced by arbitrary variations δgk. One finds the expression

δξk =
1

∆t
dLτ−1(∆tξk) ·

(
Adτ(∆tξk)−1 ηk+1 − ηk

)
, (4.12)

where ηk = δgkg−1
k and dLτ−1(ξ) : g → g is the inverse to the left trivialized derivative of τ, dLτ(ξ) :

g→ g defined by
dLτ(ξ) · η = τ(ξ)−1Dτ(ξ) · η. (4.13)

The discrete Euler-Poincaré variational principle thus reads

δ
N−1

∑
k=0

`d(ξk) = 0, (4.14)

with respect to variations δξk of the form (4.12) with ηk vanishing at the endpoints. It yields the discrete
Euler-Poincaré equations.

Ad∗τ(∆tξk−1)−1 µk−1 − µk = 0, µk := dLτ−1(∆tξk)
∗ δ`

δξk
. (4.15)

Here dLτ−1(ξ)∗ : g∗ → g∗ denotes the dual map to dLτ−1(ξ) : g→ g. We refer to [24,25,56,67] for the
discrete Euler-Poincaré equations.

Being equivalent to the discrete Euler-Lagrange equations on the Lie group, this scheme is
equivalent to a symplectic scheme (gk−1, gk) 7→ (gk, gk+1) on G × G. From the discrete Noether
theorem, the scheme also preserves the discrete momentum map and the coadjoint orbits O ⊂ g∗.
Moreover, the scheme µk−1 ∈ O 7→ µk ∈ O is symplectic on coadjoint orbits with respect to the
Kirillov-Kostant-Souriau symplectic form, see [67]. Note that the discrete momentum map is computed
as

JLd(gk, gk+1) =
1

∆t
Ad∗gk

(
dLτ−1(∆tξk)

∗ δ`

δξk

)
=

1
∆t

Ad∗gk
µk,

which is readily seen to be preserved, JLd(gk−1, gk) = JLd(gk, gk+1), along the solutions of (4.45)
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4.2. Central extensions and variational principle for the Lie-Poisson equations with cocycle

We have considered in (2.36) the Lie-Poisson equations with cocycle given by

d
dt

µ + ad∗δh
δµ

µ = Θ
(

δh
δµ

, ·
)

, (4.16)

associated to the Souriau symplectic model. Our aim is to derive a geometric integrator for this system
that is symplectic and preserves the affine coadjoint orbits for general Hamiltonian. One systematic step
is to look at equations (4.16) from the Lagrangian side, as it has been done for the ordinary Lie-Poisson
equations above. Assuming that h is hyperregular, we can take the associated Lagrangian ` : g→ R
and rewrite the equations as

d
dt

δ`

δξ
+ ad∗ξ

δ`

δξ
= Θ (ξ, ·) , (4.17)

for a curve ξ(t) ∈ g. However, in general (i.e. for arbitrary `, arbitrary g, and arbitrary Θ) there is no
natural variational principle for these equations, in the sense of a variational principle induced from the
ordinary Hamilton principle for a Lagrangian L : TG → R.

Nevertheless, there is a way to interpret the system (4.17) as being induced by an ordinary
Euler-Poincaré equations on a central extension of the Lie group G, integrating the Lie algebra cocycle
Θ. This is related to a well-known fact that affine coadjoint orbits can be seen as ordinary coadjoint
orbits of a central extension. We recall this fact below.

Lie group operations on central extensions. We shall focus on topologically trivial central extensions
of finite dimensional Lie groups by R. The central extended group is thus of the form Ĝ = G×R with
group multiplication

(g, α)(h, β) = (gh, α + β + B(g, h))

where B : G× G → R is a group two-cocycle, i.e., it satisfies

B( f , g) + B( f g, h) = B( f , gh) + B(g, h)

for all f , g, h ∈ G. It can always been chosen such that B(e, g) = B(g, e) = 0, in which case we have
B(g, g−1) = B(g−1, g) and (g, α)−1 = (g−1,−α− B(g−1, g)). One obtains from this the expression of
the adjoint and coadjoint actions as

Ad(g,α)(η, v) =
(

Adg η, v +
〈

θ(g−1), η
〉
) (4.18)

Ad∗(g,α)(µ, a) = (Ad∗g µ + aθ(g−1), a) (4.19)

where the group one-cocycle θ ∈ C∞(G, g∗) is defined by

〈θ(g), η〉 = D2B(g−1, g) · ηg− D1B(g, g−1) · ηg. (4.20)

Formula (4.19) shows that the ordinary coadjoint orbits of Ĝ through (µ, 1) are affine coadjoint orbits of
G. We have the corresponding formulas

ad(ξ,u)(η, v) =
(
[ξ, η],−Θ(ξ, η)

)
(4.21)

ad∗(ξ,u)(µ, a) = (ad∗ξ µ− aΘ(ξ, ·), 0). (4.22)
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Euler-Poincaré and Lie-Poisson equations on central extensions. From (4.22), the Euler-Poincaré
equations for a reduced Lagrangian ̂̀ : ĝ = g×R→ R take the form

d
dt

δ̂̀
δξ

+ ad∗ξ
δ̂̀
δξ

=
δ̂̀
δu

Θ(ξ, ·)

d
dt

δ̂̀
δu

= 0.

(4.23)

They are the critical conditions for the Euler-Poincaré variational principle

δ
∫ T

0
̂̀(ξ(t), u(t))dt = 0, for δξ = ∂tη + [η, ξ], δu = ∂tv−Θ(η, ξ), (4.24)

which is just a special instance of (4.2) applied to central extensions. In (4.24) η(t) ∈ g and v(t) ∈ R are
arbitrary curves vanishing at the extremities.

Given a Lagrangian ` : g→ R, one can then define the Lagrangian

̂̀(ξ, u) = `(ξ) +
1
2

u2 (4.25)

on ĝ for which (4.23) does reduce to (4.17) if the initial condition for the curve u(t) is u(0) = 1. This
means that equations (4.17) have a natural Euler-Poincaré variational formulation, if one interprets
them as an invariant subsystem of an Euler-Poincaré equation on a central extension of G via a group
two-cocycle B that integrates the one-cocycle θ as in (4.20).

The same reasoning also directly applies on the Hamiltonian side, in which case the Lie-Poisson
equation with cocycle (4.16) is an invariant subsystem of an ordinary Lie-Poisson equation associated
to a central extension of G.

All these considerations are standard, see, e.g., [63,68].

4.3. Variational symplectic integrators for the Lie-Poisson equations with cocycle

Here we shall present a geometric symplectic Lie group integrator for Lie-Poisson equations with
cocycle (2.36) that preserves the affine coadjoint orbits for general Hamiltonian. In particular, the
scheme preserves the affine Kirillov-Kostant-Souriau symplectic form on these affine coadjoint orbits.
We shall use the Euler-Poincaré variational formulation on central extensions presented in §4.2.

Some useful identities. Given a central extension Ĝ = G×R, we shall consider the retraction map
τ : ĝ→ Ĝ defined by

τ(ξ, u) = (τ̄(ξ), u) (4.26)

where τ̄ : g → G is a retraction map for G. To derive the discrete Euler-Poincaré equations we shall
need several identities involving dLτ and dLτ̄, see (4.13), that are shown in the next Lemma.

Lemma 14. For a local diffeomorphism of the form (4.26) on central extension, we have the following identities

(a) dLτ(ξ, u) · (η, v) =
(
dLτ̄(ξ) · η, v− D2B(τ̄(ξ), e) · (dLτ̄(ξ) · η)

)
(b) dLτ(ξ, u)∗ · (µ, a) =

(
dLτ̄(ξ)∗(µ− aD2B(τ̄(ξ), e)), a

)
(c) dLτ−1(ξ, u) · (ζ, w) =

(
dLτ̄−1(ξ) · ζ, w + D2B(τ̄(ξ), e) · ζ

)
(d) dLτ−1(ξ, u)∗ · (µ, a) =

(
dLτ̄−1(ξ)∗ · µ + aD2B(τ̄(ξ), e), a

)
,

where B : G× G → R is the group two-cocycle.

Proof. These identities are proven as follows.
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(a) Using the definition of dLτ, we compute

dLτ(ξ, u) · (η, v) = τ(ξ, u)−1(Dτ(ξ, u) · (η, v))

= (τ̄(ξ), u)−1(τ̄(ξ), Dτ̄(ξ) · η, u, v)

= (τ̄(ξ)−1Dτ̄(ξ) · η, v + D2B(τ̄(ξ)−1, τ̄(ξ)) · (Dτ̄(ξ) · η))
= (dLτ̄(ξ) · η, v + D2B(τ̄(ξ)−1, τ̄(ξ)) · (τ̄(ξ)dLτ̄(ξ) · η))

where in the third equality, we used the formula for the tangent lift of left translation on Ĝ. Using
the properties of the group two-cocycle B, we get the identity

D2B(g−1, g) · (gη) = −D2B(g, e) · η,

for all g ∈ G and η ∈ g. Hence we get the result.
(b) Taking the dual map and using (a), we get〈

dLτ(ξ, u)∗ · (µ, a), (η, v)
〉

=
〈
(µ, a), dLτ(ξ, u) · (η, v)

〉
=
〈

µ, dLτ̄(ξ) · η
〉
+ a
(
v− D2B(τ̄(ξ), e) · (dLτ̄(ξ) · η)

)
=
〈

dLτ̄(ξ)∗ · µ− a dLτ̄(ξ)∗D2B(τ̄(ξ), e), η
〉
+ av,

which proves the result.
(c) It follows by (a) and by inverting the relation (ζ, w) = dLτ(ξ, u) · (η, v)

(ζ, w) = dLτ(ξ, u) · (η, v) =
(
dLτ̄(ξ) · η, v + D2B(τ̄(ξ)−1, τ̄(ξ)) · (τ̄(ξ)dLτ̄(ξ) · η)

)
is equivalent to

(η, v) =
(
dLτ̄−1(ξ) · ζ, w− D2B(τ̄(ξ)−1, τ̄(ξ)) · (τ̄(ξ)ζ)

)
(d) This follows by taking the dual map and using (c) as earlier. �

Variational discretization of the Lie-Poisson equations with cocycle. With the previous result, we
first give below a symplectic integrator for the Euler-Poincaré equations on central extensions. Then we
will show how this provides a symplectic integrator for the Lie-Poisson equations with cocycle.

Proposition 15 (Discrete Euler-Poincaré equations on central extensions). The following are equivalent:

(a) The discrete curve (ξk, uk) is critical for the discrete Euler-Poincaré variational principle

δ ∑
k

̂̀(ξk, uk) = 0,

with respect to variations
δξk =

1
∆t

dLτ̄−1(∆tξk) · (Adτ(∆tξk)−1 ηk+1 − ηk)

δuk =
1

∆t
(
vk+1 − vk − D2B(τ̄(∆tξk), e) · ηk + D1B(e, τ̄(∆tξk)) · ηk+1

)
where ηk ∈ g and vk ∈ R are arbitrary discrete curves vanishing at the endpoints.
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(b) The discrete curve (ξk, uk) is a solution of the discrete Euler-Poincaré equations Ad∗τ(∆tξk−1)−1 µk−1 + ak−1θ(τ̄(∆tξk−1))− µk = 0

ak−1 − ak = 0
(4.27)

with 
µk = dLτ̄−1(∆tξk)

∗ δ̂̀
δξk

+
δ̂̀

δuk
D2B(τ̄(∆tξk), e)

ak =
δ̂̀

δuk
.

(4.28)

Proof. We use the discrete Euler-Poincaré formulation (4.14)–(4.45). For (a), we use (4.12) and Lemma
14, and we compute

δ(ξk, uk)

=
1

∆t
dLτ−1(∆tξk, ∆tuk) ·

(
Adτ(∆tξk ,∆tuk)−1(ηk+1, vk+1)− (ηk, vk)

)
=

1
∆t

dLτ−1(∆tξk, ∆tuk) ·
(

Adτ̄(∆tξk)−1 ηk+1 − ηk, vk+1 − vk + 〈θ(τ̄(∆tξk)), ηk+1〉
)

=
1

∆t

(
dLτ̄−1(∆tξk) · (Adτ(∆tξk)−1 ηk+1 − ηk),

vk+1 − vk + 〈θ(τ̄(∆tξk)), ηk+1〉+ D2B(τ̄(∆tξk), e) ·
(

Adτ(∆tξk)−1 ηk+1 − ηk
))

.

Using the identity 〈θ(g), ξ〉+ D2B(g, e) ·Adg−1 ξ = D1B(e, g) · η, we get the desired result.
For (b), we use the formula for the coadjoint action on central extension to get

Ad∗τ(∆tξk−1,∆tuk−1)−1(µk−1, ak−1)− (µk, ak)

= (Ad∗τ(∆tξk−1)−1 µk−1 + ak−1θ(τ̄(∆tξk−1)), ak−1)− (µk, ak)

which proves (4.27). Then, to get (4.28), we note that

(µk, ak) : = dLτ−1(∆tξk, ∆tuk)
∗
(

δ`

δξk
,

δ`

δuk

)
=
(
dLτ̄−1(∆tξk)

∗ δ`

δξk
+

δ`

δuk
D2B(τ̄(∆tξk), e),

δ`

δuk

)
by Lemma 14. �

We note that the relation with the solution (gk, αk) of the discrete Euler-Lagrange on the Lie group
Ĝ is given as

(ξk, uk) =
1

∆t
τ−1((gk+1, αk+1)(gk, αk)

−1)
which is explicitly given by the relations

ξk =
1

∆t
τ−1(gk+1g−1

k )

uk =
1

∆t

(
αk+1 − αk − B(gk, g−1

k ) + B(gk+1, g−1
k )
)
.

(4.29)
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Similarly, the variations ηk, vk used in discrete Euler-Poincaré variational principle are related
to the variations δgk, δαk used in the discrete Hamilton principle via the equality (ηk, vk) =

(δgk, δαk)(gk, αk)
−1 = (δgkg−1

k , δαk + D1B(gk, g−1
k ) · δgk).

The discrete momentum map JLd : Ĝ× Ĝ → ĝ∗ is computed as

JLd((gk, αk), (gk+1, αk+1) =
1

∆t
(Ad∗gk

µk + akθ(g−1
k ), ak)

where (µk, ak) are given in (4.28) and relation (4.29) are assumed. It is readily seen that JLd is preserved
along the solutions of (4.27).

The symplectic integrator for the Lie-Poisson equations with cocycle is deduced as follows.

Proposition 16. (Symplectic integrator for Lie-Poisson equations with cocycle) Let h : g∗ → R be a
Hamiltonian assumed to be hyperregular, with associated Lagrangian ` : g→ R. Then the numerical scheme

Ad∗τ(∆tξk−1)−1 µk−1 + θ(τ̄(∆tξk−1))− µk = 0 (4.30)

with
µk = dLτ̄−1(∆tξk)

∗ δ`

δξk
+ D2B(τ̄(∆tξk), e) (4.31)

is a symplectic scheme for the Lie-Poisson equations with cocycle

d
dt

µ + ad∗δh
δµ

µ = Θ
(

δh
δµ

, ·
)

, (4.32)

It preserves the affine coadjoint orbits

O = {Ad∗g−1 µ + θ(g) | G ∈ G}

and µk−1 7→ µk is symplectic relative to the affine Kirillov-Kostant-Souriau symplectic form

ωO(µ)
(

ad∗ξ µ−Θ(ξ, ·), ad∗η µ−Θ(η, ·)
)
= 〈µ, [ξ, η]〉 −Θ(ξ, η).

Proof. It is a direct consequence of Proposition 15, by choosing the reduced Lagrangian (4.25), taking
the initial condition a0 = 1 and noting that ak+1 = ak = 1. �

It is possible to rewrite the scheme in a way that is more advantageous from the point of view of
implementation. By inserting (4.31) in (4.30) and using the identity

Ad∗g−1 D2B(g, e) + θ(g) = D1B(e, g)

we get the scheme in terms of ξk as

Ad∗τ(∆tξk−1)−1 dLτ̄−1(∆tξk−1)
∗ δ`

δξk−1
− dLτ̄−1(∆tξk)

∗ δ`

δξk

+ D1B(e, τ̄(∆tξk−1))− D2B(τ̄(∆tξk), e) = 0.
(4.33)

It is also often assumed that the retraction map τ satisfies τ(−ξ)τ(ξ) = e. In this case we have the
identity Ad∗τ(ξ) dLτ−1(−ξ)∗ = dLτ−1(ξ), see [25], and the scheme (4.33) takes the form

dLτ̄−1(−∆tξk−1)
∗ δ`

δξk−1
− dLτ̄−1(∆tξk)

∗ δ`

δξk
+ D1B(e, τ̄(∆tξk−1))− D2B(τ̄(∆tξk), e) = 0. (4.34)
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In absence of the last two terms, we recover the most practically used form of the ordinary discrete
Euler-Poincaré equations, e.g., [25]. The last two terms correspond to a discretization of the cocycle
which ensures that the resulting scheme is symplectic on each affine coadjoint orbit. It is clear that such
a form is not likely to be guessed from the continuous equations without having at hands the discrete
variational principle.

Remark 17 (Choice of retraction map). For an exposition of retraction maps, such as canonical
coordinates of the first and second kind, and their applications to Lie group methods, the reader
is referred to [51]. A possible choice is the exponential map exp : g→ G. In this case dL exp(ξ) · η and
dL exp−1(ξ) · η are given as series which are truncated in order to achieve a desired order of accuracy,
[47]. A standard choice is the Cayley map cay : g → G defined by cay(ξ) = (e − ξ/2)−1(e + ξ/2)
which is valid for a general class of quadratic matrix groups (which include the groups SO(3), SE(2),
and SE(3)). Based on this simple form, the derivative maps become

dL cay(ξ) · η = (e + ξ/2)−1 η (e− ξ/2)−1

dL cay−1(ξ) · η = (e + ξ/2) η (e− ξ/2) ,

for each ξ, η ∈ g.

Example. Consider the Lie-Poisson equations with cocycle for SE(2) derived in §3.3. The central

extension integrating the group one-cocycle (3.12) is ŜE(2) = SE(2)×R with group two-cocyle B :
SE(2)× SE(2)→ R given by

B((ϕ, a), (ψ, b)) =
1
2

a · JRϕb.

This group is referred to as the oscillator group. To apply the scheme (4.34) to this case, we use the
identities

D1B((I, 0), (ϕ, a)) =
(
0,

1
2

Ja
)

and D2B((ϕ, a), (I, 0)) =
(
0,−1

2
JRϕ−1 a

)
as well as the Cayley map for SE(2) given by

cay(λ, u1, u2) =
(

R(λ),
2

4 + λ2 (−λu2 + 2u1, λu1 + 2u2)
)
, R(λ) =

1
4 + λ2

[
λ2 − 4 −4λ

4λ λ2 − 4

]

and the expression dL cay−1(λ, u1, u2) : se(2)→ se(2) given in matrix representation as

I3 +
1
2

 0 0 0
u2 0 −λ

−u1 λ 0

+
1
4

 λ2 0 0
λu1 0 0
λu2 0 0


see [56].

4.4. Multisymplectic Lie group variational integrators

In this paragraph, we briefly indicate how the discrete variational setting of the previous section
can be extended to variational discretization in several independent variables, i.e., when the unknown
is a field rather than a curve. At the continuous setting, the underlying geometric variational setting is
the multisymplectic framework of field theories, see, e.g., [45]. Discrete multisymplectic variational versions
of this setting have been developed and applied in [62,66]. Multisymplectic variational discretization
on Lie groups and the discrete Euler-Poincaré field equations have been carried out in [30,32].
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We will focus on the special case of fields defined on an open subset U of Rn with smooth
boundary, with values in a configuration manifold Q. We also assume that the Lagrangian only depends
on the values of the fields and their first derivatives, not on the parameter x ∈ Rn, so it is a map
L : TQ⊕ ...⊕ TQ→ R. Hamilton’s principle for a field q : U ⊂ Rn → Q is

δ
∫

U
L
(
q(x), ∂1q(x), ..., ∂nq(x)

)
dx = 0,

for arbitrary variations of the field q that vanish on the boundary of U, from which the Euler-Lagrange
equations for the field q(x) are obtained.

We shall focus on the case Q = G a Lie group and for right-invariant Lagrangians, i.e.

L
(

gh, v1h, ..., vnh
)
= L

(
g, v1, ..., vn

)
,

for every v1, ..., vn ∈ TgG and every h ∈ G. In this case, L induces the reduced Lagrangian ` :
g⊕ ...⊕ g→ R defined by `(v1g−1, ..., vng−1) = L

(
g, v1, ..., vn

)
. As in the ordinary Euler-Poincaré case

recalled above, Hamilton’s principle yields the reduced variational principle

δ
∫

U
`(ξ1, ..., ξn)dx = 0, δξk = ∂kη + [η, ξk], (4.35)

for an arbitrary field η : U → g vanishing on the boundary, which results in the Euler-Poincaré field
equations

n

∑
k=1

∂k
δ`

δξk
+

n

∑
k=1

ad∗ξk

δ`

δξk
= 0. (4.36)

To guarantee the existence of a field g : U → G such that ξk = ∂kgg−1, k = 1, ..., n, the fields ξi in (4.36)
must satisfy the relation ∂kξi − ∂iξk = [ξk, ξi]. In terms of the associated Hamiltonian h : g∗ ⊕ ...⊕ g∗ →
R, these equations give (2.49) without cocycle, i.e., with Θk = 0.

To include the case with cocycle in a variational setting, we shall proceed exactly as in §4.2, by
passing to a central extension of G. This is here done in the context of the Euler-Poincaré field equations,
rather than for the ordinary Euler-Poincaré equations. This is the content of the next paragraph.

Variational principle for the Lie-Poisson field equations with cocycle. The goal of this paragraph is
to obtain a variational principle for the Lie-Poisson field equations with cocycle (2.49) associated to
Souriau’s polysymplectic model. By considering the Euler-Poincaré field equations (4.36) on a central
extension, we get the system

∑
k

∂k
δ̂̀
δξk

+ ∑
k

ad∗ξk

δ̂̀
δξk

= ∑
k

δ̂̀
δuk

Θ(ξk, ·)

∑
k

∂k
δ̂̀

δuk
= 0.

(4.37)

They are the critical conditions for the variational principle

δ
∫ T

0
̂̀((ξ1, u1), ..., (ξn, un))dt = 0,

for variations δξk = ∂kη + [η, ξk], δuk = ∂kv−Θ(η, ξk),
(4.38)

which is just a special instance of (4.36) applied to central extensions. The existence of a field (g, α) :
U → Ĝ imposes the conditions ∂kξi − ∂iξk = [ξk, ξi] and ∂kui − ∂iuk = −Θ(ξk, ξi).
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Given a Lagrangian ` : g⊕ ...⊕ g→ R, one can define the Lagrangian

̂̀((ξ1, u1), ..., (ξn, un)) = `(ξ1, ..., ξn) + ∑
k

uk (4.39)

on ĝ⊕ ...⊕ ĝ for which (4.37) does reduce to a Lagrangian version of the Lie-Poisson field equation
with cocycle (2.49), as desired, where it is assumed that Θk = Θ, for all k.

The same reasoning also directly applies on the Hamiltonian side, in which case the Lie-Poisson
field equation with cocycle (4.16) is an invariant subsystem of an ordinary Lie-Poisson field equation
associated to a central extension of G.

Multisymplectic Lie group integrators. To present multisymplectic integrators, we shall focus on the
two dimensional case and assume that the fields are defined on a rectangle U = [0, A]× [0, B] ⊂ R2.
We shall write (x1, x2) = (x, y). Let Q be a configuration manifold and let L : TQ ⊕ TQ →
R be a Lagrangian. We shall consider the very special case of a discrete grid determined by
{(xk, ya) = (k∆x, a∆y) | k = 0, ..., N1, a = 1, ..., N2} with given ∆x and ∆y. We shall denote by qd :
{(xk, ya)}N

k=0 → Q, qd(xk, ya) = qa
k a discrete field. A discrete Lagrangian is a map Ld : Q×Q×Q→ R,

Ld = Ld(qa
k, qa

k+1, qk
a+1) that approximates the action integral of L on the rectangle [xk, xk+1]× [ya, ya+1]

for a field interpolating the values qa
k, qa

k+1, qk
a+1. The discrete Hamilton principle reads

δ
N1−1

∑
k=0

N2−1

∑
a=0

Ld(qa
k, qa

k+1, qk
a+1) = 0, (4.40)

for all variations δqd of qd with vanishing boundary values. The discrete Euler-Lagrange equations are
obtained as the critical point condition for a discrete field qd.

Given a Lie group action Φ : G × Q → Q, the discrete Lagrangian field momentum maps Ji
Ld

, :
Q×Q×Q→ g∗, i = 1, 2, 3 are defined by〈

J1
Ld
(qa

k, qa
k+1, qa+1

k ), ξ
〉
=
〈

D1Ld(qa
k, qa

k+1, qa+1
k ), ξQ(qa

k)
〉

〈
J2

Ld
(qa

k, qa
k+1, qa+1

k ), ξ
〉
=
〈

D2Ld(qa
k, qa

k+1, qa+1
k ), ξQ(qa

k+1)
〉

〈
J3

Ld
(qa

k, qa
k+1, qa+1

k ), ξ
〉
=
〈

D3Ld(qa
k, qa

k+1, qa+1
k ), ξQ(qa+1

k )
〉 (4.41)

which satisfies J1
Ld

+ J2
Ld

+ J3
Ld

= 0.

We refer to [66] and [62] for an introduction to multisymplectic variational integrators, including
the notion of discrete multisymplecticity, discrete Cartan forms, and discrete field momentum maps,
see also [31]. These integrators, also satisfy a discrete Noether theorem in presence of symmetries, as
we shall see below in the special case of Lie groups.

Multisymplectic variational integrators on Lie groups were developed in [30] and [31], for
application to geometrically exact (Cosserat) rods. As above, we shall focus on the two dimensional
case and U = [0, A] × [0, B] ⊂ R2. For Q = G a Lie group, the discrete Lagrangian is a map
Ld : G× G× G → R. We assume that the continuous Lagrangian is G invariant and that the discrete
Lagrangian Ld inherits this invariance, i.e.,

L(ga
kh, ga

k+1h, gk
a+1h) = L(ga

k , ga
k+1, gk

a+1),

for every h ∈ G. Hence, by passing to the quotient associated with this action we get a reduced
Lagrangian Ld : G× G → R, Ld(ga

k+1(ga
k)
−1, ga+1

k (ga
k)
−1) = L(ga

k , ga
k+1, gk

a+1). As mentioned earlier, it
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is advantageous to introduce a retraction map τ : g→ G, τ(0) = e, from which the discrete reduced
Lagrangian can be defined on a neighborhood of (0, 0) in g× g via the relation

`g(ξ
a
k , ζa

k) = Ld(ga
k+1(ga

k)
−1, ga+1

k (ga
k)
−1)

with τ(∆xξa
k) = ga

k+1(ga
k)
−1 and τ(∆yζa

k) = ga+1
k (ga

k)
−1.

(4.42)

The last two relations are thought of as discrete versions of ξ = ∂1gg−1, ζ = ∂2gg−1.

The discrete Euler-Poincaré field equations for `d are obtained by computing the discrete variational
principle induced on the discrete action ∑N1−1

k=0 ∑N2−1
a=0 `d(ξ

a
k , ζa

k) from the discrete Hamilton principle
δ ∑N1−1

k=0 ∑N2−1
a=0 L(ga

k , ga
k+1, ga+1

k ) = 0 recalled above in (4.40). The main step in this process is to compute
the variations δξa

k δζa
k induced by arbitrary variations δga

k . One finds the expression

δξa
k =

1
∆x

dLτ−1(∆xξa
k) ·
(

Adτ(∆xξa
k)
−1 ηa

k+1 − ηa
k
)

δζa
k =

1
∆y

dLτ−1(∆yζa
k) ·
(

Adτ(∆yζa
k)
−1 ηa+1

k − ηa
k
)
.

(4.43)

The discrete field Euler-Poincaré variational principle thus reads

δ
N1−1

∑
k=0

N2−1

∑
a=0

`d(ξ
a
k , ζa

k) = 0, (4.44)

with respect to variations δξa
k , δζa

k of the form (4.43) with ηa
k vanishing at the boundary. It yields the

discrete Euler-Poincaré field equations.

1
∆x

(
Ad∗τ(∆xξa

k−1)
−1 µa

k−1 − µa
k

)
+

1
∆y

(
Ad∗

τ(∆yζa−1
k )−1 νa−1

k − νa
k

)
= 0,

µa
k := dLτ−1(∆xξa

k)
∗ δ`

δξa
k

, νa
k := dLτ−1(∆yζa

k)
∗ δ`

δζa
k

.
(4.45)

We refer to [30,31] for details, including the treatment of boundary conditions, the description of the
associated discrete Cartan forms, the discrete field momentum maps, as well as the symplectic and
multisymplectic characters of the scheme.

We just recall below the expression of the field momentum maps (4.41) which take the following
form:

J1
Ld
(ga

k , ga
k+1, ga+1

k ) = − 1
∆x

Ad∗gk
µa

k −
1

∆y
Ad∗gk

νa
k

J2
Ld
(ga

k , ga
k+1, ga+1

k ) =
1

∆x
Ad∗gk

µa
k

J3
Ld
(ga

k , ga
k+1, ga+1

k ) =
1

∆y
Ad∗gk

νa
k .

The discrete Noether theorem, then asserts that a certain g∗-valued discrete integral of Ji
Ld

along the
boundary of any subgrid domain is zero, see [31].

Multisymplectic variational discretization for Lie-Poisson field equations with cocycle. Based on
the previous result, we first give below a multisymplectic integrator for the Euler-Poincaré field
equations on central extensions. Then we deduce a multisymplectic integrator for the Lie-Poisson field
equations with cocycle appearing in the polysymplectic Souriau model. The next proposition is the
multisymplectic version of Proposition 15.
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Proposition 18. (Discrete Euler-Poincaré field equations on central extensions) The following are
equivalent:

(a) The discrete curve (ξk, uk) is critical for the discrete Euler-Poincaré field variational principle

δ ∑
a,k

̂̀((ξa
k , ua

k), (ζ
a
k , wa

k)) = 0,

with respect to variations

δξa
k =

1
∆x

dLτ̄−1(∆xξa
k) · (Adτ(∆xξa

k)
−1 ηa

k+1 − ηa
k )

δζa
k =

1
∆y

dLτ−1(∆yζa
k) ·
(

Adτ(∆yζa
k)
−1 ηa+1

k − ηa
k
)

δua
k =

1
∆x
(
va

k+1 − va
k − D2B(τ̄(∆xξa

k), e) · ηa
k + D1B(e, τ̄(∆xξa

k)) · η
a
k+1
)

δwa
k =

1
∆y
(
va+1

k − va
k − D2B(τ̄(∆yζa

k), e) · ηa
k + D1B(e, τ̄(∆yζa

k)) · η
a+1
k
)

where ηa
k ∈ g and va

k ∈ R are arbitrary discrete fields vanishing at the boundary.
(b) The discrete curve (ξa

k , ua
k, ζa

k , wa
k) is a solution of the discrete Euler-Poincaré field equations

1
∆x

(
Ad∗τ(∆xξa

k−1)
−1 µa

k−1 + aa
k−1θ(τ̄(∆xξa

k−1))− µa
k

)
+

1
∆y

(
Ad∗

τ(∆yζa−1
k )−1 νa−1

k + ba−1
k θ(τ̄(∆yζa−1

k ))− νa
k

)
= 0

1
∆x

(aa
k−1 − aa

k) +
1

∆y
(ba−1

k − ba
k) = 0

(4.46)

with 

µa
k = dLτ̄−1(∆xξa

k)
∗ δ̂̀

δξa
k
+

δ̂̀
δua

k
D2B(τ̄(∆xξa

k), e)

νa
k = dLτ̄−1(∆yζa

k)
∗ δ̂̀

δζa
k
+

δ̂̀
δwa

k
D2B(τ̄(∆yζa

k), e)

aa
k =

δ̂̀
δua

k
, ba

k =
δ̂̀

δwa
k

.

(4.47)

Proof. The proof can be obtained by appropriate extension of the proof of Proposition 15, by using the
multisymplectic variational setting recalled in the previous paragraph. �

We note that the relation between the solution of the discrete Euler-Poincaré equations and the
solution (ga

k , αa
k) of the discrete Euler-Lagrange field equations on the Lie group Ĝ is given as

(ξa
k , ua

k) =
1

∆x
τ−1((ga

k+1, αa
k+1)(ga

k , αa
k)
−1)

(ζa
k , wa

k) =
1

∆y
τ−1((ga+1

k , αa+1
k )(ga

k , αa
k)
−1)
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which is explicitly given by the relations

ξa
k =

1
∆x

τ−1(ga
k+1(ga

k)
−1), ζk =

1
∆y

τ−1(ga+1
k (ga

k)
−1)

ua
k =

1
∆x

(
αa

k+1 − αa
k − B(ga

k , (ga
k)
−1) + B(ga

k+1, (ga
k)
−1)
)

wa
k =

1
∆y

(
αa+1

k − αa
k − B(ga

k , (ga
k)
−1) + B(ga+1

k , (ga
k)
−1)
)
.

(4.48)

Similarly, the variations ηa
k , va

k used in discrete Euler-Poincaré variational principle are related
to the variations δga

k , δαa
k used in the discrete Hamilton principle via the equality (ηa

k , va
k) =

(δga
k , δαa

k)(ga
k , αa

k)
−1 = (δga

k(ga
k)
−1, δαa

k + D1B(ga
k , (ga

k)
−1) · δga

k).

The discrete field momentum maps are computed as

J1
Ld
((ga

k , αa
k), (ga

k+1, αa
k+1), (ga+1

k , αa+1
k )) = − 1

∆x
(

Ad∗ga
k

µa
k + aa

kθ((ga
k)
−1), aa

k
)

− 1
∆y
(

Ad∗ga
k

νa
k + ba

kθ((ga
k)
−1), ba

k
)

J2
Ld
((ga

k , αa
k), (ga

k+1, αa
k+1), (ga+1

k , αa+1
k )) =

1
∆x
(

Ad∗ga
k

µa
k + aa

kθ((ga
k)
−1), aa

k
)

J3
Ld
((ga

k , αa
k), (ga

k+1, αa
k+1), (ga+1

k , αa+1
k )) =

1
∆y

Ad∗gk

(
Ad∗ga

k
νa

k + ba
kθ((ga

k)
−1), ba

k
)
.

from which the discrete field Noether theorem can be stated for the solutions of (4.46).

The multisymplectic integrator for the Lie-Poisson field equations with cocycle is obtained in the
next Proposition, which is the multisymplectic analogue to Proposition 16.

Proposition 19. (Multisymplectic integrator for Lie-Poisson field equations with cocycle) Let h : g∗ ×
g∗ → R be a Hamiltonian assumed to be hyperregular, with associated Lagrangian ` : g× g → R. Then the
numerical scheme

1
∆x

(
Ad∗τ(∆xξa

k−1)
−1 µa

k−1 + θ(τ̄(∆xξa
k−1))− µa

k

)
+

1
∆y

(
Ad∗

τ(∆yζa−1
k )−1 νa−1

k + θ(τ̄(∆yζa−1
k ))− νa

k

)
= 0

(4.49)

with 
µa

k = dLτ̄−1(∆xξa
k)
∗ δ`

δξa
k
+ D2B(τ̄(∆xξa

k), e)

νa
k = dLτ̄−1(∆yζa

k)
∗ δ`

δζa
k
+ D2B(τ̄(∆yζa

k), e)
(4.50)

is a multisymplectic scheme for the Lie-Poisson field equations with cocycle

∂xµ + ∂yν + ad∗δh
δµ

µ + ad∗δh
δν

ν = Θ
(

δh
δµ

, ·
)
+ Θ

(
δh
δν

, ·
)

. (4.51)

Proof. This follows from Proposition 18 and the choice (4.39). �

If the retraction map τ satisfies τ(−ξ)τ(ξ) = e, the scheme can be rewritten in a simpler way, as
done in (4.34) in the symplectic case.
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The benefit of the structure preserving properties of the proposed numerical schemes will be
exploited in a future work.

5. Conclusion

In the context of Artificial Intelligence, machine learning algorithms use more and more
methodological tools coming from Physics or Statistical Mechanics. The laws and principles that
underpin this Physics can shed new light on the conceptual basis of Artificial Intelligence. Thus, the
principles of Maximum Entropy and François Massieu’s notions of characteristic functions enrich
the variational formalism of machine learning. Conversely, the pitfalls encountered by Artificial
Intelligence to extend its application domains, question the foundations of Statistical Physics, such
as the generalization of the notions of Gibbs densities in spaces of more elaborate representation like
data on homogeneous symplectic manifolds and Lie groups. The porosity between the two disciplines
has been established since the birth of Artificial Intelligence with the use of Boltzmann machines and
the problem of robust methods for calculating partition function. More recently, gradient algorithms
for neural network learning use large-scale robust extensions of the natural gradient of Fisher-based
Information Geometry (to ensure reparameterization invariance), and stochastic gradient based on the
Langevin equation (to ensure regularization), or their coupling called “Natural Langevin Dynamics”.
Concomitantly, during the last fifty years, Statistical Physics has been the object of new geometrical
formalizations (contact, Dirac, or symplectic geometry, variational principles, ...) to try to give a new
covariant formalization to the thermodynamics of dynamical systems, as Lie Groups Thermodynamics.
Finally, the study of geometric integrators as symplectic integrators with good properties of covariances
and stability (use of symmetries, preservation of invariants and momentum maps) will open the door
to new generation of numerical schemes. Machine learning inference processes are just beginning to
adapt these new integration schemes and their remarkable stability properties to increasingly abstract
data representation spaces. Artificial Intelligence currently uses only a very limited portion of the
conceptual and methodological tools of Statistical Physics. The purpose of this paper, was to encourage
constructive dialogue around a common foundation, to allow the establishment of new principles and
laws governing the two disciplines in a unified approach.
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