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Featured Application: Millimeter-wave irradiation therapy for noninvasive treatment of human 

non-small cell lung cancer (NSLC). 

 

Abstract:  Efficiently targeted cancer therapy without causing detrimental side effects is necessary for 

alleviating patient care and improving survival rates. This paper presents observations of 

morphological changes in H1299 human lung cancer cells following MMW irradiation (75 – 105 GHz) 

at a non-thermal power density of 0.2 mW/cm2, investigated over 14 days of subsequent physiological 

incubation following exposure. Microscopic analyses of physical parameters measured indicate MMW 

irradiation induces significant morphological changes characteristic of apoptosis and senescence. The 

Immediate short-term stress responses translate into long-term effects, retained over the duration of 

the experiment(s); reminiscent of the phenomenon of Accelerated Cellular Senescence (ACS) achieving 

terminal tumorigenic cell growth. Further, results were observed to be treatment-specific in energy 

(dose) dependent manner and were achieved without the use of chemotherapeutic agents, ionizing 

radiation or thermal ablation employed in conventional methods; thereby overcome associated side 

effects. Adaptation of the experimental parameters of this study in clinical oncology concomitant with 

current developmental trends of non-invasive medical endoscopy alleviates MMW therapy as an 

effective treatment procedure for human non-small cell lung cancer (NSLC). 
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Graphical Abstract 

 

1. Introduction 

Lung cancer is the leading cause of cancer deaths among men and second among women 

worldwide [1]. The 5-year survival rates are very low, ranging from 15.6% in the USA to as low as 8.9% 

in Europe, China and developing countries [1]. Lung cancer is histologically categorized as small cell 

lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Arising from epithelial cells [2] NSCLC 

accounts for 80-85% of all cases.  Common types of treatment methods include surgery, radiotherapy 

and chemotherapy [2]. However, most conventional treatments to control tumor growth are often 

reported to give rise to many other detrimental side effects [3, 4] due to cross reactions of chemotherapy 

drugs with healthy tissue and use of ionizing radiations in radiotherapy. Further, post-treatment 

supportive care after chemotherapy is reported to go only so far as to improve survival rates very 

slightly [5]. Therefore, development of new and innovative therapies allowing efficient targeting of 

tumour growth without giving rise to unfavourable after effects is necessary to improve survival rates 

and alleviate patient care. 

Millimeter waves (MMW) classified as non-ionizing radiation are electromagnetic fields (EMF) of 

extremely high frequencies (30-300 GHz) with corresponding wavelengths of 10 - 1 mm. With relatively 

low photon energy of 0.0004 eV (1 eV = 1.6  19 J), MMW are unable to destroy inter-atomic bonds [6]; 

but capable of exciting rotational, torsional and longitudinal vibration modes of molecules, resulting in 

heating. Guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 

stipulates measurement of power density (PD) using units of W/m2 for exposure of biological tissue to 

MMW irradiation [7]. The ICNIRP recommends limiting power density within 200 W/m2 in order to 

limit adverse thermal effects on biological tissue. MMW irradiation up to a maximum power density 

of 5 mW/cm2 have been shown to cause biophysical and biological effects without promoting 

genotoxicity and adversely increasing cell temperature (non-thermal effects) [8]. 

MMW irradiation leads to both activation and/or inhibition of cell growth [9 - 11], changes of 

organelle structures and cell membrane permeability [6, 12, 13], alterations of DNA, RNA and proteins; 

and the activation or inhibition of signal transduction mechanisms [14 - 16]. Such observed effects have 

led to a growing interest in applying non-thermal effects of MMW irradiation to target and destroy 

cancer cells. Previous work from our group reported non-thermal effects of MMW irradiation on 

human lung cancer cells [17]. In this study, we characterized the associated morphological changes 

using physical parameters of cell dimensions in order to better understand the mechanism of the 

radiation effect on the cell and thus optimize MMW irradiation therapy to treat human non-small cell 

lung cancer (NSLC). For this purpose, H1299 human lung cancer cells were exposed to MMW 
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irradiation in the range of 75 – 105 GHz within a stipulated non-thermal range of 2 W/m2. Irradiation 

was performed under 2 minutes and 4 minutes exposure regimes in order to determine the energy 

dependence of the observed effects. After irradiation, cells were incubated under physiological 

conditions and their physical dimensions/parameters analyzed over a period of 14 days to identify 

immediate and prolonged effects. The dielectric properties of the cell carrier vessels (Petri dishes) and 

the nutrition medium (RPMI 1640) were characterized prior to irradiation of the cell samples. 

2. Materials and Methods  

2.1. Cell culture 

Human lung cancer cells, H1299 (also known as NCI-H1299 or CRL-5803) were generously 

provided by Professor Uri Alon of the Weizmann Institute (Rehovot, Israel). Cells were cultured in 

RPMI 1640 medium (Biological Industries, Beth Ha'emek, Israel) supplemented with 10% fetal bovine 

serum (FBS), 1% penicillin - streptomycin (Sigma, St Louis, MO, USA), and 2mM glutamine (Biological 

Industries, Beth Ha'emek, Israel). Cells were incubated at 37 °C with 5% CO2 supply. The proliferation 

rate of all cells were similar with a doubling time of 12 to 14 hours, under these conditions. 

 

2.2. Irradiation setup 

An experimental setup similar to the one described by Homenko et al. [18] was used, modified for 

operation in the full W-band (75-110 GHz). It consisted of a Scanning 8360B Series Swept Signal 

Generator and an 8757D Scalar Network Analyzer (Agilent). The sweeping frequency synthesizer 

was operated at 10-20 GHz serving as an input into a solid-state multiplier. A multiplying factor of 6 

generated an output signal of 75-110 GHz corresponding to wavelengths (λ) of 4 – 2.725 mm. The waves 

transmit through the reflectometer connected to two directional couplers arranged facing each other in 

opposite directions. The setup was calibrated for the reflection mode and the reflection coefficient 

measured on the analyzer. MMW were partly reflected, partly absorbed and partly transmitted through 

the sample. The reflection coefficient was estimated in decibels (dB) as a logarithmic ratio:  

   ,      (1) 

where Pr and P0 are the reflected and incident powers, respectively. Cell irradiation was performed in 

a sweeping regime from 75 to 110 GHz over 2,000 steps in frequency. One run over this range took 200 

ms. 

2.3. Penetration of MMW through Petri dish and cell growth medium 

Responses of five empty Petri dishes from different manufacturers to low-intensity MMW 

irradiation was recorded and compared. Petri dishes from Nunc (Thermo Fisher Scientific) showed 

the best results in terms of uniformity and good transparency, hence all experiments were performed 

using these Petri dishes. An empty dish was placed over the lower antenna and the reflected and 

transmitted signals were measured in the sweeping regime from 75 to 110 GHz. Then, using a 

micropipette with an accuracy of 1 µL several doses of 0.25 mL RPMI 1640 medium were successively 

added to obtain volumes of 0.5, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 mL. These volumes correspond to an 

RPMI 1640 medium layer thickness d = 0.52, 0.80, 1.03, 1.30, 1.56, 1.82 and 2.08 mm in the petri dish. For 

each new volume, a new sweeping run was executed. From the obtained measurements in dB presented 

by equation (1) the normalized reflected and transmitted powers were calculated by 

                                             (2) 

where P is either the reflected or transmitted power and P0 the incident power respectively. 

 

( )010 /log10 PPs r=
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2.4. Exposure conditions 

A pyramidal horn antenna, model SGH-10 (Millitech Inc.) with aperture dimensions of 20 mm x 25 

mm was used to irradiate the test samples. 1 mW incident power was used for all irradiation 

experiments, translating to a power density of 2 W/m2 (0.2 mW/cm2). Every single experiment involved 

irradiation of approximately 2x105 cells per dish when the cells reached 30% confluence. To investigate 

MMW effects on morphology, cells were irradiated under specific time regimes. Each experiment lasted 

up to 14 days. On day 1 cells were irradiated with MMW for 2 minutes (Group a) or 4 minutes (Group 

b) respectively. Following irradiation, cells were incubated at 37 ºC with 5% CO2 for up to 14 days. 

Slides of cell samples were prepared at specific time points - Day 1 (90 minutes after irradiation), Day 

7 and Day 14. Digital images of live cells were taken using a light microscope on Day 1, Day 7 and Day 

14 respectively. In order to rule out morphological changes due to cell proliferation and were not 

specific to MMW irradiation, two controls were used: 1) cells that underwent the same procedures but 

were not irradiated and 2) cells that were left untouched in the incubator. Control samples were 

assessed at the same time points as the irradiated cells (i.e., at Day 1, Day 7 and Day 14 of the 

experiment). 

2.5. Microscopy and image processing 

MMW effects on the morphology of the cells were examined using a Nikon fluorescent microscope 

(Nikon Instruments Inc., Melville, NY) at a magnification of 200x. Images were captured using a digital 

color-chilled 3CCD camera (Hamamatsu, Bridgewater, NJ) and visualized using the NIS Elements 

microscope software program (Nikon Instruments Inc.). Image processing and analysis were 

performed using ImageJ (Java-based image processing program developed at the National Institutes of 

Health, MD). Parameters of cell area, cell circularity and Feret’s diameter were evaluated for irradiated 

and control samples. 8000 to 10000 cells were examined in each experiment. Every experiment was 

repeated four times. 

2.6. Statistical analysis 

Statistical analyses was performed using the GraphPad Prism program (GraphPad Software, La 

Jolla, CA). Multivariate analysis of variance (MANOVA) and Tukey-Kamer multiple comparison test 

were used for comparing the irradiated cells with the control groups; and for comparing the changes 

in irradiated cells at different exposure times. The means of the measured parameters (area, circularity 

and Feret’s diameter) for the respective groups were considered equal for the null-hypothesis in all 

cases. A P-value <0.05 was considered significant for rejecting the null-hypothesis for all experiments. 

3. Results 

3.1. Millimeter waves can penetrate through Petri dishes 

In order to characterize their dielectric properties Petri dishes were irradiated from above (Figure 

1a). MMW reflected from the petri dishes were detected. The range of reflected power for frequencies 

75 – 100 GHz was found to be with a reduction of  -15 dB to -35 dB with respect to the incident power 

(corresponding to 3 – 0.03 % of incident power) respectively (Figure 1b). The frequency spectrum of the 

reflected signal of all tested petri dishes coincided. 
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Figure 1. Illustration of the irradiation setup (A). G represents the millimeter wave generator and A 

represents the network signal analyzer. The scalar network analyzer measured the waves reflected 

partly into the upper antenna and transmitted partly into the lower antenna. Characterization of the 

dielectric properties of petri dishes (B). The graph represents frequency spectra of the reflected 

signal of five empty Petri dishes (NuncTM, Thermo Fisher Scientific ). In total, 43 dishes were tested with 

the same results. 

3.2. Millimeter waves transmit through RPMI 1640 cell growth medium without generating thermal heat 

The wavelength of MMW is comparable to the layer thickness of the RPMI 1640 medium (2- 3 mm) 

used. Additionally, MMW undergo multiple reflections in the RPMI 1640 medium. Reflected waves 

(from the sample) are a combination (interference) of waves reflected from the surface of the nutrition 

media, the bottom of the dish, and from the cells under investigation. Single (discrete) frequency 

irradiation regime requires fine adjustments of the distance between sample and antenna in order to 

obtain conditions of constructive interference. In contrast, irradiation under a continuous sweeping of 

frequency allows for repeated wavelength changes over each run providing conditions of constructive 

and destructive interference successively. This is advantageous and overcomes the necessity for fine 

adjustments. Thus, at least during half the duration of a single run efficient power delivery is obtained. 

Therefore, all experiments were conducted in the sweeping regime. 

Although several studies have evaluated the real and simulated dielectric constant of RPMI 

medium for frequencies up to 72 GHz [19, 20], such data is lacking in the MMW W-band range used in 

our experiments (75 – 105 GHz). Hence, we tested the amount of energy that gets reflected from and 

penetrates through RPMI 1640 cell growth medium supplemented with 10% fetal bovine serum (FBS) 

and 1% penicillin/streptomycin. This basic medium consists of about 40 nutrition ingredients including 

various types of proteins present in FBS, diluted in water. The dependence of the reflected and the 

transmitted signals (normalized to the antenna emitting power P0  1 mW) on the thickness of RPMI 

1640 medium layer thickness in the Petri dishes was studied for different frequencies (Figure 2a). The 

ratio of the transmitted and incident power decreases as the thickness of the media increases. For a 

medium layer thickness of 2 mm, the ratio decreases by a factor of 10-4−10-5. In absolute values, this ratio 
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corresponds to 10-100 nW of power reaching the population of cells adhered at the bottom of the dish. 

In other words, maximum incident power is absorbed in an RPMI 1640 medium layer thickness of 2 

mm. As the medium consists mostly of water, we used the heat capacity of water to estimate the 

temperature increase during irradiation using 

                                                                                                                          (3) 

where  is the exposure time,  the heat capacity (4.18 J/g·K) and the sample mass (1.50 g). 

This estimation is based on the assumption that the penetrating power decreases exponentially with 

depth due to increased absorption of incident energy. Our calculations predict a temperature rise of no 

more than 0.2 - 0.4 K for 2 - 4 minutes of irradiation of samples immersed in 2 mL of RPMI 1640 medium.  

Further, temperature of the medium during irradiation was measured to be in the range of 24 – 26 °C. 

 

 

Figure 2. Dependence of the reflected and the transmitted signals on the level of RPMI 1640 medium 

layer thickness (A). Signals were evaluated for different frequencies ranging from 75 to 100 GHz. For 

the empty dish, only transmitted signal and not the reflected signal is presented. Shown is one 

representative sample of seven dishes that were irradiated for each frequency. Exposure times were a 

few seconds and the temperature of the medium was measured to be 24 – 26 °C. Dependence of the 

/ ( )TT P t c m 

t c m
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transmitted power through the Petri dish on frequency of irradiation (B). The signals were normalized 

to the antenna emitting power P0  1 mW on an empty dish. 

In order to maximize power delivery to cells under irradiation and minimize attenuation loss 

arising from absorption by culture media, we examined the full frequency spectra (75 – 105 GHZ) of 

the transmitted signals penetrating through petri dishes with different RPMI 1640 layer thicknesses 

(Figure 2b). -7.6 dB is the free space path loss (FSPL) for the 25 mm separation distance between the 

two +24 dB gain antennas of our setup, as detailed above (ref. Figure 1). Insertion of an empty dish 

increased the loss of the initial power by approximately 70% due to attenuation by the polystyrene of 

the dish (Figure 2b). The transmitted power level in the empty dish decreased by one order of 

magnitude with introduction of culture medium, corresponding to an attenuation of about -10 dB. The 

results indicate an RPMI layer thickness of 0.5 mm as the best working range, translating to a volume 

of 0.5 ml of RPMI 1640 medium. Maximum transmitted power is allowed to reach the suspended cells 

upon irradiation at 75 – 105 GHz in this range. Therefore, all subsequent experiments were performed 

using this volume of culture media. 

3.3. MMW irradiation changes morphology and size of H1299 cancer cells 

H1299 lung cancer cells were irradiated with millimeter waves and subsequently were incubated 

under physiological conditions, before further evaluation. Analyses of irradiated and control cells were 

conducted on Day1 (90 minutes post irradiation), Day 7 and Day 14 (Figure 3a). Exposure power 

density was maintained at 0.2 mW/cm2 over the duration of exposure; much below the maximum 

permissible exposure of 1 mW/cm2, as stipulated by the US Federal Communications Commission [21 

- 25]. This power density in association with the estimates and measurements of temperature increase 

mentioned above, allowed for ruling out thermal effects arising from this irradiation regime. Therefore, 

the effects observed experimentally were considered non-thermal in nature. Prior to irradiation, cell 

morphology was examined by microscopy. H1299 cells were observed to be adherent flattened cells 

with a thickness of less than 5 m; indicating measurements of cell area are representative their actual 

size.  

Prior to quantifying the changes in their morphology following irradiation, cells were divided into 

10 subgroups based on their area size (500 µm2 each) (Figure 3b). Number of cells for each subgroup 

was determined by counting during imaging observation in the light microscope (see methods). The 

square root of the observed top-view area was found to be 25 - 30 m for the average population. Non-

irradiated control cells were observed to be in interphase with polygonal, slightly elongated or oval 

forms. Majority of these cells presented areas in the range of 500 - 3000 µm2 (Figure 3b). Dividing cells 

with areas ranging from 2500 - 3500 µm2 constituted about 3 - 5% of the population. Huge (giant) 

polyploid cells, about 2.5 - 3.5 times larger than the main cell population with areas ranging from 3500 

- 5000 µm2 constituted about 1 - 2% of the cell population (Figure 3b). The observations showed that 

H1299 cell populations present a heterogeneous morphology corresponding to the physiological status 

of the cells in their cell cycle states; concomitant with studies reporting cancer cell diversity and genetic 

instability [26]. Changes in cell morphology were observed after 7 and 14 days following irradiation 

(Figure 3c). Pro-apoptotic cells characterized by shrinkage and fragmentation [27] constituted 1 – 3 % 

of the cell population. Further, 10 % of the population developed protrusions two to three times longer 

than the cell body (Figure 3c). The percentage of polyploid (giant cells) were also increased, suggesting 

induction of senescence [28, 29]. 
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To determine the dependence of observed morphological changes on the energy delivered by 

MMW exposure, cells were irradiated under two separate exposure regimes of 2 minutes and 4 minutes 

respectively. Depending on the frequency, a single run at a maximum incident power of 1 mW incident 

power was almost completely attenuated in 2 mL of RPMI 1640 medium, reaching a level of about P  

1 µW at the bottom of the petri dish (ref. Figure 2). In this regime, the energy delivered to the bottom 

of the dish was 200 nJ (1 µW  200 ms). Exposure for 2 minutes translates into 600 runs (i.e. 120 s divided 

by 0.2 s of a single run), providing 120 µJ of energy. Similarly, 4 minutes of exposure translates into 240 

µJ of energy. Since 2x105 cells were irradiated in every single experiment, the estimates detailed above 

give an average energy dose of of 0.6 nJ and 1.2 nJ per cell for 2 and 4 minutes exposure regimes 

respectively. Irradiated cell samples were analyzed for long-term (7 or 14 days) effects following 

irradiation after subsequent physiological incubation. Cells observed and analyzed on the same day of 

irradiation (90 minutes after exposure) were taken as control to characterize immediate short-term 

effects (ref. Figure 3a). Under the 2 minutes exposure regime, samples analyzed on the same day of 

irradiation did not show any significant change (Figure 3d) in the population as compared to control 

non-irradiated cells (ref. Figure 3c). However, 7 days post-irradiation under this regime presented a 

slight but significant increase in the number of huge polyploid cells (ranging 3000 - 4000 µm2 in size) 

(Figure 3d). These cells were observed to be greatly enlarged in size (ref. Figure 3c). Additionally, 14 

days post- irradiation under this regime resulted in a dramatic shift of the entire cell population turning 

into giant polyploid cells (ranging 3000 – 4000 µm2 in size) (Figure 3d); indicative of induced senescence 

[28, 29]. In contrast, the 4 minutes exposure regime led to the population of irradiated cells splitting 

into two groups (Figure 3e) as compared to the control non-irradiated cells (ref. Figure 3c). Under this 

exposure regime, the population of cells analyzed on the same day of irradiation showed shrinkage in 

size (ranging 0 – 500 µm2 in size) (Figure 3e). 7 days post-irradiation under this regime presented a 

significantly higher number of cells with shrunken size (Figure 3e) indicating that cells were 

undergoing apoptosis [27]. Further, 14 days following exposure in this regime showed the irradiated 

cells had split into two groups of population (Figure 3e); notably shrunken cells (ranging 0 – 500 µm2 

in size) and giant enlarged cells (ranging 3000 - 4000 µm2 in size). 
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Figure 3. Pictogram of the experimental strategy (A), depicting time schedule and analytical conditions 

(R – Non-irradiated control retained in the incubator, 2M – two minutes, 4M – four minutes. IR –

irradiation, SR – Control cells that underwent the same procedures as the irradiated cells without being 

irradiated, IMAGE – Microscopy and image analysis). Cells were irradiated for two minutes (2M) or 

four minutes (4M). Image analysis was performed on day 1 (short-term, a), day 7 (long-term, b), or day 

14 (long-term, c). Controls were assessed at the same time points as the irradiated cells (i.e., Ra, day 1; 

Rb, day 7; and Rc, Day 14 of the experiment). Quantification of the distribution of control non-irradiated 

cell areas (B) for day 1 (Ra, red line), day 7 (Rb, green line) and day 14 (Rc, violet line). Cell areas were 

grouped into 10 intervals (500 µm2 each) and the number of cells in each group counted and examined 

by microscopic observation followed by image analysis of cell sizes using ImageJ program. 
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Morphological changes of H1299 cells following MMW irradiation (C). Prior to irradiation majority of 

the cells presented polygonal forms (white arrowhead 2-6) and dividing cells constituted 3-5% of the 

cell population (white arrow 7). Analysis of cell areas 7 days after MMW irradiation revealed 1-3% of 

pro-apoptotic cells (white arrow 1). 1% of cells showed characteristics of huge (giant) polyploid cells 

(white arrow 8 and 10). 10% of the cells showed an oval cell morphology with highly elongated 

protrusions, two to three times longer than the cell itself (black arrow). Bars correspond to 20 µm. 

Changes in H1299 cell size irradiated under 2 minutes exposure regime (D); analyzed on day 1 (2Ma), 

day 7 (2Mb) and day 14 (2Mc). Cell sizes increased (3000 - 4000 µm2) significantly following this 

treatment regime over a long-term period of 7 and 14 days. Changes in H1299 cell size irradiated under 

4 minutes exposure regime (E); analyzed on day 1 (4Ma), day 7 (4Mb) and day 14 (4Mc). Cell size both 

decreased (0 – 500 µm2) and increased (3000 - 4000 µm2) significantly following this treatment regime 

immediately (on Day 1) and over a long-term period of 7 and 14 days respectively. 8000 - 10000 cells 

were analyzed for every single experiment using Image J. Error bars represent the standard deviations 

of four biologically independent experiments (N = 4); p-values < 0.05 was considered statistically 

significant with * representing p < 0.05 (for a versus c or b versus c) and # representing p < 0.05 (for a 

versus b). 

The results indicate that duration of MMW exposure directly determines the extent to which cell 

morphology is affected. A short 2 minutes exposure does not produce any immediate effects but 

induces development of enlarged cells, indicative of senescence [28, 29]. In contrast, a 4 minutes 

exposure regime providing a higher dosage of MMW energy results in both short and long-term effects. 

Immediately, following exposure in this regime cells are induced to a far greater degree of shrinkage 

as compared to that under the 2 minutes regime; indicating acute apoptosis [27]. Further, the 4 minutes 

regime also induces development of enlarged polyploid cells indicative of senescence [28, 29], over a 

long-term period of 14 days following irradiation. 

3.4. MMW irradiation increases cell circularity and Feret’s diameter of H1299 cancer cells 

In order to ascertain that MMW irradiation induced apoptosis and senescence as indicated by the 

results above; further stringent parameters were quantified. Specifically, cell circularity and Feret’s 

diameter were measured to determine the extent of the said effects. Circularity values ranging from a 

least circular shape (value 0) to a perfect circle (value 1) is used to denote the degree of dimensional 

roundness of an object. Increased cell circularity is a hallmark of apoptosis resulting from cytoplasmic 

shrinkage and cell fragmentation [30]. Majority (80%) of untreated control cells presented circularity 

values between 0.5 - 0.8 (Figure 4a). Following MMW exposure, the circularity of irradiated cell 

populations increased by 1.5 times as compared with that of control untreated cells. The 2 minutes 

irradiation regime led to a population shift towards a more circular shape (0.8 - 0.9) on day 1 (Figure 

4b). 7 days of physiological incubation following exposure in this regime presented cell populations 

split into two groups. One group retained the circular form (0.8 - 0.9) indicating apoptotic or 

programmed cell death (PCD) cells and another a less circular form (0.3 - 0.5) than untreated cells, likely 

to be fragments of already PCD cells which lost their normal form and size. Interestingly, the split in 

population was retained even after 14 days following irradiation. The 4 minutes irradiation regime 

resulted in a similar but more marked trend of population shift (Figure 4c). As these effects persisted 

over day 7 to 14 day of post-irradiation period and were not observed in the untreated control cells, the 

changes in cell circularity were concluded to be a specific response to MMW irradiation. 
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Figure 4. Distributions of cell circularity (A-C) and Feret’s diameter (D-F) following effects of MMW 

irradiation; analyzed on Day 1 (red bars), Day 7 (blue bars) and Day 14 (green bars). Values of cell 

circularity were divided into 10 subgroups and the number of cells in each group counted. The Y-axis 

represents the ratios of the number of irradiated cells to the number of untreated control cells for the 

same subgroup. Cell circularity of H1299 cells left untreated (A); analyzed on day 1 (Ra), day 7 (Rb) and 

day 14 (Rc). Cell circularity of H1299 cells irradiated under 2 minutes exposure regime (B); analyzed on 

day 1 (2Ma), day 7 (2Mb) and day 14 (2Mc). Cell circularity of H1299 cells irradiated under 4 minutes 

exposure regime (C); analyzed on day 1 (4Ma), day 7 (4Mb) and day 14 (4Mc). Values of Feret’s diameter 

were divided into 10 subgroups and the number of cells in each group counted. Each subgroup 

corresponds to 25 µm for all experiments. The Y-axis represents the ratios of the number of irradiated 

cells to the number of untreated control cells for the same subgroup. Feret’s diameter of H1299 cells left 

untreated (D); analyzed on day 1 (Ra), day 7 (Rb) and day 14 (Rc). Feret’s diameter of H1299 cells 

irradiated under 2 minutes exposure regime (E); analyzed on day 1 (2Ma), day 7 (2Mb) and day 14 (2Mc). 

Feret’s diameter of H1299 cells irradiated under 4 minutes exposure regime (F); analyzed on day 1 (4Ma), 

day 7 (4Mb) and day 14 (4Mc). 8000 - 10000 cells were analyzed for every single experiment using Image 

J. Error bars represent the standard deviations of four biologically independent experiments (N = 4); p-

values < 0.05 was considered statistically significant with * representing p < 0.05 (for a versus c or b 

versus c) and # representing p < 0.05 (for a versus b). 
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Feret’s diameter (FD) measured, as the longest straight line between two points on the periphery 

of a cell is an important morphological marker of cells undergoing senescence [31]. Larger FD 

corresponds to longer cellular extensions (i.e. protrusions); and enlarged structurally aberrant cells 

characteristic of senescence [32]. FD of non-irradiated cells did not change over the experimental time 

course (Figure 4d).  The 2 minutes exposure regime led to a significant increase of FD over 7 days of 

physiological incubation following irradiation (Figure 4e) and was reversed after 14 days. In contrast, 

the 4 minutes irradiation regime resulted in an FD increase over 14 days and not 7 days (Figure 4f). 

These results demonstrate that a significant number of cells changed their shapes and sizes in an energy 

(dose) dependent manner as a specific response to MMW irradiation.  Trigonal, flattened, adherent cells 

of the control groups changed to oval-shaped cell bodies with long protrusions following MMW 

exposure treatment. 

4. Discussion 

Cancer characterizes by an excessive and uncontrolled division of abnormal, malignant cells that 

display morphological, proliferative, and functional heterogeneity (26). Cell size is an important 

morphological criterion characterizing the physiological status of a cell. Majority of animal cells are 10-

20 μm in diameter and rarely vary more than two folds outside of this range, suggesting that the 

mechanism for cell size regulation is highly conserved [33]. Changes in H1299 cell morphology 

following exposure to 75-110 GHz MMW for 2 and 4 minutes irradiation regimes respectively, were 

examined in this study. Past investigations of MMW irradiation effects on normal and cancer cells had 

reported distinct non-thermal biological effects using discrete narrow range(s) of frequency with very 

low energy [12 - 13, 19, 34 - 35]. MMW irradiation of lung cancer cells in the present study led to 

significant visible morphological changes in cell area, cell circularity and Feret’s diameter. These 

changes were observed on the same day of exposure treatment (short-term effects), as well as over 7 - 

14 days post-irradiation (long-term effects). The short-term effects are likely due to regular stress 

responses following irradiation. However, the long-term effects arise specifically as a result of MMW 

irradiation and were observed to be retained over the duration of the experiment(s). Senescent cells are 

known to present an enlarged phenotype as compared to non-senescent cells [36]. This suggests that 

the dramatic increment of cell size observed under the 2 minutes irradiation regime indicates a 

population shift towards a higher number of senescent cells induced by MMW irradiation. In contrast, 

the results from the 4 minutes exposure regime, which delivered a higher dose of MMW energy, 

indicated induction of apoptosis as well as senescence. These are favorable effects for clinical 

applications of MMW therapy to control tumor metastasis.  

 

Reports of heterogeneity [26] as well as our results, demonstrate cancer cells maintain generally 

constant sizes throughout their lifetime. And being highly dynamic can either grow or shrink in size in 

response to specific conditions via robust and adaptable control mechanisms. Illustratively, alterations 

of cell morphologies in response to the chemical cancer drug paclitaxel have been observed with similar 

results [37]. Cancer cell tumorigenicity is associated with cell softening and decrease in cell stiffness 

arising from cytoskeletal restructuring [38]. Integral membrane proteins mediate this transition of 

normal cells into cancer cells [39]. Changes in cell shape and size following MMW irradiation in the 

present study were specific and irreversible, directly corresponding to changes of cell circularity and 

Feret's diameter. MMW irradiation affects cell growth [9 - 11] by changing organelle structure and cell 

membrane permeability [6, 12 - 13]. Such interactions lead to the activation and inhibition of signal 

transduction mechanisms due to MMW interacting with DNA, RNA and Proteins [14 - 16]. Increased 

membrane stiffness resulting in apoptosis of cells has been shown to correspond to changes in prostate 

cancer cells responding to anti-neoplastic treatment [40]. These suggest the Accelerated Cellular 

Senescence (ACS) effect [41] occurring in an energy (dose) dependent manner observed in this study 

arises from the non-thermal low power density MMW exposure affecting H1299 membrane fluidity.  
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5. Conclusions 

The experimental results of this study suggest MMW irradiation in the frequency range of 75 - 110 

GHz (W-band) promote specific morphological changes in H1299 human lung cancer cells in an energy 

(dose) dependent manner. Effects observed and quantified using physical dimensions/parameters of 

cell size, circularity and Feret’s diameter demonstrate characteristic features of induced apoptosis and 

senescence following MMW exposure. The phenomenon of Accelerated Cellular Senescence (ACS) [41] 

wherein cancer cells undergo terminal growth arrest is conventionally achieved by using radiotherapy 

in conjunction with specific chemotherapeutic agents for targeted blockage of cellular pathways. In vivo 

studies suggest MMW can be used to activate Natural Killer (NK) cells aiding to reduce tumor 

metastasis [42]. The present study reports apoptosis and senescence of cancer cells without the use of 

chemotherapeutic agents, ionizing radiation or thermal ablation, thereby overcoming associated side 

effects [Salvo et al., 2010; Ryan, 2012]. In conjunction with the development of endoscopic methods, 

MMW irradiation parameters described in this study holds promising potential for the development of 

non-invasive procedures to treat lung cancer in the future. 
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