
Article

Ion Acceleration in Multi-Fluid Plasma: Including
Charge Separation induced Electric Field Effects in
Supersonic Wave Layers

Ross Burrows

1 Affiliation 1; University of Arkansas at Monticello; burrows@uamont.edu

† Current address: Science Center, 397 University Drive, Monticello, AR 71656

Abstract: The need to understand the process by which particles, including solar wind and coronal

ions as well as pickup ions, are accelerated to high energies (ultimately to become anomalous cosmic

rays) motivate a multi-fluid shock wave model which includes kinetic effects (e.g. ion acceleration)

in an electromagnetically self-consistent framework. Particle reflection at the cross-shock potential

leads to ion acceleration in the motional electric field and thus anisotropic heating and pressure

in the shock layer, with important consequences for the multi-fluid dynamics. This motivates

development of a multi-fluid model of solar wind electrons and ions treated as fluid, coupled

self-consistently with a small population of kinetically treated ions (e.g. pickup ions.) Consideration

of both the time dependent and steady state regimes, indicate that such a multi-fluid approach is

necessary for resolving the, Debye scale, particle reflecting cross-shock potential and subsequent

dynamics. To study charge separation effects in narrow, supersonic wave layers we consider a

reduction of the system to the steady state for cold ions and hot electrons and find two types of

solitary waves inherent to the reduced two-fluid system in this limiting case.

Keywords: Solitons, Electrostatic Solitary Waves, Pickup Ions, Perpendicular Shock Waves,

Multi-fluid Plasma.)

1. Introduction

Investigations of multiply reflected ion (MRI) acceleration at perpendicular shocks, where ions

are treated kinetically (as test particles with detailed trajectories calculated from the Lorentz force

equation) have found MRI to be an efficient mechanism capable energizing ions up to energies on the

order of ∼ 100keV, as needed for injection into diffusive shock acceleration mechanisms [1–5] which

further accelerate them to become the so-called anomalous component of cosmic rays. Much of this

work treats the electromagnetic fields as fixed and ions as test particles. For an improvement, we have

presented a two-fluid solar wind (SW) simulation with kinetically treated pickup ions (PUIs) coupled

quasi self-consistently via inclusion of the PUI anisotropic pressure–calculated directly from their

precisely tracked trajectories [6]. Here we consider a self-consistent inclusion of the back-reaction,

due to ion acceleration, including their action on the electromagnetic fields as well as their anisotropic

pressure. The possibility of self-consistently including kinetic particles using a 1-fluid MHD model,

with source terms included to account for shock accelerated ions, has been rejected because, as

considered below, only a multi-fluid plasma treatment can resolve important charge separation effects

in supersonic wave layers.

When charge separation gives rise to particle reflecting electrostatic fields, resolution on

electron Debye scales is necessary to include important plasma dynamics. For example, studies

of adiabatic solitary waves [7] and shock surfing at a two-fluid plasma model [8], indicate that
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the cross-wave electrostatic field structures form on electron Debye scales. Such fine scale, electric

fields provide important force sights where suprathermal ions gain energy by acceleration along

the motional electric field after reflection from an electrostatic cross-shock potential (CSP), thus

providing a dissipation mechanism for super-critical collisionless shocks, which can explanation some

observations. For example, reflected and accelerated pickup ions can explain the cooler than expected

solar wind observed by Voyager 2 downstream of the heliospheric termination shock [1,2,4,9,10].

Such observations and simulations indicate that electrostatic solitary waves (ESWs) are

dynamically coupled to shocks in multi-fluid plasmas [11–13]. In this context, we pursue the

development of a self-consistent fluid dynamics model, that can incorporate the effects of reflected

particles, in particular for shock-surfing pickup ions. Indeed, our two-fluid hybrid model, including

dynamically coupled ions, treated as test particles [6], required a multi-fluid treatment without

the common assumption of quasi charge-neutrality (e.g. used consistently in [Tidman and Krall,

1971] [14]) since particle reflecting electrostatic structures arise from charge separation when ion and

electron densities get perturbed from balance in narrow wave layers.

As an illustrative simplification of the complex multi-fluid system, we treat the case of cold ions

and hot electrons in the steady state of the wave frame. Solving the resulting coupled set of ordinary

differential equations (ODEs), via numeric parameterization of the set, we find both accelerating

and decelerating solutions of electrostatic solitary waves (ESWs) associated with both electrostatic

potential hills and wells, much like the two types of ESWs observed by Geotail near Earth’s bow

shock [11].

2. Motivation for the Development of a Multi-fluid Plus Kinetic Ions Plasma Model

Multiplying the continuity equations (see e.g. [15]) for electrons and ions by their fundamental

electron charge e and summing yields the charge continuity relation

∂q

∂t
+∇ ·~j = 0

where q and~j are the total charge density and current. The usual neglect of the displacement current

in MHD (magneto-hydrodynamics) yields

∇× ~B =
4π

c
~j

in Ampere’s law implying that ∇ ·~j = 0 and thus that the charge density q is everywhere constant,

meaning that a 1-fluid MHD approach, which assumes charge neutrality everywhere, cannot resolve

the cross-shock potential (CSP) inducing charge separation in the shock layer. As outlined below,

in order to resolve charge separation, we present a two-fluid plasma model which includes a third

population, composed of candidate ions which we term as shock accelerated particles (SAPs) likely

to be MRI accelerated, to be treated kinetically as quasi-test particles–meaning that for the duration

of a time-step (on the plasma fluid scale) the electromagnetic fields are fixed and the trajectories of

the SAPs, along with their associated stress and energy tensors, are calculated. The SAP tensors are

then fed step-wise into the 2-fluid plasma model as source terms. A brief description of shock surfing

acceleration, with implications for source terms follows.

Multiply reflected ion (MRI) acceleration can occur when plasma is suddenly decelerated at a

shock wave where the more massive ions on average, having more momentum, are able to penetrate

further into the density pile-up immediately downstream of the shock than do the less massive

electrons. The subsequent charge separation results in the formation of a cross-shock potential

(CSP) which acts as an electrostatic barrier to incoming ions. Some ions incident at the shock with

insufficient shock-normal component of velocity to overcome the CSP will be reflected. Reflected

ions, which can be thought of as kicked out of the SW frame where electric fields are negligible, are
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acted on by the motional electric field (directed tangentially to the surface of a perpendicular shock)

and can thus be significantly energized by MRI acceleration.
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Figure 1. Illustration of the idealized initial ion distribution, in the shock frame, before and just after

reflection. (a) The unreflected initial distribution is composed of a pickup ions (PUIs) which reside on

a shell in velocity space of radius u0 (the solar wind (SW) speed) and SW ions residing in a core located

at (u0, 0, 0). The dashed portion of the PI shell to the left of vspec on the vx-axes (vertical dashed line)

has an insufficient x-component of velocity to over come the cross shock potential (CSP, Φ) and will

be reflected. (b) The ion distribution immediately following refection is composed of the specularly

reflected fractional part of the PUI shell and the remainder which, along with the SW core, is convected

downstream without reflection. Not illustrated by this figure is the stretching along motional electric

field (~E = ~u × ~B) direction that the reflected partial shell will undergo during the energization process.

It is evident that the reflected PUI partial shell has gained energy after a single reflection, with respect

to the fluid frame where the SW core is at the origin.

As illustrated in Figure 1 (which illustrates a shell distribution where the entire portion of the

shell satisfying vx < vspec =
√

2eΦ/m has undergone a single reflection) ion reflection can occur

when
1

2
mv2

x < eΦ,

i.e. when the ion’s x-component of velocity is insufficient to overcome the CSP barrier. For a PUI

distribution incident on a simple step-function shock structure with a vanishingly narrow ramp width

(such as considered by [2]) the entire portion of the distribution satisfying the reflection condition will

undergo one or more reflections, resulting in very strong energization of the downstream PUIs. On

the other hand the main ion population, the SW ions which lie on a relatively cold Maxwellian core

distribution (the heavy central dot depicted in Figure 1) are transmitted downstream of the shock

with virtually no reflection. In a recent article [1] we have performed a test-particle simulation of

the termination shock (TS) showing that MRI acceleration can also be important at shocks with fairly

large ramp widths but that still posses sufficiently narrow fine structure to support reflection. Because

of the important role the shock structure plays in ion acceleration, we seek a 2-fluid plasma model

that will allow us to resolve fine details of the electric and magnetic fields in the local vicinity of the

shock.
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Figure 2. A test-particle ion (lower black curve) shock surfing through a model of the Termination

shock (upper blue curve). The fine structure in the ramp (not clearly visible in this figure) provides

multiple possible reflection sights.

There are several important features of MRI acceleration that the 2-fluid plus source terms model

must include. For example, as depicted in Figure 3, ion reflection at the shock ramp is expected

to perturb state variables such as pressure and density (represented by the arbitrary perturbation

quantity gi(x, t) in Figure 3). Furthermore, our simulations [1] have shown that PUI pressure behind

the termination shock can be highly anisotropic.
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Figure 3. Depiction (for illustration purposes) of a perturbed quantity such as ion density, ion pressure,

etc. represented by gi(x, t0) at some arbitrary time t0 shown together with the cross shock potential

(CSP). The qualitative plots for these two functions are superimposed over a qualitative sketch of an

ion trajectory. The illustration shows how some incoming ions are trapped by reflection from the CSP

and accelerated in the motional electric field (~E = −~u × ~B) before being convected downstream. This

trapping leads to a small ion density increase which is accounted for by the nonzero value of gi in a

small region centered around the shock front.

Figure 4 illustrates ion distributions ahead of and just behind the TS model. Note that virtually

none of the upstream Maxwellian SW distribution lies to the left of the velocity vspec, whereas a

significant portion of the upstream PUI filled-shell does lie to the left of vspec (i.e. in the reflecting

region of velocity space). We have shown, in test-particle calculations, that (cold) Maxwellian

distributions incident on a narrow, perpendicular shock pass downstream virtually unreflected, as

expected. This justifies the assumption employed below in the construction of our numerical model

that the 2-fluid SW is Maxwellian and isotropic everywhere. The right hand panel of Figure 4 is the

phase-space density plot of an MRI accelerated PUI distribution just behind the TS-model and it is

clear that this distribution is anisotropic with important non-zero off-diagonal terms in the associated

PUI pressure tensor.
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Figure 4. (left) Cold Maxwellian solar wind distribution in the shock frame. (middle) Initial pickup

ion filled-shell distribution in the shock frame. (right) downstream MRI accelerated filled-shell

distribution in the fluid frame.

The up and downstream, normalized PUI (or SAP) pressure tensors associated with the middle

and right-hand panels of Figure 4 are

Pa
up =







0.166 0 0

0 0.166 0

0 0 0.166






, Pa

dn =







0.130 0.002 0

0.002 0.535 0

0 0 0.166







respectively, which shows MRI enhancement of the pa
yy component as well as the formation of shear

pressure terms pa
xy = pa

yx. We seek to include the formation of an anisotropic ion distribution in the

shock layer via the inclusion of source terms in a two-fluid plasma model as described below.

3. Two-fluid Solar Wind Plus Kinetically Treated Shock Acceleration Candidate Kinetic Ions
Numeric Model

We develop a quasi-self-consistent system composed of a core two-fluid plasma solar wind

(SW) background, which is acted on by a small population of ions to be treated kinetically though

self-consistantly coupled to the core SW. We are interested in the case where a small, energetic

population (denoted as shock accelerated particle (SAP) candidates) undergoes multiply reflected

ion (MRI) acceleration due to reflection from a cross-shock potential leading to acceleration in the

motional electric field. A two-fluid description is derived to calculate the back reaction on the fields, in

essence creating a feedback loop between kinetic shock accelerated particles (SAPs) with SW electron

and ion fluids.

There are two distinct characteristic scale regimes involved in this development: long time and

length scales (δt, L) associated with the description of the two-fluid core SW plasma, and short time

and length scales (δtkin, l) associated with SAP dynamics (particularly within the narrow shock

structure). The prescription here, for constructing a closed system that can be solved numerically,

is to treat the electric and magnetic field ~E and ~B as constant for each time period δt during which

we solve the motion of the kinetic ions (treated in a manner much like particle in cell (PIC) code);

the pressure and heat flux tensors resulting from the detailed ion trajectories are then feed into the

2-fluid plasma equations as source terms; the 2-fluid equations are used to update the values of ~E and
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~B over the longer time scale and the process is iterated. Below we present a system ready for such a

numerical treatment.

The derivation of the plasma fluid equations is followed from Boyd and Sanderson, Plasma

Dynamics [15], Chapter 3 (from now on referred to as B&S), however instead of treating the system

as two groups of particles, ions and electrons (labeled in B&S by ‘+’ and ‘-’ respectively), we treat

the system as composed of three groups of particles, labeled {s, a, e}, which are solar wind (SW) ions,

shock acceleration candidate ions and electrons respectively. The shock acceleration candidate ions

(e.g. pickup ions (PUIs)) will compose between 0 and 20% of the total ion population and are kept

separate since they will be treated kinetically.

Definitions:

Ion number density composed of the SW ions plus SAP candidates is

n+ = ns + na (1)

and the electron density is ne.

The charge density is

q = en+ − ene (2)

and ion fluid velocity is

~u+ =
mns~us + mna~ua

mns + mna
(3)

The current density is
~j = ens~us + ena~ua − ene~ue (4)

Here m is the ion mass (which for now is a proton mass), e is the electron/proton charge. The random

(thermal) velocity of each species is

~ca = ~va − ~u+

~cs = ~vs − ~u+ (5)

~ce = ~ve − ~ue

Pressure tensors are defined as

pij = mn
〈

cicj

〉

(6)

and the heat tensors are

qijk = mn
〈

cicjck

〉

(7)

where, as per the B&S convention, species labels are suppressed to simplify the notation.

Since, in (5), both SW ions and SAP ions have thermal velocities defined with respect to the

common ion bulk velocity, the total ion pressure tensor can be written as the sum of two partial

pressures

p+ij = ps
ij + pa

ij (3-37)

We make the closure assumption that SW ions and electrons can be treated everywhere as thermalized,

isotropic distributions such that

ps
ij = δij ps (8)

pe
ij = δij pe (9)

and

qs
ijk = qe

ijk = 0.
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The shock accelerated particle (SAP) pressure is taken to be composed of an isotropic and anisotropic

part,

pa
ij = δij pa + πa

ij. (10)

and has a nonzero heat tensor qa
ijk. All fluid equations are constructed from the transfer equation

∂

∂t
(n 〈ψ〉) + ∂

∂~r
· (n 〈~vψ〉) = ne

m
~E ·
〈

∂ψ

∂~v

〉

+
ne

mc

〈

(~v × ~B) · ∂ψ

∂~v

〉

(11)

where the closure assumption that collision terms are negligible has been made. Continuity equations

result from (11) when ψ = 1.

∂n+

∂t
+∇ · (n+

~u+) = 0 (12)

∂ne

∂t
+∇ · (ne~ue) = 0

Ion momentum, ψ = m~v, (i’th component)

∂

∂t
(mn+u+

i ) +
∂

∂xj

[

ps
ij + pa

ij + mn+u+
i u+

j

]

= en+Ei +
en+

c

(

~u+ × ~B
)

i
(13)

where for ions
〈

vivj

〉

=
pij

mn
+ uiu

+
j + u+

i uj − u+
i u+

j (14)

(species labels s, a suppressed) Electron momentum (i’th component)

∂

∂t
(meneuei) +

∂

∂xj

[

pe
ij + meneueiuej

]

= −eneEi −
ene

c

(

~ue × ~B
)

i
(15)

where for electrons
〈

vivj

〉

=
pij

mn
+ uiuj (16)

Taking me → 0, (15) becomes
∂pe

∂xi
= −eneEi −

ene

c

(

~ue × ~B
)

i
(17)

Ion energy

∂

∂t

(

1

2
p+ii +

1

2
mn+u2

+

)

+
∂

∂xj

[

1

2
qa

iij +
1

2
p+ii u+

j + p+ij u+
i +

1

2
mn+u2

+u+
j

]

= en+~E · ~u+ (18)

where for ions we have used

〈

v2vi

〉

=
qjji

mn
+

pjju
+
i

mn
+

2piju
+
j

mn
+ 2uju

+
j u+

i + uiu
+
j u+

j − 2u+
i u+

j u+
j (19)

Electron energy

∂

∂t

(

1

2
pe

ii +
1

2
meneu2

e

)

+
∂

∂xi

[

1

2
pe

jjuej + pe
ijuei +

1

2
meneu2

e uei

]

= −ene~E · ~ue (20)

where for electrons
〈

v2vi

〉

=
pjjui

mn
+

2pijuj

mn
+ uiujuj
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since qe
ijk = 0. Taking me → 0, (20) becomes

∂

∂t

(

3

2
pe

)

+
∂

∂xj

[

5

2
peuej

]

= −ene~E · ~ue (21)

With the Maxwell curl equations,

∇× ~E = −1

c

∂~B

∂t
(22)

∇× ~B =
1

c

∂~E

∂t
+

4π

c
~j (23)

equations (12), (13), (17), (18), (21) plus (22) and (23) form a set of 16 equations in the 16 unknowns

{n+, ne,~u+,~ue, ps, pe,~E,~B} to be solved numerically by a fluid code, and the included sources terms

pa
ij and qa

ijk are to be determined by a kinetic treatment of the SAP candidate ions.

3.1. Conservation form of the two-fluid plasma equations

Summing the momentum equations (13) and (17) yields

∂

∂t

(

mn+u+
i +

(~E × ~B)i

4πc

)

+
∂

∂xj

[

δij(ps + pe) + pa
ij + mn+u+

i u+
j − Tij

]

= 0 (24)

where we have used

qEi +

(

~j × ~B
)

i

c
=

∂Tij

∂xj
− ∂

∂t

(

(~E × ~B)i

4πc

)

and the Maxwell stress tensor is defined as:

Tij =
BiBj + EiEj

4π
− δij

(

E2 + B2

8π

)

.

Summing the energy equations (18) and (21) yields

∂

∂t

(

1

2
pa

ii +
3

2
(ps + pe) +

1

2
mn+u2

+ +
B2 + E2

8π

)

+

∂

∂xj

[

1

2
qa

iij +
1

2
pa

iiu
+
j + pa

iju
+
i +

5

2
(psu+

j + peue
j ) +

1

2
mn+u2

+u+
j +

c

4π
(~E × ~B)j

]

= 0 (25)

where we have used

~j · ~E = − ∂

∂t

(

B2 + E2

8π

)

− c

4π
∇ · (~E × ~B).

An alternate form of the electron energy equation can be formed by taking (17) multiplied by uei

and subtracting the result from (21) yielding

u2/3
ei

∂pe

∂t
+

∂

∂xi

[

peu5/3
ei

]

= 0 (26)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2020                   doi:10.20944/preprints202003.0426.v1

https://doi.org/10.20944/preprints202003.0426.v1


10 of 35

3.2. Dimensionless forms of the equations

To prepare the equations for numerical discretization define the following dimensionless

variables:

x̄ =
x

L
t̄ =

u∞

L
t ~U =

~u+

u∞
~u =

~ue

u∞

N =
n+

n∞
n =

ne

n∞
Ēx =

Ex

E∞
Ēy =

Ey

E∞
(27)

B̄z =
Bz

B∞
Pij =

p+ij

mn∞u2
∞

pij =
pe

mn∞u2
∞

Qa
ijk =

qa
ijk

mn∞u3
∞

where L is an arbitrary length scale and, as justified below,

E∞ =
u∞

c
B∞

and the ∞ label indicates the constant far upstream (boundary) values for the state variables. Also

note that the dimensionless ion pressure can be expressed in terms of ion partial pressures

Pij = δijPs + Pa
ij.

The dimensionless derivatives of dimensionless state variables ψ̄(x̄, t̄) = ψ/ψ∞ take the form

∂ψ

∂t
=

ψ∞u∞

L

∂ψ̄

∂t̄

∂ψ

∂x
=

ψ∞

L

∂ψ̄

∂x̄
(28)

To simplify the notation for the two-fluid plasma system expressed in dimensionless form, it is

useful to define the following dimensionless plasma parameters

α1 =
Ω∞

ωp
α2 =

u∞

c
α3 =

α1

α2
α4 =

L

R∞
(29)

which are expressed in terms of the far upstream ion gyro-frequency, ion plasma frequency and ion

gyro-radius defined as

Ω∞ =
eB∞

mc
ωp =

√

4πn∞e2

m
R∞ =

u∞

Ω∞
(30)

respectively. In writing the following dimensionless equations it is convenient to drop over-bars and

take it as understood that all variables and derivatives dimensionless. Also note that the components

of the dimensionless bulk velocities for the ions and electrons are given by

~U = (U, V, W) and ~u = (u, v, w)

respectively. In dimensionless form the continuity equations (12) become

∂N

∂t
+∇ · (N~U) = 0 (31)

∂n

∂t
+∇ · (n~u) = 0

Ion momentum (13) becomes, (i’th component)

∂

∂t
(NUi) +

∂

∂xj

[

δijPs + Pa
ij + NUiUj

]

= α4N
(

Ei + (~U × ~B)i

)

(32)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2020                   doi:10.20944/preprints202003.0426.v1

https://doi.org/10.20944/preprints202003.0426.v1


11 of 35

Electron momentum (17) becomes, (i’th component)

∂p

∂xi
= −α4n

(

Ei + (~u × ~B)i

)

(33)

Ion energy (18) becomes

∂

∂t

(

1

2
Pa

ii +
3

2
Ps +

1

2
N~U2

)

+
∂

∂xj

[

1

2
Qa

iij +
1

2
Pa

iiUj + Pa
ijUi +

5

2
PsUj +

1

2
N~U2Uj

]

= α4N~E · ~U (34)

Electron energy (21) becomes

∂

∂t

(

3

2
p

)

+
∂

∂xj

[

5

2
puj

]

= −α4n~E · ~u (35)

The the total momentum equation (24) becomes

∂

∂t

(

NUi + α2
1(~E × ~B)i

)

+
∂

∂xj

[

δij(Ps + p) + Pa
ij + NUiUj − Tij

]

= 0 (36)

where the dimensionless Maxwell stress tensor is

Tij = α2
3

(

BiBj + α2
2EiEj −

δij

2
(α2

2E2 + B2)

)

.

The total energy equation (25) becomes

∂

∂t

(

1

2
Pa

ii +
3

2
(Ps + p) +

1

2
N~U2 +

α2
3

2
(B2 + α2

2E2)

)

+

∂

∂xj

[

1

2
Qa

iij +
1

2
Pa

iiUj + Pa
ijUi +

5

2
(PsUj + puj) +

1

2
N~U2Uj + α2

3(~E × ~B)j

]

= 0 (37)

The Maxwell equations (22) and (23) can also be expressed in dimensionless form as

∇× ~E = − ∂~B

∂t
(38)

∇× ~B = α2
2

∂~E

∂t
+ α5(N~U − n~u) (39)

where

α5 =
α4

α2
3

The Poisson’s equation (∇ · ~E = 4πq) can also be expressed in dimensionless form as

∇ · ~E =
α4

α2
1

(N − n) (40)

4. Special Case: Quasi-One Dimensional, Exactly Perpendicular Shock

As an initial case, limit variations to the shock normal direction (x-direction) so that

∇ → x̂
∂

∂x
.
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Consider an exactly perpendicular shock configuration, with

~B = (0, 0, Bz) (41)

~E = (Ex, Ey, 0) (42)

where the plasma flow at the far left (upstream) boundary is

~u+ = ~ue = x̂u∞

as x → −∞. The assumption of charge neutrality can be imposed at the left boundary so that the

dimensionless boundary conditions at x → −∞ are

N = 1, n = 1, U = 1, u = 1, Bz = 1, Ey = 1

V = 0, v = 0, Ex = 0. (43)

The fluid plus Maxwell’s equations can now be expressed in the dimensionless form

∂U

∂t
+

∂F

∂x
= S (44)

where the state vectors in (44) are

U =



































N

n

NU

NV
1
2

(

Pii + N~U2
)

3
2 p

Bz

Ex

Ey



































, F =



































NU

nu

Pxx + NU2

Pxy + NUV
1
2

(

Pii + N~U2
)

U + PxxU + PxyV +
Qa

iix
2

5
2 up

Ey

0
c2

u2
∞

Bz



































,

S =





































0

0
L

R∞
(NEx + NVBz)

L
R∞

(

NEy − NUBz

)

L
R∞

(

NUEx + NVEy

)

− L
R∞

(

nuEx + nvEy

)

0

− L
R∞

ω2
p

Ω2
∞
(NU − nu)

L
R∞

ω2
p

Ω2
∞
(nv − NV)





































where ~U2 = ~U · ~U. The two remaining equations are

∂p

∂x
= − L

R∞
(nEx + nvBz) (45)

Ey = uBz (46)

from the electron momentum (33). Thus equation (44) plus (45) and (46) form a complete system

ready for the construction of a numerical solution. For example (45) and (46) can be used to eliminate

the electric field components directly. Furthermore, since none of the plasma state variables depend
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on the z-components of velocity, we assume w = 0 and W = 0. In fact examination of the steady

state system (presented below) indicates that if W = w = 0 at the left boundary (x → −∞) then the

z-comonent of bulk velocity will remain zero, i.e. we can view the z-direction as ignorable for the

special case under consideration.

An alternate ‘quasi-conservative’ form of system (44) (plus (45) and (46), expressed as

∂V

∂t
+

∂G

∂x
= 0 (47)

can be formed by swapping out the ion momentum and energy equation with the total momentum

and energy equations in the conservation forms given by (36) and (37), where state vectors in (47) are

written as

V =





















N

n

NU + α2
1EyBz

NV − α2
1ExBz

1
2 Pa

ii +
3
2 (Ps + p) + 1

2 N~U2 +
α2

3
2 (B2 + α2

2E2)

Bz





















,

G =





















NU

nu

Pa
xx + Ps + p + NU2 +

α2
1

2 (E2
y − E2

x) +
α2

3
2 B2

z

Pa
xy + NUV − α2

1ExEy
1
2 Qiix +

1
2 Pa

iiU + Pa
xxU + Pa

xyV + 5
2 (PsU + pu) + 1

2 N~U2U + α2
3EyBz

Ey





















.

The above system must be supplemented by the electron equations

∂p

∂x
= −α4n (Ex + vBz) (48)

Ey = uBz (49)

u2/3 ∂p

∂t
+

∂

∂x

(

pu5/3
)

= 0 (50)

where (50), the quasi-conservative form of the electron energy, results on summing the x-component

electron momentum (45) and the electron energy equation. Additionally the system (47) must be

supplemented by the remaining non-conservative components of Maxwell’s written as

∂Ex

∂t
= −α4

α2
1

(NU − nu) (51)

∂Ey

∂t
+

1

α2
2

∂Bz

∂x
=

α4

α2
1

(NV − nv) (52)

4.1. Steady state equations for 1D case with perpendicular magnetic field

In the steady state ∂/∂t → 0 and (47) reduces to

∂G

∂x
= 0 (53)

From which it is seen that several integrals of the motion are readily obtained. It turns out that for

the special case under consideration there are nine algebra relations (i.e. 9 integrals of the motion)

that can be obtained from the plasma system in the steady state (SS). The variables of the special

case system under consideration are (n, N, u, U, v, V, p, Ps, Ex, Ey, Bz) for a total of 11 unknowns. This
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means that, in principle, the SS system can be determined from a coupled pair of ODEs in two of

the unknowns. Having solved the coupled ODEs the remaining unknowns can be found from the

algebra relations and the system thus completely determined. The first four algebra relations are

NU = 1, nu = 1, Bzu = 1, Ey = 1. (54)

The first two SS relations, expressed in (54) above, follow from the continuity relations (i.e. first

two components of (53)) and the boundary conditions (43). The remaining two constants of the

plasma system, expressed by (54) follow from the Faraday relation given by the last component of

(53) along with the y-component of electron momentum expressed by (49). The third, fourth and fifth

components of (53) express conservation of total momentum and energy in the SS as

Pa
xx + Ps + p + U +

α2
3

2
B2

z −
α2

1

2
E2

x = 1 + P∞ +
α2

3

2
(55)

Ex =
1

α2
1

(

V + Pa
xy

)

(56)

1

2
(U2 + V2) +

5

2
(PsU + pu) +

(

1

2
Pa

ii + Pa
xx

)

U

+Pa
xyV + α2

3Bz +
Qa

iix

2
=

1

2
+ α2

3 +
5

2
P∞

(57)

where (43) and (54) have been applied and P∞ = P∞
s + P∞

a + p∞ is the total (dimensionless) pressure

at the upstream boundary which is taken to be completely isotropic there. The equation of state for

adiabatic electrons

p = p∞nγ, γ = 5/3 (58)

follows from (50) and (54). Using algebra relation (56) in Poisson’s’ equation (40) yields

∂

∂x

(

V + Pa
xy

)

= α4(N − n) (59)

which, upon using (54), is also given by the y-component of the ion moment–i.e. the fourth

component of equation (53). This demonstrates explicitly that the Poisson’s equation is a corollary

of the plasma fluid equations and the Maxwell curl equations. Several additional relations can be

obtained by systematic substitution of the algebra relations (54), (55), (56) and (57) back into the

SS forms of the non-conservative equations given by (44). As mentioned this process recovers the

Poisson’s equation (59) above along with several ODEs in the electron density

dn

dx
=

−α4(Ex + NV)

α2
3 + γp∞nγ−2

(60)

dn

dx
=

−α4

γp∞nγ−2
(Ex + vBz) (61)

dn

dx
= α5(nv − NV) (62)

(63)

from which we can recover an additional algebra relation

Ex + NV =
1

α2
3

(α2
3 + γp∞nγ−2)(NV − nv) (64)
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where γ = 5/3. Using (54), (59) and (60) can be written as

dn

dx
=

−α4(
V+Pa

xy

α2
1

+ V
U )

α2
3 + γp∞nγ−2

(65)

d

dx

(

V + Pa
xy

)

= α4

(

1

U
− n

)

By using (55) and (57) to find U = U(n, V), the coupled set of ODEs (65) can (in principle) be solved

numerically and the steady state solution thus determined.

5. Steady state, 1D two-fluid plasma system with cold ions

Though reduced to the steady state, the above coupled set of ODEs, nonetheless, represents a

considerable challenge for use in evaluating valid solutions. Thus, as an initial step, we consider

a further simplification to the case of cold ions and hot electrons. Previously we have solved such

a simplified two fluid system as an integral over a single component of the plasma velocity [16],

which has the advantage of providing an exact (albeit numerical) solution of the wave structure. Here

we solve for the wave structure by introducing a parameterization of the coupled ODEs. Though

this coupled ODEs method might not be exact as the integral form, it has the advantage of being

extensible for use in more complex cases, such as the coupled set of ODEs presented in the previous

section. Furthermore, unlike the integral solution which only resolves decelerating solutions, the

parameterization method used here finds both decelerating and accelerating solutions (termed here

as lower and upper solutions) of the two fluids associated with potential wells and spiked potential

hills of the electrostatic potential. This is an important improvement over the integral form, in the

sense that the parameterized solutions can explain Geotail observations of ESWs associated with

plasma flows beaming in both the upstream and downstream directions from the bow-shock [11].

The solutions of the two-fluid plasma system presented below show that the plasma reacts vary

strongly to perturbations from an upstream neutral background state (NBS) where complete charge

neutrality and zero electric field is assumed. The plasma response to perturbation from the NBS is

the formation of solitary waves over which the electric field (induced by strong charge-imbalance)

prevents the runaway acceleration of fluid velocities. Two types of solitons are identified. The

classical case, where both proton and electron velocities dip below then return to their NBS values, is

labeled as a lower-solution. The lower-solution is considered in many papers including Zank and

McKenzie, 1988 [17] and McKenzie 2002 [18] as well as [16], and is characterized by an upward

electrostatic potential hill. As we demonstrate below, setting the electron mass to zero is an excellent

approximation for lower-solutions and has little effect on either the strength or structure of soliton

waves in this case. The second solitary wave type presented his is labeled as an upper solution,

where both proton and electron velocities accelerate above then return to their NBS values. Unlike

lower waves, upper waves depend critically on a nonzero electron mass to prevent unbounded wave

growth.

We consider the steady state, two-fluid plasma system, viewed in the wave frame such that

∂/∂t → 0, where ion pressure and magnetic field are taken to be zero. The 1D continuity equations

can be expressed as

npup = neue = n0u0 (66)
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which assumes upstream charge neutrality and co-moving electrons and ions in the upsteam NBS.

The momentum equations and Poisson’s equation are

∂

∂x
(pe + men0u0ue) = −eneEx (67)

∂

∂x

(

mpn0u0up

)

= enpEx (68)

∂Ex

∂x
= 4πe(np − ne) (69)

The energy equation for adiabatic electrons is

peu
γ
e = pe0u

γ
0 (70)

where the 0-subscript implies a constant, neutral background state (NBS) taken to exist somewhere

upstream (as x → −∞). The system can be put in dimensionless form by introducing

N = np/n0, n = ne/n0, U = up/u0, u = ue/u0, (71)

p = pe/pe0, Ex → Ex/E0,
∂

∂x
→ 1

l

∂

∂x
, (72)

where all variables (u, U, p, Ex, x) are now dimensionless. In dimensionless form the continuity

equations (66) simplify to

NU = nu = 1 (73)

Equations (68), (67) and (69) using (70) can be put in the dimensionless form:

(uγ+1 − c2
e0/u2

0)
∂u

∂x
= −

(

leE0

meu2
0

)

uγEx (74)

U
∂U

∂x
=

(

leE0

mu2
0

)

Ex (75)

∂Ex

∂x
=

(

l4πn0e

E0

)

u − U

uU
(76)

where

c2
e0 =

γpe0

men0
.

Taking the arbitrary length-scale factor to be the Debye length l = λD, where

λD =

√

kTe0

4πn0e2

and setting

α0 = me/mp α1 =

√

α0

γM2
e0

E0 =
kTe0

eλD
, (77)
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equations (75), (74) and (76) become

(uγ+1 − 1/M2
e0)

∂u

∂x
= −α2

1

α0
uγEx (78)

U
∂U

∂x
= α2

1Ex (79)

∂Ex

∂x
=

u − U

uU
(80)

where Me0 = u0/ce0 is the constant upstream, electron sound speed Mach number. The

dimensionless, coupled set of ODEs (79), (78) and (80), contain the conservation of total momentum

and total energy integrals, which can be expressed as

U + α0u + α2
1u−γ − α2

1

2
E2

x = 1 + α0 + α2
1 (81)

which expresses conservation of momentum, and

U2 + α0u2

2
+

γα2
1

γ − 1
u1−γ =

1 + α0

2
+

γα2
1

γ − 1
(82)

which expresses conservation of energy. Note that in the above conservation laws (81) and (82) we179

assume that the undisturbed upstream plasma is charge neutral, so that the steady state system180

should, somewhere upstream, pass through the state (u = U = 1, Ex = 0) which we denote as181

the neutral background state or NBS. It is clear that the NBS is a fixed point (meaning that the right182

hand side of the equations are zero) of the steady state system (SSS): (79), (78) and (80).183

To understand the behavior of the system near this fixed point we examine the first order

expansion of the SSS about the NBS, which yields

d

dx







u

U

Ex






=









0 0
−α2

1

α0(1−1/M2
e0)

0 0 α2
1

1 −1 0















u

U

Ex






(83)

where the origin of the state variables has been shifted to the NBS (i.e. U → U − 1, u → u − 1,

Ex → Ex − 0). The solution of linearized system (83) can be constructed from the Eigen-system for

the 3x3 matrix and has the generic form

w(x) =
3

∑
i=1

cipi exp(λix) (84)

where w = (u, U, Ex), the ci are constants determined by initial conditions and λi and pi are

the eigenvalues and associated eigenvectors for the 3x3 matrix. The first eigenvalue appearing in

equation (84) is λ1 = 0 which has the associated eigenvector p1 = (1, 1, 0); thus the NBS as a constant

state is built into the two-fluid system and occurs whenever initial conditions require that c2 = c3 = 0.

In other words, if the NBS is chosen as initial data, the solution for the SSS is just the constant NBS.

The remaining two eigenvalues for (83) can be expressed as

λ± = ±
√

1 − α0(1/M2
e0 − 1))

γ(M2
e0 − 1)

(85)
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from which we see λ± will be pure real whenever

√

α0

1 + α0
< Me0 < 1 (86)

and pure imaginary otherwise. Thus the linearized SSS is characterized by exponential growth or

bounded oscillation depending on the value of the Mach number.

To facilitate the numerical solution of the cold ion SSS, it is convenient to introduce a

parametrization variable t (which is not the time) and reduce the SSS to the form

du

dt
= −α2

1

α0
uγ+1UEx (87)

dU

dt
= α2

1(u
γ+1 − 1/M2

e0)uEx (88)

dEx

dt
= (uγ+1 − 1/M2

e0)(u − U) (89)

dx

dt
= (uγ+1 − 1/M2

e0)uU (90)

The SSS, as represented by equations (87) through (90), has a fixed point at uγ+1 = 1/M2
e0, Ex =

0. However expansion of the SSS about this fixed point, in consideration of the integrals (81) and

(82), indicates that a constant state is the only solution for a system which must include this fixed

point. The other fixed point of the SSS occurs at uγ+1 = 1/M2
e0, U = 0, which, since here ions are

perfectly cold, could be considered a limiting physical state of infinite ion density. To understand the

interdependence between the electron and ion velocities u and U, it is useful to divide equation (88)

by (87) which yields

dU

du
= −α0(u

γ+1 − 1/M2
e0)

uγU
(91)

Introducing the parametrization variable s, equation (91) can be expressed as

dU

ds
= −α0(u

γ+1 − 1/M2
e0),

du

ds
= uγU (92)
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Figure 5. Left panel: level curves for the conservation of momentum equation (81) together with the

direction field for ODE set (92). The level curves are red for Me0 = 0.1, orange for Me0 = 0.15 and

blue for Me0 = 2. The curves are dashed on portions where E2
x < 0 and/or U < 0. All three level

curves pass through the NBS: (u = U = 1, Ex = 0). The red arrow stream-plot (appearing on the same

axis with the level curves in the left panel) is the direction field for ODE set (92) with Me0 = 0.1. Note

that the direction fields swirls around the stationary point (uγ+1 = 1/M2
e0, U = 0) in the fashion of a

harmonic oscillator system. Right panel: direction field for the linear expansion of ODE system (92)

about the fixed point so that ∆U = U and ∆u = u − (1/Me0)
2/(γ+1) and for Me0 = 0.1. Inspection of

the direction field, for the linearized system, indicates clearly that the fixed point is node.

The interdependence between the ion and electron velocities is presented graphically in Figure

5. A key feature to note here, for the nonzero electron mass case, is that the level curves form

closed-loops which confine the fluid velocities to a finite range. The closed-loop curves, of the left

hand panel, are plots of U = U(u) as expressed by equation (82). The three curves plotted correspond

to three choices of electron sound speed Mach number: (the unphysical) Me0 = 2 for the blue curve,

Me0 = 0.15 for the orange curve and Me0 = 0.1 for the red curve. The solid portions of the curves

correspond to regions where E2
x > 0, as expressed by equation (81), which we take as a necessary

condition for the solution to be physically real. The dashed portions of the curves correspond to

(non-physical) regions where E2
x < 0 and/or U < 0. Overlaid on the U(u) curves in the left panel of

Figure 5, is the direction field of the solution space for the coupled ODE set (92) displayed as swirling

red arrows. This direction field, corresponding to the choice Me0 = 0.1 (i.e. the red U(u) curve) circles

around the stationary point (U = 0, uγ+1 = 1/M2
e0) in a fashion characteristic of harmonic oscillator

type ODE systems. To prove that this stationary point is a fixed node, meaning that no solution

curves pass through this point, a linear expansion of the ODE set (92) about the stationary point can

be effected, which yields pure imaginary eigenvalues of the linearized system; thus the system has a

harmonic oscillator character and the fixed point is a node. The direction field corresponding to the

linearized ODE system for (92) is presented in the right panel of Figure 5. Evidently, solution curves

arbitrarily close to the fixed point (U = 0, uγ+1 = 1/M2
e0) still ‘circle’ around it in oscillator fashion,

demonstrating graphically that the fixed point is a node.

In the numerical solutions of the SSS presented, we limit ourselves to a consideration of solutions

connected to the NBS. As noted above, if the NBS is chosen as the initial data, the only solution is

the constant NBS. To find non-trivial solutions, we look for initial data nearby and connected (via

equations (81) and (82)) to the NBS in the solution space.
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Figure 6. Level curves for E2
x = E2

x(u), satisfying both conservation of momentum (81) and energy

(82), are plotted on the same axes for several choices of Mach number. The left panel plots are for

Me0 = 0.1 (thick red curve), Me0 = 1 (orange curve) and Me0 = 2 (dashed blue curve). The right

panel plots are for Me0 = 0.03 (thick red curve), Me0 =
√

α0/(α0 + 1) = 0.02333 (orange curve)

and Me0 = 0.01 (dashed blue curve). Note that all curves pass through the neutral background state

(NBS) where u = U = 1 and Ex = 0. Assuming that physically real solutions require E2
x > 0,

then only curves which are concave up where they touch the NBS (e.g. the thick red curves) can

be associated with physical solutions. This limits the range of Mach numbers that can support the

physical connection of the plasma to the NBS to
√

α0/(α0 + 1) < Me0 < 1.

Figure 6 presents plots of curves E2
x = E2

x(u) which simultaneously satisfy both equation (81)

and (82) and helps to illustrate graphically how initial data can be chosen that is near and connected

to the NBS in the domain of physically real solutions. The curves of the left panel correspond to

Me0 = 0.1 (thick red curve), the limiting case Me0 = 1 (orange curve) and Me0 = 2 (dashed blue

curve). The curves of the right panel correspond to Me0 = 0.03 (thick red curve), the limiting case

Me0 =
√

α0/(α0 + 1) = 0.0233304 (orange curve) and Me0 = 0.01 (dashed blue curve). Assuming

that physically real solutions require E2
x > 0, then initial data should be chosen from curves E2

x =

E2
x(u) that are concave up where they connect to the NBS. Evidently the condition for finding initial

conditions associated with physically real solutions is

√

α0

1 + α0
< Me0 < 1 (93)

which is identical to the condition (86) which specifies the region in which the SSS linearized about

the NBS posses pure real eigenvalues. In other words if E2
x > 0 when Ex ∼ 0 then the eigenvalues

λ±, associated with equation (83), are real-valued, yielding a linearized solution space characterized

by exponential growth. A further implication of the identical conditions (86) and (93) is that the

oscillatory (Langmuir wave type) solutions, associated with imaginary λ±, are unobtainable unless

we relax the condition that the initial data must be chosen such that solutions pass through the NBS.
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Figure 7. Illustrating the double valued nature of the solution for (u(x(t)), U(x(t)), Ex(x(t))). The case

plotted here is for an upper-wave–where the velocity u rises above then returns to the NBS value, and

for Me0 = 0.5716 (i.e. Mep = 24.5). The red dashed curves are the corresponding linearized solutions

given by equation (84); as expected the linearized solutions well approximate the fully nonlinear

solution curves (solid curves) for values near the NBS. Although double valued, the structure of the

plasma variables is compatible with the ODEs (79), (78) and (80). For example, the slope u′ → ∞ at

the sonic points where uγ+1 − 1/M2
e0 = 0 and the slopes u′ = U′ = 0 at the point where Ex = 0.

We present numerical solutions of the SSS where initial data is chosen such that solution curves

are physically connected to the NBS by ensuring that the condition (93) is satisfied. Two distinct

classes of solutions (or solution types) become apparent: One type of solution is denoted as an upper

solution, meaning that the plasma velocity at the wave center has increased from its initial value. The

other solution type presented is denoted as a lower solution, where the plasma velocity decreases

from its initial value at the center of the wave.

An upper-solution of the SSS equations (87) through (90), for the choice Me0 = 0.571631, is

plotted in Figure 7. The solid blue curves are parametric plots of the form (x(t), u(t)). The dashed

red curves are plots of the corresponding solution (84), w = w(x), of the linearized SSS (83). As

Evidenced by inspection of Figure 7, the state variables (u, U, Ex), for the nonlinear case, are double

valued in the region on the x-axis sandwiched between the sonic points where uγ+1 = 1/M2
e0 and

∂u/∂x → ∞ (see equation (78)). A natural question to ask is can a unique, single-valued solution be

constructed from the double-valued parametric solution?
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Figure 8. Illustration of how a unique, single valued solution can be constructed. The left panel gives

a view of both velocities plotted on the same axis, the blue curve for u(x) and the black curve for U(x)

(which has been nonphysically scaled up for illustration purposes). The dashed, green, vertical lines,

placed on the x-axis at the sonic points where uγ+1 = 1/M2
e0, are tangent to the u(x) solution curve

and are also the locations where U(x) reaches a maximum, as illustrated by Figure 5 and required

by equation (82). The associated solution for x = x(t), where t is the parametrization variable (not

the time), is plotted in the right panel. A horizontal dashed line has been inserted at the value of

x = xc which separates the curve into equal area lobes. This value xc is also the bisector between the

sonic points and the location where both the velocity curves (left panel) intersect themselves. A single

valued, upper solution of the SSS can be constructed by cutting off the top, closed-loop portions of the

velocity curves and joining them together with an infinitesimally narrow, horizontal segment at the

point where the solution curves intersect at x = xc. This construction requires that u′ = U′ = Ex = 0

for compatibility with the SSS equations and since the insertion location xc is the only place where

such a compatible insertion can be made–the solution is unique.

Inspection of Figure 8 indicates how a unique solution can be constructed from the double valued

parametric solution. The left panel of the figure shows the solution curve for (x(t), u(t)) (blue curve)

plotted on the same axis with (x(t), U(t)) (black curve–nonphysically scaled-up for visual clarity).

The vertical, dashed, green lines are tangent to the u-curve at the sonic points where uγ+1 = 1/M2
e0

and u′(x) → ∞. As required by equation (82) (and illustrated graphically in Figure 5), the sonic points

are also locations where U = U(x) must reach a maximum. Note that at the bisector between the sonic

points the slopes u′(x) = 0 and U′(x) = 0, which, by inspection of the SSS, requires that Ex = 0 at the

bisector also. The value of x = xc at the bisector (or wave center) can found from the plot of x = x(t)

(blue curve) shown in the right panel of Figure 5). This plot shows that x is everywhere increasing

with decreasing parametrization variable t, except in the region near the sonic points, where x(t) is

double valued. To construct the unique solution, note that a horizontal line x = xc drawn between

the two sonic points (dashed, black, horizontal line of the right panel) separates the double valued

x(t) regions into two lobes of equal area. This suggests that (analogous to Van der Waals isothermal

construction) a single-valued solution can be formed by removing the lobes and joining the x(t) curve

along the horizontal, dashed, line segment. This equal area construction requires that the line segment

be inserted precisely at the bisector value of x = xc, directly in the center of the symmetrical wave

structure and effectively ‘scissor-cuts’ the top, double-valued lobes off of the u and U curves and joins

the lower parts of the curves together with an infinitesimally narrow horizontal line along which the

slopes u′(xc) = U′(xc) = 0 and Ex(xc) = 0. This solution is unique since there is only one point
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on the x-axis where the segment is inserted such that it is entirely compatible with the original SSS

equations. Note that at the point where the horizontal segment is inserted the charge density of the

plasma behaves like a delta function since dEx(xc)/dx → ∞.
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Figure 9. Upper-solution where the plasma flow is above the initial velocity at the wave center for

Mep = 24.4949, (u(0), U(0), Ex(0)) = (1.00001, 1., 0.0000105787)

The sharply peaked upper solution for the choice Me0 = 0.572, is presented in Figure 9. In terms

of the collective Mach number

Mep =
Me0√

α0
,

this choice corresponds to Mep = 24.5. The electron velocity (top left panel), evidently possesses

a substantially stronger amplitude then the ion velocity (top right panel). The density difference

N − n (governing Possion’s equation), plotted in the lower left panel, reaches a maximum of ∼ 14%

also at the sonic point bisector; however note that the insertion of the unique solution implicitly

requires that N − n be a delta type function at x = xc, but this behaviour has not been included in the

plot. The single valued solution for Ex (lower right panel) is constructed by joining the positive and

negative solution branches with a vertical line inserted at the sonic point bisector, where it is implied

that Ex = 0, and removing the double valued curve portions that extend beyound this line. The

construction of the single valued solution highlights the importance of the sonic point uγ+1 = 1/Me02 ,

the existance of which implies a location x = xc: the point where flow-rate that would otherwise be

growing exponentially gets choked off and forced to decellerate back to the NBS.

Lower-solutions are presented in Figures 10 through 14. For lower values of the collective

ion-acoustic Mach number (e.g. Mep = {1.1, 1.8}) these solution curves are smooth, single valued

and do not require the insertion of a unique solution.
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Figure 10. Lower-solution for Mep = 1.1, (u(0), U(0), Ex(0)) = (0.99999, 0.999992,−5.38484 ∗ 10−6)
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Figure 11. Lower-solution for Mep = 1.8, (u(0), U(0), Ex(0)) = (0.99999, 0.999997,−0.0000107293)
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Figure 12. Lower-solution for Mep = 2, (u(0), U(0), Ex(0)) = (0.99999, 0.999998,−0.0000111723).

Note that here the solution is becoming double valued near the center of the wave (see Figure 13),

suggesting the need for a unique solution.
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Figure 13. A close-up view of the center portion of the u(x)-curve from Figure 12, for Mep = 2. Clearly

the solution is double valued near the center of the wave, suggesting that a unique solution should be

inserted.

For the choice Mep = 2 and higher, the decelerating solutions become double valued near the

wave center consistent with the findings of McKenzie (2002) [18]). Figure 13, corresponding to Mep =
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2, shows a close-up view of u = u(x) near the wave center, revealing the double valued character of

the solution. In these double valued, decelerating cases, a unique solution can be inserted using the

method described above, in which the value of x = x(t) at the wave center is found from an equal

area construction (see Figure 8).
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Figure 14. Lower-solution for Mep = 4, (u(0), U(0), Ex(0)) = (0.99999, 0.999999,−0.0000124494)

Figure 14, for Mep = 4, illustrates a lower solution constructed in the same manner as described

above for upper-solutions. Some general trends that can be noted about such decelerating solutions

are that the wave amplitude increases linearly with increasing Mach number, going from roughly

Ex ≈ 6 ∗ 10−6 for Mep = 1 to Ex ≈ 5 for Mep = 4. On the other hand, the wave structure narrows

with increasing Mach number, going from about 400 Debye lengths when Mep = 1 and narrowing

down to about 15 Debye lengths at Mep = 2 after which the wave structure tends towards a constant

minimum in that there is no further width decrease for increasing Mach number.
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Figure 15. Upper solution, where the plasma flow is below the initial velocity at the wave center, for

Mep = 1, (u(0), U(0), Ex(0)) = (1.00001, 1.00001, 3.01112 ∗ 10−7)
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Figure 16. Upper solution for Mep = 1.8, (u(0), U(0), Ex(0)) = (1.00001, 1., 0.0000107289)
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Figure 17. Upper solution for Mep = 3, (u(0), U(0), Ex(0)) = (1.00001, 1., 0.0000121454)

Upper solutions for Mach numbers Mep = 1, 1.8 and 3, constructed using the procedure

described above, are presented in Figures 15 through 17. The upper solutions also become

increasingly narrow with increasing Mach number, going from a width of roughly 40 Debye lengths

when Mep = 1 down to about 15 Debye lengths when Mep = 1.8 and then remaining roughly constant

at this value for increasing Mach number. The amplitude of accelerating (weak) solutions is, evidently,

highly insensitive to Mach number variation, going from Ex ≈ 0.4 when Mep = 1 and remaining at

Ex ≈ 0.425 for Mach numbers of Mep = 1.2 and higher.

6. Setting the electron mass to zero

To understand the significance of electron mass in the SSS, we can consider the limit me → 0,

which effectively removes the electron-acoustic, sonic point from the system. The zero electron mass

form of the SSS can readily be obtained by keeping only terms with a 1/M2
e0 factor in the momentum

equations and by dropping all terms with an α0 factor from the conservation equations. This yields

the me = 0 governing system of ODEs

∂u

∂x
=

uγ

γ
Ex (94)

U
∂U

∂x
= α2

1Ex (95)

∂Ex

∂x
=

u − U

uU
(96)

which contain the integrals

U + α2
1u−γ − α2

1

2
E2

x = 1 + α2
1 (97)
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and
U2

2
+

γα2
1

γ − 1
u1−γ =

1

2
+

γα2
1

γ − 1
(98)

where the parameter α2
1 is here most conveniently expressed in terms of the ‘collective ion-acoustic

Mach number’ citeMcKen02

Mep =
√

mu2
0/γkTe0 (= Me0/

√
α0)

as

α2
1 =

1

γM2
ep

The me = 0 SSS (94) through (96) again is stationary at the NBS.285

The SSS for me = 0, linearized about the NBS, is

d

dx







u

U

Ex






=







0 0 1/γ

0 0 α2
1

1 −1 0













u

U

Ex






(99)

As with the previous me 6= 0 case, the solution of equation (99) has the general form (84) and also

possesses the eigenvalue λ1 = 0 with the associated eigenvector p1 = (1, 1, 0), with the implication

that the NBS as a constant state is built into the system. The remaining two eigenvalues for (99) can

be expressed as

λ± = ±
√

M2
ep − 1

γM2
ep

(100)

thus the eigenvalues λ± will be pure real whenever

Mep > 1 (101)

and pure imaginary otherwise. With me = 0 equations (91) and (92) become

dU

du
=

1

M2
epuγU

(102)

and
dU

ds
= 1/M2

ep),
du

ds
= uγU (103)

Figure 18, for me = 0, is analogous to Figure 5 for the nonzero electron mass case. Comparison

of these analogous Figures shows that a key difference between the zero and nonzero electron mass

cases is that when me = 0 the sonic point is effectively shifted to infinity on the u-axis. Thus the

proton verses electron velocity dependence, which is characterized by closed-loop (oscillator type)

curves in phase-space for nonzero electron mass, become open (on the right), unbounded electron

velocity curves when me = 0. Figures 18 and 19 express, graphically, the condition Mep > 1 required

for solutions to connectible physically to the NBS.

Figure 20 is the only upper-solution presented for me = 0. As noted above, setting the electron

mass to zero has effectively shifted the sonic point to infinity, meaning that the upward growing

electron velocity is unbounded and thus unphysical in this case.

Inspection of Figures 20 through 24, corresponding to solutions of the SSS for me = 0, indicates

that the decelerating soliton-type waves do not vary significantly between the me = 0 and me =

9.1094 ∗ 10−28g cases.
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Figure 18. Level curves of equation (98) for Mep = 0.9 (red curve), Mep = 1 (orange curve) and Mep =

3 (blue curve). The dashed curves correspond to (the nonphysical region where) U < 0. The gaps

in the upper U > 0 curve branches correspond to where Ex2 < 0 (also assumed to be a nonphysical

region). The blue curve for which Mep = 3 (> 1) is the only curve that passes through u = U = 1,

Ex = 0 and thus is the only one of the three that is connected to the neutral background state (NBS).

The right panel shows the stream-plot of the direction field for ODE system (103) where Mep = 3,

on the same axes with the physical segment of the blue curve from the left panel. Comparison of

this Figure to the analogous Figure 5, for nonzero electron mass case, shows that setting me = 0 has

effectively moved the sonic point to infinity on the u-axes.
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Figure 19. Level curves of equation (94) for Mep = 0.1 (dashed red curve), Mep = 1 (orange curve)

and Mep = 10 (thick blue curve). Note that E2
x(u) is concave up at the point where it touches the NBS

only if Mep > 1, thus solutions physically connected to the NBS require flow that is supersonic with

respect to the collective Mach number.
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Figure 20. Upper-solution for me = 0, Mep = 1.1, (u(0), U(0), Ex(0)) = (1.00001, 1.00001, 5.37831 ∗
10−6). The red, dashed curves correspond to the linearized solution (equation (84)). This figure

illustrates that setting me = 0 has effectively shifted the sonic point to infinity on the x-axis with

the result that plasma acceleration is unbounded when the velocity growth is positive.

7. Conclusion

The need for a self consistent system of multi-fluid equations which dynamically includes a small

population of hot, energetic particles, such as pickup ions (treated kinetically as is done in PIC codes)

has been addressed. We previously presented a multi-fluid treatment which included a population

of kinetically treated pickup ions (PUIs) coupled to a two-fluid treatment with quasi self-consistent

coupling through the anisotropic PUI pressure tensor [6]. Here we considered an improvement of that

model with a small population of kinetic ions included in the multi-fluid system by a self-consistent

treatment of their charge density and current component effects on the electromagnetic fields.

By considering the reduction of the multi-fluid plasma system to the special case of hot electrons

and cold ions in the steady state, the existence of two types of electrostatic solitary waves (ESWs)

were shown, characterized and typed here as upper and lower solutions. The character of the upper

and lower solutions of the coupled set of ODEs are consistent with the two types of ESWs observed

by Geotail near Earth’s bow shock [11], with one type of ESW associated with electrostatic potential

hills and the other with potential wells.

We have shown that setting me = 0 (a typical approximation for PIC as well as other simulations)

recovers classical solitons, labeled here as lower solutions, such as presented in the well known text

book on plasma physics by Chen [19].

A type of soliton, labeled as upper solutions, was found that depends critically on a nonzero

electron mass to prevent unbounded acceleration of the electron fluid velocity. These so-called

upper solutions are consistent with the second type of ESW observed by Geotail [11] associated with

’positive’ electrostatic potential hills and components of two-fluid plasma flow returning upstream

from the ESWs towards the bow shock.
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Figure 21. Lower solution for me = 0, Mep = 1.1, (u(0), U(0), Ex(0)) = (0.99999, 0.999992,−5.37818 ∗
10−6)

The width of upper solutions were found to decrease with increasing Mach number,

asymptotically reaching a minimum width of about 15 Debye lengths at Mep ≈ 2. The amplitude

of upper solutions is highly insensitive to Mach number and have a magnitude of the electric field

of ≈ 0.4 (in normalized units) for all Mach numbers. Upper solutions also become more narrow

with increasing Mach number, asymptotically reaching a minimum scale width of roughly 15 Debye

lengths.

The classical type solitons, or lower solutions, were found to have an electric field strengths

that grow linearly with increasing Mach number. Lower solutions are smooth functions and

straight-forward to evaluate over the Mach number range 1 < Mep < 1.8 (for γ = 5/3). However

for all upper solutions and for lower solutions where Mep ≥ 1.9, the insertion of a unique solution is

required.

A method for constructing unique solutions was outlined, and applied to both upper and lower

types, where at the insertion point on the x-axis, the charge density is viewed as a delta like function

where dEx/dx → ∞ and the electric field is forced to zero by insertion of a unique solution, with

the result that a bounded, single-valued solution is formed that is fully compatible with the original

governing system of ODEs.
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