Survival of patients treated with antibiotics and immunotherapy for cancer: A systematic review and meta-analysis

Fausto Petrelli¹, Alessandro Iaculli², Diego Signorelli³, Antonio Ghidini⁴, Lorenzo Dottorini², Gianluca Perego⁵, Michele Ghidini⁶, Alberto Zaniboni⁷, Stefania Gori⁸ and Alessandro Inno⁸.

Antibiotics and immune checkpoint inhibitors

1: Oncology Unit, ASST Bergamo Ovest, Treviglio (BG), Italy
2: Oncology Unit, ASST Bergamo Est, Alzano Lombardo (BG), Italy
3: Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milano, Italy
4: Oncology Unit, Casa di cura Igea, Milano, Italy
5: Pharmacy Unit, IRCCS San Raffaele Hospital, Milano, Italy
6: Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
7: Oncology Unit, Fondazione Poliambulanza, Brescia, Italy
8: Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy

Corresponding author

Fausto Petrelli, MD; Oncology Unit, Medical Sciences Department, ASST Bergamo Ovest, Piazzale Ospedale 1, 24047, Treviglio (BG) Italy; tel. +390363424420, fax +390363424380, faupe@libero.it

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.
Abstract

Antibiotics (ABs) are common medications used for treating infections. In cancer patients treated with immune checkpoint inhibitors (ICIs), concomitant exposure to ABs may impair the efficacy of ICIs and lead to a poorer outcome compared to AB non-users. We report here the results of a meta-analysis evaluating the effects of ABs on the outcome of patients with solid tumors treated with ICIs. PubMed, the Cochrane Library, and Embase were searched from inception until September 2019 for observational or prospective studies reporting prognosis of adult patients with cancer treated with ICIs and with or without ABs. Overall survival (OS) was the primary endpoint, and progression-free survival (PFS) was the secondary endpoint. The effect size was reported as hazard ratios (HRs) with a 95% confidence interval (CI), and an HR > 1 associated with a worse outcome in ABs users compared to no-ABs users. Fifteen publications were retrieved for a total of 2363 patients. In the main analysis (n = 15 studies reporting data), OS was reduced in patients exposed to ABs before or during treatment with ICIs (HR = 2.07, 95%CI 1.51–2.84; P<.01). Similarly, PFS was inferior in ABs users in n = 13 studies with data available (HR = 1.53, 95%CI 1.22–1.93; p<.01). In cancer patients treated with ICIs, AB use significantly reduces OS and PFS. Short duration/course of ABs may be considered in clinical situations in which they are strictly needed.

Keywords: cancer, immune checkpoint inhibitors, survival, antibiotic, meta-analysis

Grant support

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.
Introduction

Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has demonstrated efficacy among several tumor types [1]. However, a non-negligible percentage of patients do not derive any benefit from ICIs, and the research for predictive factors may help to refine patients’ selection and improve treatment efficacy.

Preclinical studies on murine models have demonstrated that gut microbiota may act as a key modulator of efficacy and toxicity of ICIs [2,3]. Thus, it has been supposed that response to ICIs in humans could be affected by conditions that alter the composition of gut microbiota, including dysbiosis, due to the administration of antibiotics (ABs). In fact, retrospective studies reported worse outcomes for patients treated with ICIs that received ABs as compared with those not receiving Abs [4-6].

The present meta-analysis evaluated the association between AB use and outcomes in patients with solid tumors treated with ICIs.

Results

Among the publications retrieved using electronic search, 15 studies were eligible for quantitative analysis, for a total of 2,363 patients [4-18] (Fig. 1).
Baseline characteristics of the included studies and treatments received are presented in Table 1. Thirteen were retrospective series, and two were prospective studies.
Tab. 1 Characteristics of included studies

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Type of study</th>
<th>N° of patients</th>
<th>Treatment received (%)</th>
<th>Median age (years)</th>
<th>Ab% /timing</th>
<th>Med FUP (mos)</th>
<th>Type of analysis</th>
<th>Covariates of MVA for OS</th>
<th>Quality (NOS score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu-Sbeih/2019</td>
<td>retrospective</td>
<td>826 (various)</td>
<td>anti-PD(L)1 (51.6), anti-CTLA4 (32), combo (16.5)</td>
<td>62</td>
<td>68.9 /before or after start (47.5%), both (52.5%)</td>
<td>NR</td>
<td>MVA</td>
<td>ICI type, Stage IV cancer, IMDC, anaerobic ab use</td>
<td>6</td>
</tr>
<tr>
<td>Ahmed/2018</td>
<td>retrospective</td>
<td>60 (various)</td>
<td>anti-PD1 (81.7), anti-PDL1 (5), ICI + CT (13.3)</td>
<td>59</td>
<td>28 /2w before and/or after start</td>
<td>NR</td>
<td>MVA</td>
<td>broad spectrum ab use, age</td>
<td>5</td>
</tr>
<tr>
<td>Derosa/2018</td>
<td>retrospective</td>
<td>36 (RCC, NSCLC)</td>
<td>RCC: anti-PD(L)1 (88), anti-PD(L)1 + anti-CTLA4 (8), anti-PD(L)1 + BEVA (4), NSCLC: anti-PD(L)1 (86), anti-PD(L)1 + anti-CTLA4 (14)</td>
<td>64</td>
<td>21.5 /1 mos prior start</td>
<td>NR</td>
<td>MVA</td>
<td>RCC: ab 30-0 days/no ab IMDC risk, tumor burden NSCLC: ab 30-0 days/no ab, PS, clinical trial Y/N, prior regimens>/<3</td>
<td>5</td>
</tr>
<tr>
<td>Elkrief/2019</td>
<td>retrospective</td>
<td>59 (melanoma)*</td>
<td>NIVO/PEMBR O/IPI (100)</td>
<td>64.5</td>
<td>13.5* /1 month prior</td>
<td>NR</td>
<td>MVA</td>
<td>age, PS, gender, ab use, LDH, BRAF, line of tx, type of ICI</td>
<td>5</td>
</tr>
<tr>
<td>Galli/2019</td>
<td>retrospective</td>
<td>157 (NSCLC)</td>
<td>anti-PD(L)1 (95.6), anti-CTLA4 o combo (4.4)</td>
<td>66.7</td>
<td>17.2 /during ICI period</td>
<td>28.6</td>
<td>MVA</td>
<td>high ab/immunotherapy exposure ratio in whole ICI period</td>
<td>8</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Sample Size</td>
<td>Treatment</td>
<td>Median MVA</td>
<td>Follow-up</td>
<td>Other Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo/2019</td>
<td>Retrospective</td>
<td>49 (esophageal)</td>
<td>anti-PDL1 alone (61), combo (39)</td>
<td>56.7</td>
<td>43/2 mos prior or 1 month after</td>
<td>PS, treatment, n° of metastatic sites, NLR, antibiotic use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hakoza/2019</td>
<td>Retrospective</td>
<td>90 (NSCLC)</td>
<td>NIVO (100)</td>
<td>68</td>
<td>14.4/1 month prior start</td>
<td>MVA, driver mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huemer/2018</td>
<td>Retrospective</td>
<td>30 (NSCLC)</td>
<td>NIVO (83), PEMBRO (17)</td>
<td>NR</td>
<td>37/1 month before/after start</td>
<td>MVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huemer/2019</td>
<td>Retrospective</td>
<td>142 (NSCLC)</td>
<td>NIVO, PEMBRO or ATEZO (100)</td>
<td>66</td>
<td>44/1 months prior or after start</td>
<td>UVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaderbhai/2017</td>
<td>Retrospective</td>
<td>74 (NSCLC)</td>
<td>NIVO (100)</td>
<td>67.5</td>
<td>20.3/3 months prior or concurrent</td>
<td>UVA (PFS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krief/2019</td>
<td>Prospective cohort</td>
<td>72 (NSCLC)</td>
<td>NIVO (100)</td>
<td>68.8</td>
<td>42/2 months before or 1 month after start</td>
<td>MVA, Ab use; KRAS mutations, gemmatimmonadaceae on blood microbiome at baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Type</td>
<td>Cases (Diagnosis)</td>
<td>Antibiotics</td>
<td>Antibiotics Before</td>
<td>Progression-Free Survival</td>
<td>Multivariate Analysis</td>
<td>Response to ICI</td>
<td>Ab Use</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Pinato/2019</td>
<td>prospective cohort</td>
<td>196 (various)</td>
<td>anti-PD(L)1 (96)</td>
<td>29/1 month prior or concurrent</td>
<td>NR</td>
<td>MVA</td>
<td>response to ICI, ab 0-30 days before ICI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sen/2018</td>
<td>retrospective</td>
<td>172 (various)</td>
<td>anti-CTLA4 (61), anti-PD1 (39)</td>
<td>33/during and up to 2 mos before</td>
<td>NR</td>
<td>UVA</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinsley/2019</td>
<td>retrospective</td>
<td>291 (melanoma, RCC, NSCLC)</td>
<td>NR</td>
<td>32/2w before up to 6w after start</td>
<td>NR</td>
<td>MVA</td>
<td>ab use, comorbidities, metastatic sites > 3, PS > 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao/2019</td>
<td>retrospective</td>
<td>109 (NSCLC)</td>
<td>anti-PD1 (52.3), anti-PD1 + CT (30.3), anti-PD1 + antiangiogenic (17.4)</td>
<td>18.3/1 mos prior or after start</td>
<td>NR</td>
<td>MVA</td>
<td>ab use, PS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*only immunotherapy without chemotherapy; ° all patients; ab: antibiotic; mos: months; RCC, renal cell carcinoma; NSCLC, non-small-cell lung cancer; PD1, programmed death 1; PDL1, programmed death-ligand 1; ICI, immune checkpoint inhibitors; CT, chemotherapy; CTLA4, Cytotoxic T-lymphocyte antigen 4; BEVA, bevacizumab; NIVO, nivolumab; PEMBRO, pembrolizumab; IPI, ipilimumab; ATEZO, atezolizumab; MVA, multivariate analysis; UVA, univariate analysis; PFS, progression-free survival; IMDC, international metastatic RCC database consortium; PS ECOG, performance status; tx, therapy; NLR, neutrophile to lymphocyte ratio; NR, not reported

The median age was 64 years. Antibiotics were assumed by 29% of patients.

Progression-free survival was reduced in those who take antibiotics (HR = 1.53, 95% CI 1.22–1.93; p < .01; Fig. 2).
The analysis included nine studies, and due to high heterogeneity ($I^2 = 77\%$), a random effect model was adopted.

In the primary analysis, use of antibiotics was associated with an increased risk of death

$\text{(HR} = 2.07, 95\% \text{ CI } 1.51–2.84; \ p < .01; \text{ Fig. 3) }$
Fig. 3 Forrest plot for overall survival in patients assuming antibiotics pre/during immunotherapy

The analysis included 14 studies, and due to high heterogeneity ($I^2 = 87\%$), a random effect model was adopted. Risk of bias through Begg’s funnel plot was not significant for the OS analysis (Fig. 4). Conversely, Egger’s test showed evidence of bias ($p < .01$).

Fig. 4 Funnel plot for publication bias

Discussion

In the past years, it has been reported that changes in the gut microbiota of individuals with cancer who received antibiotics, may reduce outcome when treated with ICIs. We performed a systematic review and meta-analysis of observational evidence reporting the
outcome of patients treated with ICIs for advanced cancers according to AB exposure, and we found that use of ABs reduces OS and PFS.

In a seminal paper published in *Science* in 2018, Routy et al. [19] showed that AB consumption is associated with reduced response to anti-PD-(L)1 blockade. Samples attained from patients with lung and kidney cancer showed that non-responding patients had low levels of the bacterium Akkermansia muciniphila. Oral bacterium supplementation in antibiotic-treated mice instead, restored the response to immunotherapy. Gopalakrishnan et al. and Matson et al. [20,21] evaluated fecal samples from melanoma patients receiving anti-PD-(L)1 blockade and found that those who failed immunotherapy had an imbalance in commensal bacteria composition, which was linked with impaired activity of immune cells. Other authors found that fecal Bifidobacterium was associated with the antitumor effects of ICIs. Oral administration of Bifidobacterium alone also improved tumor control to the same magnitude as anti-PD-(L)1 therapy, and combination treatment nearly abolished tumor outgrowth. Increased dendritic cell function with a consensual enhanced cluster of differentiation 8 (CD8)+ T cell priming/accumulation in the tumor microenvironment mediated the observed effect. Similarly, even the antitumor effect of Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) blockade seems to depend on distinct Bacteroides species, as found in mouse models by Vétizou et al. [22] Lack of response was overcome by B. fragilis, by immunization with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis-specific T cells; conversely, ABs-treated mice did not respond to CTLA-4 blockade.

In clinical settings, several authors reported a possible detrimental association between timing of/exposure to ABs and survival with ICIs. Particularly, Galli et al. [5] found that an elevated ratio between days of antibiotics and days of immunotherapy is more harmful than the use of ABs itself. In a similar study, Tinsley et al. [23] observed that a single course of ABs is associated with a better OS than that observed with multiple/prolonged
courses of ABs. Although these observations are consistent with a possible detrimental effect of ABs, it cannot be excluded that AB use may identify a group of patients with poor prognosis due to concomitant severe infections or comorbidities, rather than ABs themselves affecting the outcome of patients treated with ICIs.

Our meta-analysis has some limitations. First, this is a meta-analysis of retrospective series with heterogeneous populations and obvious diversity in tumor stages/types and patient characteristics. Also, AB type and duration, as well as the indication of AB use, were only partially reported. Finally, patients treated with anticancer therapy other than ICIs were not included. However, this pooled analysis of real-life experiences seems to confirm the hypothesis that AB-associated dysbiosis might be detrimental in patients treated with ICIs. A recent published paper by Huang and colleagues had the same goal of the present meta-analysis, but has a less updated literature search, and included about half of papers as congress abstract forms, come to a similar conclusions [24].

Material and Methods

Search strategy and inclusion criteria

The present review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations[25]. Electronic searches were performed using Embase, PubMed, SCOPUS, and the Cochrane Library. The studies were searched up to September 2019, using the terms antibiotics AND (PD-1 or PD-L1 or “immune checkpoint inhibitors” or CTLA-4) AND survival. All the identified articles were then systematically and independently assessed for inclusion and exclusion criteria by two investigators (Alessandro Inno and Fausto Petrelli).

The inclusion criteria used to screen articles were: 1) adult patients with solid tumors and treated with ICIs, 2) evaluation of survival (OS and/or PFS) according to intake of ABs (yes versus no), 3) a hazard ratio (HR) statistic accompanied by 95% confidence interval (CI)
from univariate or adjusted Cox multivariate analysis, and 4) cohorts of adult patients. The exclusion criteria were: 1) phase I studies and 2) patients treated with ICIs and other (non-immunotherapy) drugs. When institutions published duplicate studies involving overlapping patients or increased lengths of follow-up, the most updated reports were included for quantitative assessment. Only studies involving human subjects and published in English were considered.

Data extraction

Two investigators (Alessandro Inno and Fausto Petrelli) independently extracted data of interest (author and year of publication, number of patients, type of study, treatment received, timing of AB therapy, median follow-up, and type of analysis). The quality of the included studies was assessed using the Newcastle–Ottawa Scale (NOS)[26].

Statistical analysis

The outcome of interest was the prognostic effect of AB intake and reported as HR and its respective 95% CI. Overall survival was the primary endpoint, and PFS was the secondary endpoint. The HRs of each selected study were pooled together to provide the overall estimate. I^2 statistic was used to estimate the percentage of total variation across studies, owing to heterogeneity rather than chance, with values greater than 50% considered as substantial heterogeneity. A random-effect model was tested, and in the case of $I^2 < 50\%$, a fixed-effect model was also considered [27]. Publication bias was assessed through the generation of funnel plots for OS and analyzed for asymmetry using Begg's and Egger's test. All p values were two-sided with significance set at $p < 0.05$. Statistical analyses were conducted with the Review Manager computer program, Version 5.3 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014).
Conclusions

An intact gut microbiota is needed to elicit the immune system and provide ICI benefits to cancer patients. Strategies to modulate the microbiome with the aim to improve ICI efficacy should be actively investigated.

Author contributions

References

Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients With Cancer.

