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Abstract: Supplier selection/replacement strategies and optimized purchasing policies play a key
role in efficient supply chain management in today’s dynamic market. Here we study supplier
replacement in a one-level assembly system (OLAS) producing one type of finished product. To
assemble the product, we need to provide multi-type components, but assembly will be interrupted
if any single component is missing, and incoming units will get hoarded until the missing component
arrives. The assembly process can be interrupted by various sources of uncertainty, including delays
in component deliveries. There is consequently a non-negligible risk that the assembly process may
get stopped any moment. This brings inventory-related costs, which should be minimized. Here we
consider discrete lead-time distributions to mimic industry-world reality. We present a model that
takes into account not only optimal assignment of component order release dates but also replacement
of a critical supplier. For a given unit, we model several alternative suppliers with alternative pricing
and lead-time uncertainties, and we evaluate the impact on the total assembly system. For a more
general case where several suppliers may be replaced, we propose a genetic algorithm.

Keywords: Assembly systems; replenishment; stochastic lead times; holding cost; backlogging cost;
purchase cost; optimization.

1. Introduction

Efficient replenishment is a major factor in inventory control. Inappropriate replenishment policy
results in stock-outs or overstocks. If customer demands are unfulfilled, penalties may be imposed
unless the order is shortened. However, overstocking drums up high inventory costs.

In the modern market, companies need to take every opportunity to reduce their costs and
uncertainty to satisfy their customers. This makes supplier selection and replacement where needed
key strategic considerations. Dynamic market changes demand selection of business associates who
are logistically or otherwise capable of following changes in company requirements [1]. Bad supplier
selection during a single period can have substantial negative impacts on a firm’s long-term financial
results [2]. Finding a suitable set of suppliers and effective replenishment are crucial problems in
inventory control. Here, a one-level assembly system (OLAS) is comprised of n distinct components
which are replenished from various suppliers with uncertain lead-times. Lead-time uncertainty counts
as one of the most crucial matters in the production system. There are numerous circumstances that
disrupt the assembly line, ranging from transport postponement to substandard quality and back to
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machine failure, etc. Lead-time uncertainty has even bigger impact in an assembly system through the
assembly process. Consequently, it is important to have reliable information on the suppliers in order
to reliably estimate planned lead times, anticipate orders, and negotiate delivery dates with customers.

Here, to be closer to real-world industrial planning methods, we consider a discrete temporal
environment and integer decision variables. We consider the case of discrete lead-time distributions, as
real-world industrial planning methods generally utilize the discrete temporal environment. A similar
assembly system has already been studied in [3], [4] and [5], but the authors optimized planned lead
times with a view to minimizing the expected total cost that includes the backlogging cost for finished
products as well as the holding cost for components. In the research reported here, the model put
forward diverges from ([3], [4] and [5] as follows: we propose several pricing and replenishment
policies in which we suggest paying suppliers more if they agree to decrease their lead-time
uncertainties. We developed the corresponding mathematical models and then ran numerical
tests. The results show that the joint pricing and replenishment optimization approach has a huge effect.

The rest of this paper is organized as follows. Section 2 reviews previous research on
replenishment planning under random lead times with a specific focus on assembly systems. Section 3
outlines a formulation of the supplier selection/replacement and replenishment optimization model
for the considered OLAS. Section 4 presents a genetic algorithm for the case where several suppliers
may be replaced. Section 5 reports the computational results, and Section 6 gives concluding remarks.

2. Related work

The literature counts several papers that study supply planning under uncertainty: most focus on
demand uncertainty, and there has been little attempt to address the question of lead-time uncertainty.
Here, we do not claim to provide an exhaustive review of the literature but a broad overview of
important existing approaches in the field of supply planning under lead-time uncertainty. This first
analysis of the literature confirms that most existing work focuses on one-customer demand planning
and one-period planning with specific structures.

Week [6] was one the first to investigate one-demand planning for linear systems. He proved
that the problem can be easily resolved using the well-known newsvendor model. [7] generalized it
to the case of multi-stage linear systems, and [8] proved that the problem is equivalent to the one
that calculates the best base-stock levels for serial inventory systems. [9] also dealt with multi-stage
systems but with backlogging costs in intermediate stages. The author proposed a recursive procedure
to calculate the expected total cost and then optimize planned lead times based on the convexity of the
cost function.

The scholarship covering assembly systems under lead-time uncertainty counts several studies
that consider one-customer demand planning. Yano [10] was among the first to study OLAS. The
finished product is assembled from two components, where the lead time follows a stochastic Poisson
distribution for the first component and a negative binomial distribution for the second component.
As in [10], [11] developed a model to study OLAS under a known demand and uncertain lead times
and to minimize the expected total cost. An exact method was proposed to obtain optimal order
release dates. The main limitation of this method is that it is only valid for certain types of lead-time
distributions (exponential, uniform and normal). Several other works have set out to demonstrate the
convexity of the objective function for the case of OLAS [3] or to optimize it using newsboy formulae
with specific assumptions on lead-time probability distributions [12,13]. For the case of a single
stochastic demand, [14] studied an assembly system with one finished product and two components,
each purchased from a given supplier, and optimized the ordered quantity purchased from each
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supplier.

[15] studied two-level assembly systems and developed a mathematical model to calculate the
expected total cost, which is the sum of the inventory holding costs for components and the backlogging
cost for the finished product. The authors assumed that the finished product is assembled on due date
at the earliest. A GA was proposed to optimize this expected total cost and the related order release
dates for the components at the second level of the bill of materials (BOM). [16], [17] and [18] made
use of the same mathematical model with the same assumptions in a multi-objective context.

Later, [19] extended the model to allow assembly of the finished product before the due date
if all the components at level 1 are available. A branch-and-bound procedure was introduced to
optimize the planned lead times. The latest mathematical model provides the basis for a new way to
integrate a maintenance plan that considers system deterioration [20,21]. For assembly systems with
three levels in the BOM, [22] proposed a continuous modelling approach based on an approximate
decomposition technique to optimize inventory and backlogging costs. The main limitation of these
studies is that they are limited to assembly systems with less than three levels in the BOM. The
past few years have seen a huge research effort to propose generalized models. To the best of our
knowledge, only two studies have proposed mathematical formulations to model one-known-demand
planning and multi-level assembly systems: [23] for the assemble-to-order environment and [24] for
the configure-to-order environment. Even though these two studies express the dependency between
levels and offer the potential to go beyond two levels in the nomenclature, there are still a number
of unresolved questions over whether these approaches should be used for the case of multi-period
planning where there is dependency between periods.

Lead-time uncertainty is covered in ample scholarship focusing on multi-period planning in
a stochastic environment. Most models are limited to single-item replenishment and avoid order
crossover despite it being a very real phenomenon in real-world replenishment planning and inventory
control (see [6,25-28] and their related work for well-known models, and [29-32] for real examples).

For the case of assembly systems in a stochastic environment, research has tended to focus
on multi-period planning with known constant demand rather than dynamic demand [33]. This is
explained by the fact that order crossover is very hard to model for dynamic demand, even though it
allows stock-level dependency between periods [29]. The choice of a known constant demand allows
to take into account the dependency between periods, in which case at some point in time the backlog
is covered by stocks of previous periods and vice versa [34]. A number of studies have built on this
assumption to propose a one-period planning system that is equivalent to multi-period planning
with a known constant demand and stochastic lead times. [35] was one of the first to propose an
economic order quantity (EOQ) model for an OLAS but with two-period planning. Fujiwara et al.
[36] were among the first to mathematically formulate the dependency between the inventories of
components and develop an optimal (Q, r) policy for an OLAS. They assume that: (i) the finished
product is composed of several types of components, (ii) the assembly capacity is unlimited, (iii) the
demand is constant, and (iv) the probability distribution of procurement lead time for each component
is given. Their proposed continuous model determines the optimal (Q, r) policy and minimizes the
average total cost, which represents the sum of inventory, backlogging and setup costs.

A few years later, there was a surge in scholarship on multi-period planning and known-constant
demand to provide generalized models, but they were always limited to OLAS. For example, in [4] and
[37], the authors optimized the expected total cost composed of inventory and backlogging costs and
gave the optimal safety stock and optimal safety times. However, a serious weakness in the proposed
approach was that it is only valid if all component procurement lead times follow the same probability
distribution and if all components have the same unit inventory holding cost. The optimization
approach was generalized in [38] to consider procurement lead times that are independent but not
necessary identically distributed in order to maximize customer service level for the finished product
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and minimize the expected total cost related to components. In continuation of this work, various
approaches [5,39-42] have attempted to extend this model to study certain policies (L4L, POQ, EOQ,
etc.) and include setup cost.

For the case of multi-period planning under uncertainty of both demand and lead times, Molinder
[43] studied OLAS to develop a simulation model coupled with a hybrid algorithm. The model is
based on simulated annealing to optimize order quantities and planned lead times. In [44], the authors
proposed a stochastic linear programming model to study a multi-product problem with several
OLAS under both demand and lead-time uncertainty. Both these models are very interesting, but the
quality of the optimal solutions depends on the number of scenarios.

As can be seen in the body of work carried out to handle lead-time uncertainty in assembly
system problems, all the papers concentrate on ordering policies by optimizing order quantities, order
release dates and planned lead times [33], but to the best of our knowledge, no papers have attempted
to co-optimize purchasing policies and pricing strategies even though both are crucial to successful
supply chain management. Most of the literature on supplier diversification and responsive pricing
has focused on the single-item purchasing case. Interested readers can refer to the-state-of-the-art
surveys of [45-48] to obtain more details on existing models, and to the recent review paper [49] which
provides an excellent overview of contributions to this issue.

In the field of inventory control for assembly systems in an uncertain environment, the issue of
supplier diversification and supplier selection/replacement strategies has been under-researched.
Under demand and lead-time uncertainty, [14] studied one-stochastic demand planning to assemble
a finished product from two components and extended the model introduced in [50] to consider
delivery of the required components by a joint supplier or two different suppliers. The authors
demonstrated optimality of base-stock when one supplier is selected. A few years later, the same
authors [51] replaced lead-time uncertainty by yield uncertainty and came up with propositions under
which it can be economically beneficial for the company to multi-source rather than use a single
supplier. Pan So [52] considered an ATO environment to study random yields and price-dependent
demand in single-period planning. They modeled the assembly of a finished product from n
components and analyzed the effects of uncertainty on the optimal solution, defined by the production
quantities—product pricing dyad.

Here, we aim to investigate an OLAS under lead-time uncertainty and examine the benefit of
paying suppliers an additional purchase cost (APC) in order to reduce the costs of uncertainty.

3. Problem description

In an OLAS with n different components replenished from n different suppliers, the uncertainty
of component replenishment lead times causes a high level of component inventory and a backlog for
the finished product. In this context, the producer may be ready to pay an additional purchasing cost
(APC) if the supplier can decease the uncertainty of their lead times.

In this paper we consider a purchasing and replenishment optimization model for such systems,
which was developed to measure the effects of such a policy and to optimize the total cost composed
of purchasing, holding and backlogging costs. Our model is based on a well-known model for supply
planning under lead-time uncertainties. It assumes that assembly system capacity is infinite and that
demand for the finished product is known. For each component, the lead time may take several values
with given corresponding probabilities. Models of this type have already been formulated in [40]
and [5] for one-level multi-period problems and in [16] and [23] for multi-level one-period assembly
systems with random lead times.
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Here, in a model of this type, we introduce additional decision variables dealing with purchasing

policies. Every purchasing policy j for a given supplier i has a purchasing cost (PC{ )- This paper uses
the following notations (see Table 1).

Table 1. Notations

Parameters
i supplier index
j purchase price index
h; unit stock cost of the product purchased from supplier i
b unit backlog cost for one finished product
H=b+Y!1h; global holding and backlog cost for one finished product
L{: random lead time for supplier i under purchasing pricej
uf maximum lead time i under purchase price j;ie. 1 < L; < u{
Variables
x; planned lead time for supplier i with purchase price j
. (planned lead time is equal to order release date if due date is equal to zero)
yg binary variable taking the value 1 if using purchase price j for supplier i
Functions
PCf A purchase cost under the purchase price j for supplier i
E(Lf) expected lead-time value for supplier i under purchase price j
Fi] (x{) cumulative distribution function of lead time for supplier i under purchase price j
pg (k) probability of having a lead time equal to k for supplier i under purchase price j

As the basic model, i.e. without taking into account PC, we will use the model proposed in [38]
which consists in minimizing the expected cost composed of the sum of the component holding cost
and backlogging cost of the finished product:

n

minEC(X) =Y hi (xi —E(L;))+H) <1—1£{Fi(xi+k)> 1)

i=1 k>0
s.t.
1 <x <u Vi=1,..n
= 1= 1 - (2)
x; €N Vi=1,..n
where:
X = (X1, X2, vy Xiy ey Xt 3)

To solve this non-linear optimization problem (1-3), a B&B was developed in [38]. We will extend
this model by including the APC explained above. In other words, we integrate prices (purchase costs)
as additional decision variables into this model. Our model with the new objective function (4) is
expressed as follows:

n L{?*l . . n u?fl ) ) )
minEC(X,Y) =Y Y PCl-yl+ Y. Y v I (X§—E(L§))
i=1 j=0 i=1 j=0
uw—1 (4)
n i

+H- L\ 1-TT{ L vl F+h

k>0 i=1 \ j=0
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u?—l )

Y = Vi=1,.,n (5)
j=0

x{ < (ud —7) -yf Vi=1,.,nYj=0,.,u —1 (6)
XeN Vi=1l.,n Vj=0,..u -1 @)
yle{01} Vi=1.,n Vj=0,.,u)—1 ®)

The objective function (4) represents the mathematical expectation of the total cost composed of
purchase cost (noted PC(Y)), holding component costs (HC(X, Y)) and backlogging cost (BC(X,Y)):

n u971 ) )
rc=y ¥ ey

i=1 j=0
n u?—l )
HO= 32 % (o (s E(L))) +
i=1 j=0
n n ui‘)*] . . .
() - (1-TT| X vi- E(xi+Kk)
i=1 k>0 i=1 \ j=0
n ”?71 . L
BC=b-Y [1-T]| ¥ ¥/ - F(xl +k)
k>0 i=1 \ j=0

Constraint (5) expresses that only one purchasing policy (j =0,.. u? — 1) is selected for each

supplier (i = 1, ..., n). Constraint (6) makes each planned lead time xf limited by an upper bound. This
upper bound for the purchasing policy (j = 0) is equal to u?.
The goal is to minimize (4) subject to (5-8). This minimization is fairly difficult because the

objective function is not linear and because decision variables X = (x{ ;i=1,.,mj=0,.. u? —1) are

integer and Y = (y{:;i =1,.,mj=0,., u? — 1) are binary.

4. Genetic algorithm

For the general case where the costs and distributions are different, problem complexity makes it
impossible to find an exact method. We Thus will develop a genetic algorithm (GA) somewhat similar
to the one in [15] but with a new cost function (new fitness) integrating different purchasing policies.
We will exploit the results obtained for the particular case in [53] to propose a heuristic algorithm for
initial population generation and to reduce the search space. GAs work to very well-known principles
inspired by process of natural selection [54,55]. A group of individuals (population of solutions)
go through a reproduction phase during which the good solutions pass their genetic material to
generations further down. Genetic diversity by operations such as mutations avoids a premature
convergence to a local optimum (see Algorithm 1).

The following sub-sections present key elements of the genetic algorithm such as crossover and
mutation operators along with the representation of the solution (or chromosome).

4.1. Chromosome representation of a solution

The chromosome representation must contain all the information necessary for a solution. If the
representation fails to encode a possible solution, the genetic algorithm will naturally fail to find it.

do0i:10.20944/preprints202003.0322.v1
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popo « initial_population() ;
for gen< Nbyy do
POPgen < POPgen—1 s
parents < reproduction_selection(popgen) ;
of fspring < crossover(parents) ;
POPiemp < replacement_selection(of fspring + parents) ;
POPgen — mutation(popiemp);
if rapide_convergence(popge) then
| popgen < perturbation(popgen);
end
end

Algorithm 1: General structure of a GA

In our algorithm, a chromosome has two chromatids that correspond to the two types of decision
variables: purchasing policy (or price) j from supplier 7, and order release date (xf ) (see Figure 1). The
purchase release date depends on the purchasing policy.

Chromosome length: 2 x n

0 2 1 3 2 5 1 3 1 2

Purchase policies Purchase order dates

Figure 1. Chromosome representation

4.2. Initial population

An initial population of sizep,, should have an equilibrium between randomly-generated
solutions designed to increase diversity and potentially good solutions needed to lead the algorithm
towards better results. For that reason, our approach features two types of individuals in the initial
population: 90% of the individuals are generated randomly, while the rest are obtained using a heuristic
approach (see Algorithm 2).

e Randomly-generated solutions: a purchasing policy is chosen for each supplier following a
uniform distribution. Once a purchasing policy is determined, order date is generated randomly
according to the purchasing policy (order date should be less than or equal to uf: )-

o Heuristic solutions take one of the suppliers (i) as the seed and all the others as clones of the seed
to obtain an instance of the particular case explained in [53], (MIP;). The corresponding linear
model is solved with a commercial solver (CPLEX 12.6) to obtain sol; which is added into the

solution pool sol_pool.
o Finally, the solution pool is sorted according to the total cost and first sizepop x 10% is included

in the initial population.

4.3. Reproduction selection

Our GA uses a random selection method in which the probability of selection is uniformly
sizepop

distributed for each individual. This method determines couples and with each individual can

only appear in one couple. With a probability p,, every couple undergoes crossover.
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foreach supplier i do

foreach supplier i’ such that i # i’ do
APC; = APC;;
hip = hi;

end

SOll‘ — MIP;

add (sol;, sol_pool);

Reinstore_values(APCy, hy);

end

Sort(sol_pool);

Choose first sizepop x 10% solutions

Algorithm 2: Heuristic approach for initial population

4.4. Crossover operator

A special crossover operator is applied to each couple: two chromatids of the chromosome are cut
at the same position. The purchasing policy and order date information for the same supplier(s) is
transmitted to the offspring. Figure 2 gives an example of a single-point crossover on two chromatids.

Parent 1
(==}
[\S]
—_
(98]
[ %)
wn
—_
w
—_
[\S]

Parent 2
~
—_
[ %)
—_
w
—_
(98]
[\S]
~
[\S]

— -

Crossover Point

»
BElo 2 1 |3 s |13 )42
=
S
o
2
|42 32 3 ]2]1]2
&
3

Figure 2. Single-point crossover on two chromatids

After the crossover, the offspring is added to the population, and so the population size increases
by sizepop X peo ON average, because for each couple, two offspring are generated with a probability pco.
The best sizeyop solutions from this larger population are then kept. With this procedure, the offspring
are not only in competition with their parents but also with other parents and offspring. The new set of
sizepop individuals is then subject to a mutation phase, before becoming the next generation.

4.5. Mutation operators

To introduce the right amount of diversity to the population, each individual undergoes mutation
with a probability of p,,. We consider three types of mutations: randomly changing a supplier’s
purchasing policy (m;), randomly changing a supplier’s order release date (;), and permuting the
purchasing policies and order release dates of two different suppliers (m3).

For the mutation operators m; and m;, we need to verify that the purchasing policy and order
release date are suitable. After m; (respectively, my), if the order date (respectively, purchasing policy)
is unsuitable, then another date is randomly attributed to the supplier concerned. This verification
is not necessary for the third mutation operator, because the genes concerning purchase policies and
order release dates are swapped at the same time.


https://doi.org/10.20944/preprints202003.0322.v1
https://doi.org/10.3390/app10103366

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 March 2020 d0i:10.20944/preprints202003.0322.v1

90f 16

Each mutation can occur with the following probabilities:

pm1:pm2:%:%ﬂ

If during nblter Maxnomprovement iterations the best solution known so far is not improved, then
the probability of mutation (p;;) is updated to 50%. As soon as the best solution is improved, pm
retakes the original value.

4.6. Perturbation

If the current mutation operators are not enough to prevent a premature convergence, then a
perturbation procedure is applied. Premature convergence is declared if 80% of a population has the
same cost. The perturbation consists of destroying 90% of the solutions that have the same cost and
replacing them with completely random but feasible solutions.

5. Experimental results

The GA was coded in C++ and numerical experiments were performed on an Intel Core i5-2520M
processor at 2.50 GHz clock-speed and with 4GB of memory.
The solution approach was tested on a randomly-generated instance set (I). We created 10 instance
families as a function of component numbers [10, 20, ...,100], and 100 test instances were created in
each family. The input data for each instance were: unit component holding cost, unit finished product
backlogging cost, additional purchasing cost per component per purchasing policy, and cumulative
distribution function of lead times per component per purchasing policy.
After some preliminary tests, parameter values were assigned as follows: population size (sizepop)
to 100, maximum number of generations (Nby;sy) to 1000, maximum number of iterations without
improvement (nblter Maxnoimprovement) to 50, probability of crossover (pc) to 90% and probability of
mutation (py;) to 10%.

In Tables 2-5, the first column gives the number of components (suppliers) for each instance
family, the second column gives the average number of iterations where the best solution was
found, and the third column gives the average gap between the best solution (best,,) in the

initial population and the best solution (best
bEStsolO —Dest

(g ap = best

(best ) found by the algorithm after 1000 generations and the best solution (best;,;,) among all

best —bestgrs

versions of GA (gap* = % x 100), i.e. the best known solution (BKS). Finally, the latest

column reports the average time to execute the algorithm.

sol1000) found by the algorithm after 1000 generations

sol1000

Table 2 reports the results of the genetic algorithm noted GA, i.e. without the complementary
procedures described above (a heuristic to form the initial population and the perturbation procedure).
It shows that even if there is a considerable improvement of the initial population, there is still a very
big gap to the BKS. The average gap on all the instances is 87.06%. Table 3 reports the results of the
genetic algorithm noted GAp, i.e. with the perturbation procedure. It shows very little improvement,
as the total average gap is no less than 86.14%. Table 4 shows that the genetic algorithm noted GAy
that includes the heuristic approach to construct the initial population vastly improves the quality of
the solution, as the total average gap to the BKS on all instances is reduces to just 3.92%.

Finally, almost all the BKS were obtained with GAp p (Table 5), which achieves a total average
gap of 0.67%. Tables 2-5 also show that even on the largest instances, the mean execution time of the
GAp4p is less than 1.6 seconds.
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Instance | Average number | Mean gap Mean gap* CPU time
family of iterations (%) from BKS (%) (sec)
10 38.23 147.26 19.04 0.28
20 128.26 159.75 44.50 0.38
30 275.96 178.03 44.87 0.48
40 251.50 151.65 85.33 0.55
50 368.22 131.95 102.88 0.63
60 472.86 135.45 108.37 0.74
70 570.92 148.98 108.97 0.86
80 647.76 158.66 105.80 0.97
90 697.04 161.99 105.00 1.08
100 844.43 135.71 145.85 1.41
Table 3. Results obtained by GAp
Instance | Average number | Mean gap Mean gap* CPU time
family of iterations (%) from BKS (%) (sec)
10 148.06 162.23 11.09 0.31
20 172.08 160.86 44.01 0.46
30 306.38 178.86 44.44 0.59
40 251.00 151.65 85.33 0.65
50 385.06 132.32 102.62 0.73
60 533.07 135.62 108.24 0.88
70 593.01 148.96 108.99 0.99
80 698.12 158.73 105.74 1.11
90 728.58 161.89 105.09 1.27
100 837.98 135.69 145.88 1.59
Table 4. Results obtained by GAgy
Instance | Average number | Mean gap Mean gap* CPU time
family of iterations (%) from BKS (%) (sec)
10 45.74 56.13 11.35 0.27
20 161.19 63.33 6.17 0.35
30 289.55 64.29 5.59 0.42
40 567.50 83.01 0.00 0.46
50 418.71 69.16 3.81 0.49
60 573.67 72.82 3.25 0.57
70 674.40 76.29 2.74 0.67
80 730.14 72.96 2.25 0.73
90 832.54 73.76 2.15 0.80
100 884.34 74.69 1.87 0.97
Table 5. Results obtained by GAp 4 p
Instance | Average number | Mean gap Mean gap* CPU time
family of iterations (%) from BKS (%) (sec)
10 115.50 66.33 3.93 0.32
20 279.74 72.60 0.06 0.43
30 422.37 72.65 0.00 0.53
40 295.50 83.01 0.00 0.60
50 609.03 75.06 0.03 0.63
60 716.57 77.94 0.10 0.73
70 781.95 80.60 0.18 0.83
80 835.20 75.93 0.44 0.92
90 892.58 76.28 0.64 1.01
100 904.72 75.70 1.28 1.19
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Figure 3 illustrates the evolution of the gap over iterations of GAp 1, on an instance with 100

bestsolgen —best

components (§apgen = s 015000, 100). In the first iteration, the gap is 86.81%, whereas at the

sol5000

1000"" iteration the gap is reduced to 1.31%. The gap finally reaches 0.00% at iteration 2132. Ultimately,
98.48% of the improvement is achieved during the first 1000 iterations.

Gap

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iterations

Figure 3. Evolution of the gap to the BKS over iterations
5.1. Lower and upper bounds

5.1.1. Lower bound

We can develop a lower bound on EC(Z) from this model by decomposing it into # subproblems.
In other words, instead of one final product with n components, we will consider # final products,
each having only one component. Therefore, for each supplier i, we will solve:

u0—1 ug w1 ug
min EC;(Z;) = ) Zz]s-~APC7—0— ) szs--s~h
j=0 s=1 j=0 s=1
ug—1 ug . up—1 ug ) (9)
~ Y Y hz EU)+HY (1— <Z Yz (Ff(s+k))>>
j=0 s=1 k>0 j=0 s=1
s.t.
uop u()—l
Y. ) =1 (10)
s=1 j=0

The total cost (EC(Z)) of the problem (4-8) is greater than the sum of EC;(Z}). Obviously, this
solution is unfeasible, because the assembly process needs to synchronize the component flows, which
then causes an additional cost. Therefore, this sum is a lower bound for EC(Z).

The linear model (9-10) can be solved by a commercial solver (CPLEX 12.6).

5.1.2. Upper bound

We can compute the upper bound using two methods presented in [39]. However, [39] has no
decision concerning purchasing policy (there is only one purchasing policy, i.e. a fixed price) and the
authors only find the release (purchasing) dates that minimize some of the holding and backlogging
costs under lead-time uncertainty. [39] proposed an exact method (BB) and a heuristic (beam search),
which can be used to find upper bounds for the problem considered in this paper.

We can apply B&B for a small number of suppliers (up to 50) and the beam search approach for
larger numbers. The tests show that the gap between the beam search and the optimal solution is
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less than 2.5%. The quality of the beam algorithm is very good, as the beam search found optimal
solutions for 491 of the 500 tests executed. The optimal solutions found by B&B or the beam search
developed in [39] are also optimal for our problem for policy 0 and feasible for other policies, so they
can be used as upper bounds in our study.

Table 7 compares the results of our GAp p model with the upper and lower bounds. The table
reports names of the instance families (corresponding to the number of suppliers) along with the mean
gaps from the lower and upper bounds. As each family has 100 instances, the mean gaps in percentage
format are calculated as follows:

K GAk., ,— LB

k:Zl LBk

mean GAP(GAp+p,LB) = % x 100
i UB* — GAY, p
o GAfp

mean GAP(GApp,UB) = X % 100

where GA’fLI ps LBF and UBF are the result of GA, lower bound and upper bound to the problem
on instance k, respectively, and K=100 (instances by family).

Table 6. Gaps between the results of GAg p and upper and lower bounds

Instance | mean GAP (GAp4p,LB) | mean GAP (GApp,UB)
family (%) (%)
10 10.89 145.89
20 6.33 181.06
30 6.00 183.49
40 8.16 185.18
50 8.77 194.95
60 10.24 194.31
70 12.00 192.26
80 14.34 192.57
90 10.97 191.04
100 10.35 190.74

The mean gap between the lower bound and the GApp is less than 15%, and smaller gaps are
observed for instances with 20 to 50 suppliers. However, the mean gap between the upper bound and
the GAp p is far bigger, ranging between 145.89% and 194.95%. This result shows the huge impact of
the policies for uncertainty reduction: even if each supplier has to be paid an additional purchasing
cost to reduce their uncertainty, the total cost is still drastically minimized, so the solution without
these policies gives a very bad upper bound.

5.2. Decisionmaker behavior analysis

In this section, we investigate the impact of the decisionmaker’s behavior towards the uncertainty
and risks.

If the decisionmaker is a risk-taking manager (risk;;qx), he/she will be reluctant to pay more to
reduce the uncertainty, and hence will always choose APC?, which is a policy with zero additional
purchase cost but with maximum uncertainty. In this case, we have the model proposed in [39]
that w already used as an upper bound in subsection 5.1. On the other hand, if the decisionmaker
is risk-averse, he/she will be willing to pay the maximum APC*0~1 (risk,,;,). In this case, the
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uncertainty disappears and the problem becomes deterministic. In the deterministic case, ordering
just-in-time implies zero inventory holding and backlogging costs, leaving the only costas } ; APCZ.MO_l.

Table 7 compares our lead-time uncertainty-reducing pricing and inventory control model with
these two strategies on three groups of scenarios. In the first group (G1), we considered a low average
APC increase (0 < AAPC < %). In the second group (G2), we considered the case of an average APC
increase between %% and % Finally in the third group (G3), we considered the case of an average

APC increase greater than holding and backlogging costs (2% < AAPC L 5%).

Table 7. Decisionmaker behavior analysis

Instance mean GAP mean GAP mean GAP
groupe | (GApyp,riskyin)(%) | (GAR4p, tiskmax) (%) | (riskyiy, riskmax)(%)
Gl 0.57 7014.81 6993.03
G2 108.20 4.04 -49.68
G3 492.31 1.78 -107° -83.17
Mean GAPs were computed as follows:
K 4ialk k
Z rZSkmin B GAH+P
- GA¥k
mean GAP(GAp.p, riskyin) = | = < H+P x 100

K riskk, . — GA’;HP

)3

— GAk
mean GAP(G A4 p, Fiskmay) = | =2 < H+P x 100
i riskl . — riskk
, , k=1 risky i
mean GAP(riskmax, risk,in) = X x 100

Comparison of two simple strategies found that when the average APC increase is small, a
risk-avoiding strategy is almost 7000% better on average than a risk-taking strategy. Similarly, if the
average APC increase is very big, a risk-taking strategy is 83.17% better on average than a risk-avoiding
strategy. Obviously, there is no reason to take risks when it is cheaper to pay to reduce the uncertainty.
Nevertheless, when the cost of the reducing the uncertainty exceeds the inventory holding and
backlogging costs caused by the uncertainty, then the decisionmaker should be open to taking risks.

Our genetic algorithm gives practically the same results with a risk,,;, strategy for group G1 and
with a risky,qy strategy for group G3. The most interesting case is when the average APC increase is
close to the inventory holding and backlogging costs, where GAp 1 p gave the best total cost and the
gap to the risk,,;, strategy was 108.2% whereas the gap to the risk;,,; strategy was 4.04%. In other
words, our GAp 4 p adapts itself to changes in inventory holding, backlogging and additional purchase
costs and chooses the best-suited strategy with regard to risks.

6. Conclusions

This paper deals with a pricing and replenishment problem for one-level assembly systems under
component lead-time uncertainty. We focused on finding optimal values for the planned lead times
(or order release dates) and purchasing prices. A linear model was developed, and a decomposition
approach was proposed to calculate a lower bound while upper bounds were calculated using


https://doi.org/10.20944/preprints202003.0322.v1
https://doi.org/10.3390/app10103366

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 March 2020 d0i:10.20944/preprints202003.0322.v1

14 of 16

branch-and-bound and beam search algorithms developed for a particular case with fixed purchasing
prices.

For the general case, we also proposed a genetic algorithm. Solution quality was improved by a
heuristic to create initial solutions and a perturbation technique to diversify the search. The genetic
algorithm was evaluated its results were compared against lower and upper bounds. Test results
showed that having several policies with a higher purchasing price but lower uncertainty drastically
improves the total cost. Comparisons with risk-taking and risk-avoiding behaviors showed that the
proposed genetic algorithm adapts itself to the parameters of the supply chain and gives valuable
insight to decisionmaker.
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Abbreviations

This manuscript uses the following abbreviations:

APC Additional Purchase Cost

ATO Assemble-To-Order

BKS Best Known Solution

BOM  Bill Of Materials

CNRS  Centre National de la Recherche Scientifique

EOQ Economic Order Quantity

GA Genetic Algorithm

ICD Institut Charles Delaunay

JIT Just-in-time

L4L Lot-for-Lot

LOSI  Laboratoire d’Optimisation des Systémes Industriels
LS2N  Laboratoire des Sciences du Numérique de Nantes
OLAS  One-Level Assembly System

PC Purchasing Cost

POQ  Periodic Order Quantity
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