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Abstract 

Today, we are all threatened by an unprecedented pandemic: COVID-19. How different is it from 

other coronaviruses? Will it be attenuated or become more virulent? Which animals may be its 

original host? In this study, we analyzed 377 publicly available complete genome sequences for 

the COVID-19 virus, the previously known flu-causing coronaviruses (HCov-229E, HCov-OC43, 

HCov-NL63 and HCov-HKU1) and the lethal, pathogenic P3/P4 viruses, SARS, MERS, Victoria, 

Lassa, Yamagata, Ebola, and Dengue. We found strong similarities between the current circulating 

COVID-19 and SARS and MERS, as well as COVID-19 in rhinolophines and pangolins. On the 

contrary, COVID-19 shares little similarity with the flu-causing coronaviruses and the other P3/P4 

viruses. Strikingly, we observed divergence of COVID-19 strains isolated from human hosts has 

steadily increased from December 2019 to March 2020, suggesting COVID-19 is actively evolving 

in human hosts. From all existing human COVID-19 genome sequences, we calculated the first 

common model that represents the shared sequences of the human COVID-19 strains, which 

provides important information for vaccine and antibody development. Geographic and time-

course analysis of the evolutionary trees of the human COVID-19 reveals possibly heterogeneous 

evolutional paths among strains from 21 countries. This finding has important implications to the 

management of COVID-19 and the development of vaccines.  

Introduction 

   Since its first report in December 2019, the severe infectious pneumonia caused by the new COVID-19 

virus has spread widely from the Wuhan City, across China, and now to more than 100 countries. On March 

11, WHO announced COVID-19 outbreak a pandemic, the first of its kind since the 2009 Swine Flu. 

Internationally, as of mid-March, 2020, COVID-19 has resulted in more than 150,000 cases and nearly 

6000 deaths. COVID-19 is currently the biggest health, economical and survival threat to the entire human 

race.  We are in urgent need to understand this virus, find treatment and develop vaccines to combat it. 

One challenge in developing effective antibodies and vaccines for COVID-19 is that we do not yet 

understand this virus. How far away is it from other coronaviruses? Has it undergone any changes since its 

first discovery? These questions are critical for us to find cures and design effective vaccines, and critical 

for managing this virus. The study of COVID-19 began only recently[1-6]. So far, pioneering studies related 

to the virus have been limited to a few complete genome sequences and a few related viruses[7-8]. One study 

used six COVID-19 sequences from patients in Wuhan and compared them with those of SARS and 

MERS[9]. Another two studies used nine and five sequences respectively, and found that COVID-19 is 

similar to SARS[10-11]. These pioneering efforts paved the foundation for this work, which involves 377 

complete genome sequences, covering 194 genomes isolated from COVID-19 in human hosts from 21 

countries, 21 genomes from animals and the environment, 101 genomes from the previously known flu-
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causing coronavirus (HCov-229E (3 genomes), HCov-OC43 (78 genomes), HCov-NL63 (16 genomes) and 

HCov-HKU1 (4 genomes)), and 61 genomes from seven potentially lethal pathogenic P3/P4 viruses, SARS 

(11 genomes), MERS (11 genomes), Victoria (5 genomes), Lassa (6 genomes), Yamagata (5 genomes), 

Ebola (11 genomes), and Dengue (12 genomes).  This collection allows us to analyze the evolution of 

COVID-19 in depth.  

In this article, we report strong shared similarity between the currently circulating COVID-19 and the 

SARS virus, as well as strong shared similarities with COVID-19 in rhinolophines (especially with two 

strains) and in pangolins. On the contrary, COVID-19 shares a moderate sequence similarity to the flu-

causing coronaviruses, despite reported similar symptoms. Strikingly, we observed the divergence of the 

COVID-19 strains isolated from human hosts has steadily increased from December 2019 to March 2020, 

suggesting COVID-19 is now actively evolving in human hosts. This may potentially explain the 

differences in the death rate in different areas, as the virus might have evolved into strains of different 

lethality. From all existing complete genome sequences of COVID-19 in humans, we derived the first 

common model for the COVID-19 sequences that represents the shared sequences of all 194 human 

COVID-19 strains, which will be critical to inform the future studies of vaccines and antibody design. 

Geographic and time-course analysis of the evolutionary trees of the human COVID-19 reveals 

heterogeneous evolutional relationships among strains from 21 countries and identified 13 virus strains that 

are very likely to be linked to or can potentially help the researchers find the first generation COVID-19 

virus. Overall, the findings in this paper provide important information to the understanding and the 

management of COVID-19 and also to the development of vaccines for the virus in the near future. 

Results: 

Relatively strong similarities between COVID-19 and SARS, but relatively week 

similarity to several other P3/P4 viruses 

   There has been an active debate over whether COVID-19 is related to the SARS virus and other virulent 

viruses sporadically and temporarily appeared in populations. We compared the similarities between the 

complete genome sequences of COVID-19 and those of the seven pathogenic P3/P4 viruses (SARS, Lassa, 

MERS, Victoria, Yamagata, Ebola and Dengue). Two similarity metrics were employed, LCS (Eq. 1) and 

LD (Eq. 2) (described in Methods). The information about these viruses including the strain name, serial 

number, data source, sampling time, sampling location, and sequence length, is provided in Tables S8-S14 

in supplementary materials. Fig. 1(A) shows the average similarities (LCS/LD) of the sequences of COVID-

19 and the seven P3/P4 viruses, which are 0.825863/0.795447 for SARS, 0.341151/0.340103 for Lassa, 

0.693463/0.570777 for MERS, 0.426403/0.418833 for Victoria, 0.426455/0.418873 for Yamagata, 

0.500381/0.472106 for Ebola and 0.340755/0.339583 for Dengue. It can be observed that SARS have 

higher similarities with COVID-19, followed by MERS. We would like to highlight that COVID-19 and 

Ebola shares a fewer similarity. As we will see later, the similarity between COVID-19 and Ebola is even 

smaller than that of between COVID-19 and that of other flu-causing viruses. This inspires us to reflect 

about the roadmap of alternative medicines and therapies that we should develop for COVID-19. 
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 (A)  (B)  (C) 

Fig. 1. (A) average similarities between COVID-19 and seven deadly pathogenic P3/P4 viruses with 

human as host; (B) average similarities between the four flu coronaviruses and COVID-19 with human as 

host; (C) average similarities between the COVID-19 viruses in different hosts. 

 

Similarity between COVID-19 and other known flu-causing coronaviruses 

   It has been reported that many symptoms of the COVID-19 patients resemble those of the influenza 

patients infected with four known flu coronaviruses. Therefore, we computed the sequence similarities 

between COVID-19 and the four known flu coronaviruses, HCov-229E, HCov-OC43, HCov-NL63 and 
HCov-HKU1. The data source information of the four flu coronaviruses are provided in Tables S4-S7 in 

supplementary materials. The similarity matrices, computed with Eq. 1 (LCS) and Eq. 2 (LD), respectively, 

between the four flu viruses and COVID-19 with human as host are provided in supplementary materials 

(Similarity Matrices). Fig. 1(B) shows the average similarities, calculated using the LCS/LD method, 

between the sequences of the four known flu coronaviruses and COVID-19 that take humans as hosts, are 

0.653182/0.555697 for HCov-229E, 0.680588/0.561878 for HCov-OC43, 0.659644/0.560697 for HCov-

NL63 and 0.690928/0.561203 for HCov-HKU1. We observe that the difference in the similarity values 

between the two (LCS and LD) metrics is about 10%, but the trends of the two results are consistent. 

    Compared to the shared similarity between COVID-19 and the seven lethal P3/P4 strains, the similarity 

between COVID-19 and other known flu-causing coronaviruses is in general higher, other than SARS and 

MERS. This pinpoints the importance of revisiting the treatment of flus and whether drug repurposing could 

possibly alleviate the current COVID-19 crisis.  

COVID-19 viruses in human is not very different from COVID-19 in rhinolophine 

and pangolin 

   To help trace the original or the intermediate host of COVID-19 and to assist the finding of natural 

remedies, we analyzed the similarity between COVID-19 viruses in different hosts, including human, 

rhinolophine, pangolin, and environmentally collected strains. The detailed virus data information is 

provided in Tables S15-S17 in supplementary materials. Fig. 1(C) shows the similarities of the COVID-19 

sequences in different hosts.  

We found that the COVID-19 virus living in the environment is highly similar to that living in the human 

body. The average similarity can reach 0.997209/0.997148 (LCS/LD). This is expected, as this is likely to 

reflect what is being transmitted right now among the human population. We also found relatively strong 

similarities between TG13 and RaTG13 (rhinolophine host) and COVID-19 (human host), reaching 

0.959925/0.958431 (LCS/LD) and 0.959992/0.958498 (LCS/LD), respectively. But the average similarities 

between COVID-19 with human host and the other COVID-19 virus strains with rhinolophine host are not 

very high, 0.741621/0.663063, lower than the similarity with the COVID-19 virus strains (pangolin host), 
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0.874151/0.860406, by 13% and 20% (LCS/LD).   

Clustering and homologous/evolutionary relationships among viruses 

As a high similarity between sequences often implies a close relationship, to further investigate the 

inherent relationships among various viruses, we first compute the MLCS (Multiple Longest Common 

Subsequences) of all sequences from each type of virus using our I-MLCS tool (discussed in Methods) as 

the common models or shared representations of the 15 types of viruses. We then calculate the similarity 

matrix using the LCS similarity metric between the 15 types of viruses, shown in Table 1. Using the 

similarity matrix, we construct a fully connected weighted graph shown in Fig. 2(A) for the 15 types of 

viruses, where a vertex represents a type of virus, and the weight of each edge is the similarity between the 

two connected vertices. We then cluster the graph using the hierarchical clustering algorithm AGNES[12]. 

The clustering result is given in Fig. 2(B). 

Fig. 2 shows that the similarities among viruses of No. 9 (Victoria), No. 10 (Yamagata) and No.11 

(Ebola) are high, and the three types of viruses are in the same cluster. The similarities among No. 1 

(COVID-19), No. 2 (HCoV-229E), No. 3 (HCoV-HKU1), No. 4 (HCoV-NL63), No. 5 (HCoV-229E), No. 

6 (SARS), No. 7 (MERS), No. 14 (Pangolin host), and No. 15 (Environment) viruses are also high, and are 

in another cluster. Notice that No. 1 (COVID-19) and No. 15 (Environment) viruses have the highest 

similarity. No. 6 (SARS) and No. 14 (Pangolin host) viruses also have a high similarity. 

 

Table 1．The similarity matrix of the 15 types of viruses 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 100.0 65.04 67.59 65.11 68.93 82.45 69.54 22.24 42.36 42.34 41.15 20.09 39.76 82.54 99.26 

2 65.04 100.0 67.06 75.30 65.02 65.08 64.85 24.60 44.99 44.96 43.85 22.22 42.39 66.94 64.79 

3 67.59 67.06 100.0 68.09 75.58 67.05 67.29 23.24 42.76 42.77 41.37 21.05 40.16 65.61 67.30 

4 65.11 75.30 68.09 100.0 65.40 64.84 64.97 24.58 44.50 44.53 43.26 22.26 42.53 67.09 64.84 

5 68.93 65.02 75.58 65.40 100.0 68.22 68.94 22.15 41.91 41.90 40.58 20.00 38.53 63.96 68.96 

6 82.45 65.08 67.05 64.84 68.22 100.0 69.01 22.42 42.68 42.64 41.67 20.25 40.08 77.07 82.14 

7 69.54 64.85 67.29 64.97 68.94 69.01 100.0 22.25 42.29 42.26 41.36 20.09 38.66 64.57 69.23 

8 22.24 24.60 23.24 24.58 22.15 22.42 22.25 100.0 40.77 40.87 42.36 59.15 44.38 25.59 22.08 

9 42.36 44.99 42.76 44.50 41.91 42.68 42.29 40.77 100.0 93.24 63.97 38.50 56.88 46.45 42.13 

10 42.34 44.96 42.77 44.53 41.90 42.64 42.26 40.87 93.24 100.0 63.88 38.54 56.88 46.45 42.11 

11 41.15 43.85 41.37 43.26 40.58 41.67 41.36 42.36 63.97 63.88 100.0 39.28 57.99 45.26 40.94 

12 20.09 22.22 21.05 22.26 20.00 20.25 20.09 59.15 38.50 38.54 39.28 100.0 41.04 23.13 19.94 

13 39.76 42.39 40.16 42.53 38.53 40.08 38.66 44.38 56.88 56.88 57.99 41.04 100.0 44.83 39.52 

14 82.54 66.94 65.61 67.09 63.96 77.07 64.57 25.59 46.45 46.45 45.26 23.13 44.83 100.0 82.23 

15 99.26 64.79 67.30 64.84 68.96 82.14 69.23 22.08 42.13 42.11 40.94 19.94 39.52 82.23 100.0 
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 (A)                                                                                    (B) 

Fig. 2. (A) the fully connected weighted graph and (B) the clustering result of the 15 types of viruses. 

We may infer that different viruses that reside in the same cluster are closely related. To verify this 

inference, we build their evolutionary trees for these viruses’ complete genome sequences in the clusters 

using the MEGA 6.0 tool, which are shown in Fig. 3. Fig. 3(A) shows an evolutionary tree for the cluster 

with the cluster members, Nos. 9, 10 and 11, which are very similar to each other. Fig. 3(B) shows another 

evolutionary tree for the cluster with cluster members, Nos. 1, 2, 3, 4, 5, 6, 7, 14, and 15, which are also 

very similar to each other. For each cluster, we build five random trees. In building each tree, we randomly 

select one virus sequence from each virus type (e.g., one sequence from each of the Nos. 1, 2, 3, 4, 5, 6, 7, 

14, and 15 viruses) and feed them into MEGA 6.0. As the resulting 5 trees for each cluster all have the same 

structure, only one tree is shown in Fig. 3(A) or Fig. 3(B). The rest are given in supplementary materials 

(Evolutionary trees of COVID-19 strains and viruses' cluster/Clusters' evolutionary trees). Note that since 

Nos. 8, 12, and 13 are far from each other (which is difficult to see in Fig. 2(A) due to the projection to the 

2-dimensional space), we did not compute their evolutionary trees.   

 
 (A)                                                                           (B) 

Fig. 3. (A) an evolutionary tree of the cluster {Nos. 9, 10 and 11}, and (B) an evolutionary tree of the cluster 

{Nos.1, 2, 3, 4, 5, 6, 7, 14, and 15} 

Comparing Fig. 2(B) with Fig. 3, we can clearly see that their results are consistent and Fig. 3 further 

reveals the homologous and evolutionary relationships of different virus sequences in the same cluster. 

Studying the viruses in the same cluster and their homologous and evolutionary relationships may help 

more accurately understand these different viruses. 

Time-course analysis of COVID-19 in human host reveals active divergence in 

humans from December 2019 to March 2020  

    We analyzed 194 publicly released complete genome sequences of the COVID-19 virus strains that take 

humans as hosts, which were sampled between December 2019 and March 2020 in 21 countries. The sample 

sources are illustrated in Fig. 4, and the details about these sequences are given in Table S3 in supplementary 

materials. We have extracted the common model (MLCS) (see Methods) of all sequences of COVID-19 
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and provided them in supplementary materials (The MLCSs of COVID-19, SARS, MERS and 4 flu 

coronaviruses/COVID-19—MLCS.txt). These common models represent the shared information (common 

subsequences) across all strains for each country of the virus species. This knowledge is critical for 

designing effective vaccines and antibodies in the near future. 

 
 

Fig. 4. Sources of data and sampling/sequencing times. 

We calculated the average similarities between the sequences of COVID-19 strains across samples 

collected from different months. Although the overall similarity of these human strains is high, we observed 

a reduction of similarity in later months, indicating mutations within the human population is already 

occurring (Table 2). In Dec. 2019, the similarity was on average 0.999054, corresponding to an average of 

29.75 nucleotide differences. In Mar. 2020, this number has dropped to 0.988468, corresponding to an 

average of 348.33 nucleotide differences. Such changes imply evolutional changes of this virus, which 

might result in attenuation or more virulent strains. This difference is statistically significant (p<0.0026). 

The detailed similarity analysis results (i.e., similarity matrices) of the 194 COVID-19 sequences are also 

given in supplementary materials (Similarity Matrices). These results lead to an important conclusion: the 

COVID-19 has already begun its divergence in the human population, which potentially explains the 

underlying differences in virulence and alerts us to consider this divergence in designing antibodies and 

vaccines. 

Table 2. Average similarities between the sequences of COVID-19 strains of different months 

The Average Similarity (LCS/LD similarity metric) 

Time Period Dec. 2019 Jan. 2020 Feb. 2020 Mar. 2020 

Dec. 2019 0.999054/0.999015 0.998707/0.998638  0.997936/0.997870 0.992879/0.992504  

Jan. 2020 0.998707/0.998638 0.998462/0.998350  0.997784/0.997677 0.992709/0.992173  

Feb. 2020 0.997936/0.997870 0.997784/0.997677 0.997195/0.997085 0.992415/0.991771  

Mar. 2020 0.992879/0.992504 0.992709/0.992173 0.992415/0.991771 0.988468/0.988334  

The average similarity between any two sequences in the 194 COVID-19 strains is 0.995561/0.995342. 
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Geographic evolution of COVID-19 in human hosts reveals possibly independent 

multi-route spreading of the virus 

    We next analyzed the evolutionary relationships of the COVID-19 strains from 21 countries, which are 

China, Japan, South Korea, USA, Sweden, France, Singapore, Australia, Thailand, Italy, Germany, Nepal, 

Cambodia, Vietnam, England, Switzerland, Mexico, Canada, Brazil, Belgium and New Zealand. Our main 

goal is to discover the evolutionary relationships of the virus strains from these countries, to study the 

spreading of the virus, and to identify the possible first generation strains. 

  As China is widely regarded as the origin of the virus, we first conducted 85 independent experiments, 

using each of the 85 sequences collected from China. For the rest 20 countries, we randomly selected one 

strain from each country. We also ensured that every sequence from every country has appeared in the 85 

experiments at least once. The 21 resulting sequences for each experiment are then fed into MEGA 6.0 to 

compute the evolutionary tree of the sequences. A virus strain from any country that has appeared as a first 

generation strain in any of the 85 evolutionary trees is given in Fig. 5(A), with its country, serial number 

and sequencing date attached. We found 21 such strains from 10 countries (all in Fig. 5(A)). Fig. 5(A) also 

uses a time line to order and to mark these 21 strains’ sequencing dates. We would like to stress that due to 

our experiment setting above, any sequence that can possibly be in the first generation of the COVID-19 

virus has at least one chance to appear in an evolutionary tree, which means that no possible first generation 

strain is missed. As examples, 2 (out of 85) generated evolutionary trees are shown in Fig. 5(B) and Fig. 

5(C). The rest 83 evolutionary trees are given in the supplementary material (Evolutionary trees of COVID-

19 strains from 21 countries).  
 

 

(A)  (B)  (C) 

Fig. 5. (A) countries, serial numbers, and sequencing dates of the potential first-generation COVID-19 

virus strains. (B) and (C) two evolutionary trees of 21 COVID-19 strains from 21 countries (one strain per 

country). 

This above set of experiments has narrowed down the search for the first generation COVID-19 virus 

strains to the 21 strains (or sequences) in Fig. 5(A). However, we still do not know the relationships of these 

21 strains or sequences. We thus perform another computational experiment, i.e., using only these 21 strains 

to build an evolutionary tree. Fig. 6 shows the output evolutionary tree. We can observe that three strains 

from China and the strains from Germany, Australia, Cambodia, Singapore and Nepal are not likely to be 

first generation strains. These exclusions are also cross-verified with the 85 evolutionary trees discussed 

above. The rest 13 strains (China (7), Thailand (2), Japan (2), USA (1), and South Korea (1)) are very likely 

to belong to and/or can lead us to find the first generation COVID-19 virus strains and the origin of the 

virus, for which further investigation is needed. It is also interesting to see that those strains from Japan, 

South Korea, and the USA appear among the first generation strains although they were sequenced much 
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later than the others.  

 
Fig. 6. The evolutionary tree of the 21 COVID-19 strains in Fig. 5(A). 

Discussion and Conclusion 

Pathogenic mechanism, virus detection, and vaccine and drug developments all heavily depend on the 

analysis of the complete genome sequences of COVID-19. This study provides important information to 

support the decision making of medical and healthcare professionals in tracking COVID-19’s mutation 

paths, developing virus detection tools, vaccines and drugs, and controlling the epidemic. We would like 

to reiterate several key findings.  

First, the genome sequences of COVID-19 viruses in humans have already gone through mutations over 

the past four months. This has important implication for developing COVID-19 test kits, vaccines and 

antibody treatments. Recently, efforts to isolate antibodies for COVID-treatment have been announced by 

several pharmaceutical companies, and vaccines are being actively developed by many research institutions 

around the world. The breadth of the coverage of the antibodies and vaccines will be critical in determining 

its efficacy. 

Second, COVID-19 shares little similarity with Ebola, but more with the four previously known flu-

causing coronaviruses (HCov-229E, HCov-OC43, HCov-NL63 and HCov-HKU1), and even more with 

SARS. The sequence analysis suggests treatment to SARS and other flu-inducing coronaviruses might be 

another roadmap that we should explore. We recommend considering this fact during medication and 

treatment development.  

Third, the COVID-19 virus strains from most countries may have multiple evolutional paths. Extensive 

analyses of the COVID-19 strains from different countries show that about 13 strains from China (7/85), 

Thailand (2/2), Japan (2/9), USA (1/32), and South Korea (1/9) are most likely to be linked to or can 

potentially lead us to find the first generation COVID-19 virus and its origin. Note that by no means do we 

imply that the host patients of the 13 COVID-19 virus strains are from those countries or contracted the 

virus in those countries due to international travels. As the data shown here, at the national scale, COVID-

19 could have already been with us through multiple origins. This also highlights the need to develop more 

aggressive isolation and quarantine procedures for anyone demonstrating suspicious symptoms, even 

without direct or known contact of a patient.  
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In sum, we carried out a comprehensive sequence analysis of the complete genome sequences of COVID-

19 virus as well as comparison against those of other viruses, in the hope that some of the above information 

will guide us to a clear roadmap for preventing further spread, treating the patients of this virus in the near 

future.  

Methods: 

Data collection 

In this work, we collected 215 publicly available complete genome sequences of the COVID-19 virus 

(194 with human as host, 13 with the rhinolophine as host, 6 with the pangolin as host, and 2 in the 

environment), of the previously known flu-causing coronaviruses, HCov-229E (3 sequences), HCov-OC43 

(78 sequences), HCov-NL63 (16 sequences) and HCov-HKU1 (4 sequences), and of seven deadly 

pathogenic P3/P4 viruses, SARS (11 sequences), MERS (11 sequences), Victoria (5 sequences), Lassa (6 

sequences), Yamagata (5 sequences), Ebola (11 sequences), and Dengue (12 sequences). The total number 

of the sequences is 377. These sequences are downloaded from the following databases: GenBank or 

NCBI[13] (National Center for Biotechnology Information), GISAID[14] (Global Initiative on Sharing All 

Influenza Data), and CDC[15](Center for Disease Control and Prevention). The average sequence length 

is approximately 30,000. 

Similarity metrics 

As mining the big sequence data is still a difficult problem[16-19]. The key challenge is the computational 

complexity. We have been designing novel algorithms[17,18] to tackle this challenge. Our recent work has 

proposed several efficient analysis techniques for big sequences, and also developed an automated tool (I-

MLCS), which is mainly used in the similarity analysis.  

Based on the similarity metric design criteria and a common method for extracting subsequences among 

sequences in bioinformatics and computational biology[19,20], we give the following definitions and 

equations for computing the similarity of big sequences. 

Definition 1 (MLCS): The task of mining MLCS[17-20] (Multiple Longest Common Subsequence) is to 

discover all longest common subsequences from multiple given sequences of equal length or unequal 

lengths. We use d (d ≥ 3) to represent the number of sequences. We call MLCS the common model of the 

d sequences. 

Definition 2 (LCS): Mining of LCS[21] (Longest Common Subsequence) is to discover all LCSs of two 

given sequences (d = 2). We call LCS the common model of a pair of sequence si and sj.  

We define an LCS-based similarity of a pair of sequences si and sj as 

 sim(si, sj)=|LCS|/max(|si|,|sj|),        (1) 

where |LCS| represents the length of the LCS’s mined from the pair of sequences si and sj. |si| and |sj| 

represent the lengths of sequences si and sj, respectively. 

Definition 3 (LD): Lowenstein/edit distance LD[22,23,24] is the minimum number of operands required to 

convert a character sequence si to another sequence sj using the operations of inserting, deleting or changing 

a character.  

LD is the most commonly used measure of similarity between two sequences. The edit distance-based 

similarity between a pair of sequences si and sj is defined as[20] 

 sim(si, sj)=1-LD/min(|si|, |sj|)        (2) 
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We use two similarity metrics/measures for each analysis experiment, one based on LCS (Eq. 1) and the 

other based on Lowenstein/edit distance (LD, Eq. 2). The two alternative results enable medical 

professionals and biological researchers to cross-verify or cross-compare, and possibly decide which 

method makes more biological sense.  

We used a similarity matrix[20] to represent the similarities between a set of sequences, which can reveal 

some potential biological evolutionary or genetic relationships of different species quantitatively. In this 

study, we report all similarity matrices of the complete genome sequences of COVID-19 among themselves 

and also between the complete genome sequences of COVID-19 with those of the other related viruses. 

Notice that the similarity matrix of homogeneous sequences is a symmetric matrix, which represents 

pairwise comparisons between sequences of the same virus type; otherwise an asymmetric matrix, which 

represents pairwise comparisons between sequences of two different virus types. The average similarity 

between sequences in the same virus type is computed using all the elements of the upper/lower half of the 

symmetric similarity matrix except the diagonal elements, while the average similarity between sequences 

of two different virus classes is calculated using all the elements of the asymmetric similarity matrix. 

Computing platforms and tools 

This paper’s investigation is carried out using two main computational tools, our big sequence data 

analysis tool I-MLCS (for similarity analysis) and the existing MEGA 6.0 system[24] (for evolutionary 

relationship analysis). I-MLCS (the Integrated Multiple Longest Common Subsequence mining system) 

was developed based on our latest research in designing effective and efficient algorithms for analyzing big 

sequence data (i.e., sequences with length over 104). All the calculations were done on a computing cluster 

of 18 nodes (Intel(R) Xeon(R) Gold 5115 CPU, 2 chip, 10 cores/chip, 2 threads/core, @2.4 GHz and 96GB 

RAM). 
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