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Front view Side view

Top view

Figure S1. Surface filled view of Rbpr2 and RBP4 protein-protein interactions based
on HADDOCK docking analysis.

Multiple surface filled views of (A) Zebrafish Rbpr2 with human RBP4, and (B) Zebrafish

Stra6 with Human RBP4, protein-protein interactions are shown.
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Figure S2. Densitometry analysis of western blots.

Image J software was used to quantify (Arbitrary Units) protein bands from Figures 3B,

3C, and 4B. Analysis is representative from three western blot experiments.
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B
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Figure S3. Generation of rbpr2-RBP4 binding domain zebrafish mutants.

(A) The proposed RBP4 binding domain in zebrafish Rbpr2 was targeted using CRISPR
gRNAs (underlined), PAM site shown in green. (B) The CRISPR/Cas9 cutting generated
multiple mutant alleles. A 1-bp deletion in the zebrafish Rbpr2 (rbpr29-miz99) coding
sequence that results in a frameshift that affects the downstream SYL-RBP4 binding
domain was chosen for all further analysis. (C) Sequencing chromatograms from wild-
type (WT) and rbpr2/smuz%® mytant.
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CRISPR/Cas® “FAM” site
WT-Rbpr2 ACC TTT GAC ARR CTG GAC TCT TTG AAG GAC TCA CTT GAR CAG ATT GCR TTG TCC TGC
T F D K L D 5 L K D 5 L E Q I A L S C
245 246 247 248 245 250 251 252 253 254 255 256 257 258 259 260 261 262 263

*delA
Rbpr2=12%% ACC TTT GAC RRA CTG GAC TCT TTG*AGG ACT CAC TTG AAC AGA TTG CAT TGT CCT GCA
T F D K L D 5 L R T H L N R L H c P A
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

"SYL” proposed RBP4 binding residues

WIT-Rbpr2 AAT CAG ACT GAG AGT GTG TTC ACA TAC CTT ATT CCC AGC ATC RAT ATG AGT TCA GCA
N Q T E 5 v F T Y L I P S5 I N M 5 5 A
264 265 2e6 Z2e7 268 2e€% 270 271 272 273 274 275 276 277 278 27% 280 281 282

Rbpr2®=2?% ATC AGA CTG AGA GTG TGT TCR CAT ACC TTA TTC CCA GCA TCA ATA TGA GTT CAG CAT
I R L R v c 5 H T L F P R S I Stop V Q H
264 265 266 Ze7 268 265 270 271 272 273 274 275 276 277 278 279 280 281 282

Figure S4. Functional consequences of the CRISPR/Cas9 generated rbpr2fs-muz?
mutant zebrafish line.
The 1bp deletion in this rbpr2 mutant line resulted in a frameshift, and in the downstream
disruption of the RBP4 binding residues, resulting in a pre-mature stop codon after the
proposed RBP4 functional domain in Rbpr2.
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Figure S5. Functional characterization of the rbpr2f-muz9 mytant.

(A, B) Rbpr2 mRNA expression patterns in WT-larvae (A), and rbpr2/s™miz% mutants (B)
at 3.5-days post fertilization (dpf) analyzed by whole mount In-situ Hybridization (WISH).
(C) Zebrafish Rbpr2 mRNA expression quantification by Q-RTPCR. (D) Functional
characterization of the rbpr2f-muz9 mutant by protein localization analysis in NIH3T3 cells.
Scale bar=50um. (E) [*H]JROL-RBP4 uptake assays in NIH3T3 cells expressing either
WT-Rbpr2 or rbpr2/smiz99 mutant.
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Figure S6. Manifestation of early eye phenotypes in rbpr2-RBP4s-muz9 mytants.
Compared to WT animals (A), loss of Rbpr2 in rbpr2-RBP4 mutant animals (B) manifests
in early eye phenotypes during developmental stages. Systemic phenotypes in rbpr2-
RBP4 mutant animals is attributable to general defects in retinoid metabolism during late
larval stages. (C) Retinal histology and H&E staining of retinas from 3, 4 and 5.5 dpf WT
and rbpr2-mutants. Photoreceptor outer segments (OS) appear shorter as compared to
WT retinas at similar development time-points. Retinal lamination layers in mutants, like
in WT larvae, were well preserved at the indicated time points of analysis. OS, outer
segments; IS, inner segments; ONL, outer nuclear layer; INL, inner nuclear layer; WT,

wild-type; dpf, days post fertilization.
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Figure S7. Retinal phenotypes of rbpr2/s-muz9:Tg:XOPS-GFP mutant animals at 5.5
dpf.

Compared to WT-Tg:XOPS-GFP zebrafish (A), eyes of F3 generation rbpr2®
muz99-Tg: X OPS-GFP mutant animals (B) were smaller, and showed shorter photoreceptor
layer outer segments by H&E analysis. ONL, outer nuclear layer; INL, inner nuclear layer;

GCL, ganglion cell layer; dpf, days post fertilization; RPE, retina pigmented epithelium.
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Figure S8. Quantification of photoreceptor length in rbpr2fs-muz% mutant animals.
Image J was used to quantify and measure GFP staining along the length of the
photoreceptors (from the photoreceptor synapse to the apical edge of the inner segment)
in rods (A) and cones (B) in both WT and rbrp2-mutant animals at 3 dpf and 5.5 dpf time
points. Approximately 150 cones and rods in WT and rbpr2 mutant retinas were counted
and sized.
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Figure S9. Counterstaining in transgenic rbpr2smz% mytants. (A, B) WT-Tg:XOPS-
GFP and rbpr2fsmuz99:Tq:XOPS-GFP mutant retinas that express GFP in rods only were
counter stained with R/G cone opsin antibody followed by Alexa 594. (C, D) WT Tg:TaC-
GFP and rbpr2fsmuz99:Tq:Ta.C-GFP mutant retinas that express GFP in cones only were
counter stained with 1D4 (L-cones) antibody followed by Alexa 594. Nuclei were stained
with DAPI. (A, B) scale bar=50um; (C, D) scale bar=75um. OS, outer segments; INL,
Inner nuclear layer; ONL, Outer nuclear layer; dpf, days post fertilization; 1S, Inner

segments.
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Figure S10. Downregulation of retinoid signaling regulated genes in rbpr2fs-muzo

mutant zebrafish eyes.

Retina-specific gene expression dependent on RA signaling were compared by gPCR
using equal amounts of total RNA from heads of wild-type/ control (black bars) and rbpr2
fs-muz99 mutants (grey bars) at 3.5 dpf. Rpe65 mMRNA expression values were set to 1 and
difference in gene expression between the two genotypes are shown as relative fold
change normalized to endogenous 18S RNA. *p<0.005.
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Figure S11. All-trans retinoic acid rescues the rbpr2/-muz9® mutant phenotype.

(A) Dose specific treatment with all-trans retinoic acid (atRA) rescues the rbpr2fs-muze9
mutant phenotype. Images obtained at 5-5.5 dpf. Rescue experiments of rbpr2 mutants
with either mRNA or atRA were repeated twice as outlined in methods. (B, C)
Representative images of eye sections from atRA treated rbpr2/m2%® mutants at 5.5 dpf.
RPE, retinal pigmented epithelium; OS, outer segments; INL, inner nuclear layer; ONL,

outer nuclear layer; dpf, days post fertilization.
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Figure S12. ZIRC rbpr2 mutants (rbpr2s332616) encompassing a mutation after the
proposed RBP4 binding sites in Rbpr2 do not show eye phenotypes.

A rbpr2 mutant zebrafish line (G>A mutation; rbpr2sa32616) from the Zebrafish International
Resource Center (ZIRC) which results in a premature stop codon in exon 13, was
obtained and analyzed by light microscopy, histology and immunohistochemistry at 5.5
dpf. With the exception of a curved/ bent tail, no other significant phenotype was observed
in this zebrafish rbpr2-mutant. Note: The TTG>TAG mutation in exon 13 of the Rbpr2
coding sequence occurs “after” the proposed RBP4 binding sites. Immunostaining for
cone photoreceptors (R/G opsins antibody) revealed that cones in both WT and mutants
at 5.5 dpf were similar in number and showed normal morphology. OS, outer segments;
IS, inner segments; PRL, photoreceptor cell layer; ONL, outer nuclear layer; INL, inner

nuclear layer; GCL, ganglion cell layer; WT, wild-type; dpf, days post fertilization.
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