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ABSTRACT 

Post-translational modifications (PTMs) of histone residues shape the landscape of gene 

expression by modulating the dynamic process of RNAPII transcription. The contribution of 

particular histone modifications to the definition of distinct RNAPII transcription stages remains 

poorly characterized in plants. Chromatin Immuno-precipitation combined with next-generation 

sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we 

review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic 

Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 

“readers”, “writers” and “erasers”, with a focus on the regulation of gene expression and 

biological functions in plants. The distinct functions of RNAPII transcription during the plant 

transcription cycle may in part rely on the characteristic histone PTMs profiles that distinguish 

transcription stages.    
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MAIN TEXT 

Histones: the coordinates for transcription?  

Gene expression relies on different functions of RNA Polymerase II (RNAPII) during transcription. 

The separation of these functions defines different stages of RNAPII transcription: initiation, 

elongation and termination. The question how RNAPII recognizes the right time and position to 

execute a needed function remains an exciting research opportunity. In eukaryotes, genomes 

are organized in the form of nucleosomes that comprise of two copies of histones H2A, H2B, H3 

and H4 [1]. N-terminal histone tail residues undergo extensive post-translational modifications 

(PTMs), including methylation (me), acetylation (ac) and ubiquitination (ub), which are 

associated with functional consequences on chromatin organization and gene expression 

(reviewed in [2, 3]). The establishment and maintenance of histone PTMs requires recognition 

by “reader” effector enzymes, deposition by “writer” enzymes and removal by “eraser” enzymes. 

Histone acetylation is mainly read by bromodomain (BRD) proteins, written by histone 

acetyltransferases (HATs) and erased by histone deacetylases (HDACs). Histone methylation 

is read by proteins with plant homeodomain (PHD) finger domain and ‘‘Royal Family’’ domains 

(e.g. Chromodomain and Tudor domain), written by histone methyltransferases (HMTs) and 

erased by histone demethylases (HDMs) [4, 5]. Similarly, histone ubiquitination is read by 

proteins with ubiquitin-binding domain (UBD) and modulated by histone ubiquitin ligases (ULs) 

and deubiquitinases (DUBs) [6]. Trios of “reader-writer-eraser” enzymes define the genomic 

localization of histone PTMs connected to RNAPII transcription. 

Chromatin profiling techniques such as ChIP-chip [7], ChIP-seq [8], CUT&RUN-seq and [9] and 

CUT&Tag-seq [10] (see Box 1) revealed the genomic distribution of histone PTMs and variants 

associated with different RNAPII transcription stages. However, the causality of histone PTM 

and transcriptional consequences is actively debated [11]. On the one hand, histone PTMs can 

be instructive for RNAPII transcription (reviewed in [12]). On the other hand, the act of RNAPII 

transcription can shape the chromatin landscape [13-15]. Perhaps these hypotheses can be 

unified by the idea that the interplay between chromatin state and transcription forms a feedback 

loop. Here, we focused on how histone PTMs and variants serve as coordinates during RNAPII 

to identify the current position of transcription and to execute appropriate functions. Our review 

includes a comprehensive assessment of histone PTM ChIP-seq data in wild type Arabidopsis 
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thaliana (Col-0). We provide comparable metagene profiles that visualize the interplay between 

histone PTMs and RNAPII transcription stages (Figure 1A). These ChIP-seq data reflect the 

localization of histone PTMs in the whole plant under normal growth condition, regardless of cell-, 

tissue- or condition-specific histone patterns [16-18]. This review covers recent advances in 

understanding how plant gene expression is underpinned by a histone PTM-based Genomic 

Positioning System (GPS) that guides RNAPII through transcription stages.  

Histone PTMs define transcription stages  

RNAPII transcribes the DNA sequence of genes into mRNA. Analyses of the genomic 

distribution of RNAPII reveals different stages of the transcription process, known to form the 

RNAPII transcription cycle [19] (Figure 1A). Studies of nascent RNAPII transcription in 

Arabidopsis thaliana have informed events linked to the RNAPII transcription cycle in plants [20, 

21]. RNAPII initiates transcription from transcription start sites (TSSs) in promoter regions. After 

initiation, RNAPII enters the gene bodies and elongates nascent RNA chains (early elongation). 

RNAPII usually stalls near the 5’-end of genes after initiation, a phenomenon known as promoter 

proximal RNAPII stalling. RNAPII then enters the productive elongation stage to complete 

nascent RNA production of the full transcript. When RNAPII passes poly-(A) site (PAS) 

sequences at 3’-end of genes, RNAPII stalls again to assist transcriptional termination. 

RNAPII thus performs different functions in transcription stages that are coordinated with 

different co-transcriptional molecular events (e.g. capping, splicing and poly-adenylation). These 

considerations raise the question: what molecular system informs RNAPII of the current 

transcription stage during transcriptional progression? Chromatin Immuno-precipitation followed 

by next-generation sequencing (ChIP-seq) resolved the genomic distribution profiles of many 

histone post-translational modifications (PTMs) and variants. Interestingly, the deposition of 

different histone PTMs or variants is spatially associated with different stages of transcription 

(Figure 1A). The profile of histone PTMs may thus be connected to the definition of transcription 

stages that define distinct RNAPII activities.  

Histone PTMs and transcription initiation 

Transcription initiation controls the recruitment of RNAPII to promoters, and regulates the 

polymerase flux into the gene bodies. Transcription initiation relies on the assembly of the pre-

initiation complex (PIC) including RNAPII and general transcription factors (GTFs) at promoters. 
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In yeast, PIC formation is facilitated by highly conserved general transcription factor II D (TFIID) 

and Spt-Ada-Gcn5 acetyltransferase (SAGA) complex [22]. TFIID and SAGA complexes both 

contain subunits with histone acetyltransferase (HAT) activity [23]. Consistently, histone 

acetylation represents a characteristic genomic signature of transcription initiation. In 

Arabidopsis, a pioneering ChIP-chip study established the enrichment of histone acetylation at 

histone H3 lysine 9 (H3K9ac) and lysine 27 (H3K27ac) near transcription start sites (TSSs) for 

many genes [24]. Later, an enrichment of additional histone acetylation modifications at histone 

H3 lysine 14, 18, 23, 36 and 56 (i.e. H3K14ac, H3K18ac, H3K23ac, H3K36ac and H3K56ac) 

and at histone H4 lysine 5, 8, 12, 16 and 20 (i.e. H4K5ac, H4K8ac, H4K12ac, H4K16ac and 

H4K20ac) near TSSs was determined by ChIP-seq in Arabidopsis [25-27]. In Arabidopsis, HAF1 

and HAF2 (Histone acetyltransferase of the TAFII250 Family 1 and 2), the homologues to 

metazoan TFIID largest subunit gene TAF1 (TATA-binding Protein-Associated Factors 1), 

promote H3K9ac, H3K27ac and H3K4ac in promoter regions [28]. The acetyltransferase activity 

of SAGA is derived from its HAT module, represented by the GCN5 (General Control Non-

repressed Protein 5) subunit (reviewed in [29]). Loss of function of Arabidopsis AtGCN5 reduces 

H3K9ac levels at promoter regions and results in gene repression [30-33]. Arabidopsis histone 

acetylation reader BRAT1 (Bromodomain and ATPase domain-containing protein 1) binds to 

histone H4 acetylation (H4ac) and presumably facilitates transcription initiation by modulating 

the chromatin environment in the transcriptionally silenced regions [34]. Similarly, Arabidopsis 

SWR1 (SWI2/SNF2-Related 1) complex subunit MBD9 (Methyl CpG-BINDING DOMAIN 9) and 

NPX1 (Nuclear Protein X1) read histone H3 acetylation (H3ac) and contribute to histone variant 

H2A.Z deposition which further recruits DNA demethylation machinery to activate transcription 

[35]. These results collectively underscore the potential roles of histone acetylation in regulating 

transcription initiation through events facilitating PIC assembly in plants.  

Tri-methylation on histone H3 lysine 4 (H3K4me3) characterizes a well-studied chromatin 

modification associated with transcription initiation (Figure 1A). In Arabidopsis, H3K4me3 

density across transcription units peaks at 5’-end of genes, and high levels of H3K4me3 are 

often correlated with gene expression [36, 37]. Intriguingly, Arabidopsis H3K4me3 readers EBS 

(EARLY BOLTING IN SHORT DAY) and SHL (SHORT LIFE) can both read active H3K4me3 

and repressive tri-methylation on histone H3 lysine 27 (H3K27me3) [38, 39]; and the H3K27me3 

reader PRC1 (Polycomb Repressive Complex 1) is also shown to have H3K4me3 binding 
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property. The dual specificity may facilitate chromatin state switching to control transcription 

activity [40]. In metazoans, H3K4me3 facilitates the formation of PICs through the interaction 

with the TFIID subunit TAF3 [41]. In Arabidopsis, PIC formation correlates with H3K4me3, yet a 

direct role in PIC recruitment remains unclear. Deposition of H3K4me3 requires the function of 

ATX1 (ARABIDOPSIS TRITHORAX 1)/COMPASS-like complex in Arabidopsis. While PIC 

formation is dependent on the ATX1/COMPASS-like complex, it is independent of the H3K4me3 

level [42-45]. Interestingly, a catalytically inactive ATX1 mutant that distinguishes the effect of 

the ATX1/COMPASS-like complex and H3K4me3 reveals defects in RNAPII elongation rather 

than initiation, arguing for a role of H3K4me3 in transcription elongation instead of initiation [42]. 

These results support an indirect molecular connection between transcription initiation and 

H3K4me3 in plants. Perhaps this connection depends on the genomic context, since the 

SWI/SNF (Switch/Sucrose Non-Fermentable) chromatin remodeler complex controls the 

activation and repression of sense gene transcription and anti-sense non-coding transcription 

through PIC formation correlating with H3K4me3 levels at both gene ends [46]. In summary, 

H3K4me3 may promote PIC formation and RNAPII initiation in plants, yet the precise molecular 

mechanisms remain to be elucidated. 

Histone PTMs and early transcriptional elongation 

We sub-divide transcription elongation by RNAPII into early elongation and productive 

elongation [47]. Promoters coincide with nucleosome-depleted region (NDR) with resulting low 

levels of histone PTMs. In contrast, the first (i.e. +1) nucleosomes fall within the early elongation 

zone during RNAPII transcription. These nucleosomes dominate the genomic distribution of 

histone PTMs. In metazoans, early elongation refers the stage of RNAPII between transcription 

initiation and productive elongation linked to well-defined RNAPII promoter proximal pausing 

sites regulated by pausing factors such as negative elongation factor NELF (Negative Elongation 

Factor) [48]. Even though NELF is conspicuously absent in plants, RNAPII tends to stall at the 

position of the first nucleosome in gene bodies [20]. In addition, the distribution of RNAPII in 

plant promoter proximal regions is wider compared to metazoans, perhaps indicating an 

extension of the RNAPII early elongation stage in plants compared to metazoans. Di-methylation 

on histone H3 lysine 4 (H3K4me2) and tri-methylation on histone H3 lysine 36 (H3K36me3) peak 

slightly downstream of histone PTMs for transcription initiation [37, 49-52], thus could be 

associated with RNAPII early elongation and RNAPII stalling (Figure 1A)[20]. However, the 
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mechanistic connections between chromatin during early RNAPII elongation and RNAPII stalling 

are yet to be firmly established.   

It is plausible to imagine a cross talk between transcription initiation and productive elongation 

that occurs during early elongation to facilitate progression further into the gene. In Arabidopsis, 

increased H3K4me2 levels by mutations in the H3K4me2/me3 demethylase FLD (FLOWERING 

LOCUS D) are associated with elevated H3K4me3 and H3ac levels near the 5’-end of the genes, 

and increased H3K36me3 level over the gene bodies [15]. In addition, reduced H3K4me2/me3 

levels are associated with decreased levels of H3ac, H3K36me3 and a drop of RNAPII 

occupancy near promoters in Arabidopsis [53, 54]. Moreover, repression of plant transposable 

elements (TE) requires coordinated modulation of histone acetylation (i.e. H3ac and H4ac) and 

histone methylation (e.g. H3K4me2 and H3K4me3) [55]. However, H3K4me2 in rice and 

Arabidopsis may exhibit negative correlations with transcription activity [56]. This phenomenon 

could be attributed to the dynamic removal of H3K4me3 that may recruit H3K4me2 readers to 

facilitate repression. Interestingly, characterizations of histone PTMs during circadian 

oscillations revealed a sequential enrichment of H3ac, H3K4me3 and H3K4me2 [57]. These 

data may reflect an orchestrated progression through RNAPII transcription stages from initiation 

to early elongation. In conclusion, H3K4me2 during early RNAPII elongation might represent a 

molecular hub that coordinates the transition from transcription initiation to elongation through 

the interaction with histone acetylation. 

During early transcription elongation, H3K36me3 often correlates with H3K4me2 at positions 

just downstream of H3K4me3 (Figure 1). Roles of H3K4me3 and H3K36me3 in transcription 

initiation and elongation characterize these histone PTMs as excellent predictors for gene 

expression in plants [58]. In Arabidopsis, H3K36me3 acts in concert with other histone PTMs for 

active transcription (e.g. H3K4me3 and histone acetylation) to promote gene expression [59-62]. 

Moreover, H3K36me3 is highly enriched at temperature-regulated alternatively spliced genes, 

and a reduction of H3K36me3 affects alternative splicing outcomes in Arabidopsis [63]. Likewise, 

retained introns in the Arabidopsis spliceosome mutant brra2 often exhibit low H3K36me3 

profiles [64]. These data link chromatin features during RNAPII transcription to pre-mRNA 

processing. Arabidopsis MRG (MORF Related Gene) proteins read H3K36me3 as well as 

H3K4me3 and mediate transcription activation by directing H4ac deposition near 5’-end of target 
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genes [65, 66]. The genomic distributions of H3K36ac and H3K36me3 overlap downstream of 

TSSs, albeit with antagonizing effects even though both are associated with active transcription 

[25]. Combinatorial effects on gene expression of histone PTMs of the same residue as 

suggested for H3K36 may increase the resolution to differentiate stages of RNAPII transcription. 

In summary, the H3K36me3 peak during early RNAPII elongation is linked to chromatin features 

ahead of the peak, and to pre-mRNA processing after the peak, supporting a role in bridging 

RNAPII initiation and elongation.  

Histone PTMs/variants and productive transcriptional elongation 

Eukaryotic transcription elongation, processivity and co-transcriptional histone PTMs are 

regulated by transcription elongation factors such as pTEF-b (positive transcription elongation 

factor b), PAF1-C (polymerase-associated factor 1 complex) and SPT4/5 (suppressor of Ty 4/5) 

[67-71]. In Arabidopsis, both PAF1-C and pTEF-b are part of RNAPII elongation complex [72]. 

The Arabidopsis pTEF-b subunit CDKC;2 regulates the global level elongating RNAPII (RNAPII-

Ser2 Phosphorylation) transcription [73]. In addition, Arabidopsis SPT5 can be phosphorylated 

by CDKC;2, interact with PAF1C subunit VIP5 (VERNALIZATION INDEPENDENCE 5) and 

further influence H3K4me3 deposition on target loci [74]. During the productive transcriptional 

elongation stage, RNAPII translocates along the DNA template to synthesize a growing nascent 

RNA chain. In eukaryotes, the activity of elongating RNAPII is modulated by various elongation 

factors, including histone modifiers and splicing regulators [75]. RNAPII encounters few 

nucleosome barriers during transcription initiation and early elongation, while many 

nucleosomes need to be navigated during the productive elongation stage. The chromatin 

landscape shaped by histone PTMs on these intragenic nucleosomes thus provides the 

opportunity to regulate RNAPII elongation. In plants, a variety of histone PTMs localize to this 

stage and display nuanced distribution patterns. Histone PTMs that peaked at early elongation 

stage (i.e. H3K4me2 and H3K36me3) decline gradually towards 3’-end of genes. Mono-

ubiquitination of histone H2B (H2Bub) and mono-methylation on histone H3 lysine 4 (H3K4me1) 

prominently cover most of the gene body without a clear peak. Di-methylation on histone H3 

lysine 36 (H3K36me2) is gradually enriched towards the 3’-end of genes where it peaks, 

representing a histone PTM characterizing late stages of productive transcriptional elongation in 

plants (Figure 1A).   
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In Arabidopsis, H2Bub is deposited by E3 ubiquitin ligases for example HUB1 and HUB2 

(HISTONE MONO-UBIQUITINATION 1 AND 2) [76]. Chromatin profiling determined a H2Bub 

profile covering gene bodies [52, 77]. In Arabidopsis, HUB1 genetically interacts with 

transcription elongation factor ELONGATOR complex and the FACT (Facilitates Chromatin 

Transcription) complex with synergistic effects on plant development [77, 78]. In addition, HUB2-

mediated H2Bub functions with histone methyl-transferase SDG8 (SET DOMAIN GROUP 8)-

mediated H3K36me3 to reinforce transcription activity at selected loci [79]. Furthermore, H2Bub 

is associated with rapid gene induction during environmental changes [80]. In rice, defects in 

H2Bub are associated with reduced global H3K4me2, suggesting a potential role of H2Bub 

promoting other histone elongation PTMs [81]. H2Bub and H3K4me3 both correlate with active 

transcription. In yeast and human cells, the deposition of H3K4me3 is mediated by H2Bub, 

suggesting a crosstalk between histone PTMs associated with elongation to this controlling 

transcription initiation [82, 83]. However, an equivalent mechanistic crosstalk awaits discovery 

in plants. In Arabidopsis, a reduction of H3K4me3 level has been observed at target genes in 

H2Bub defective mutants, but not globally [77, 84, 85]. Recent advances suggested that the 

establishment of H3K4me3 is largely independent of H2Bub [80, 86], arguing against the histone 

crosstalk model in plants. H2Bub is removed by the histone deubiquitination module (DUBm), 

which is part of the SAGA complex in yeast, but may be uncoupled from SAGA in plants [49, 87]. 

Interestingly, plant DUBm co-purifies with RNAPII subunits, mediator, histone chaperons and 

RNA processing factors, while HUB1 also co-purifies with transcription elongation factors. These 

data suggest a strong association of H2Bub biology and productive transcriptional elongation in 

plants [72, 87].  

H3K4me1 shows a similar distribution profile over gene bodies to H2Bub, but with a trend to 

increase towards 3’-gene ends (Figure 1A). Interestingly, H3K4me1 may negatively correlate 

with initiation, potentially due to the dynamic conversion to the higher-order methylation states 

H3K4me2/me3 [37]. In gene bodies, H3K4me1 is enriched at cryptic intragenic TSSs that are 

repressed by the activity of the histone chaperone FACT complex in Arabidopsis [88]. The 

repressive effect of H3K4me1 on intragenic initiation appears to be distinct from H3K36 

methylation, although SDG8, a H3K36 methyltransferase, has been proposed to read H3K4me1 

as well as deposits H3K36me2/me3 [89]. In metazoans, H3K4me1 is classically associated with 

enhancers, whereas in plants, H3K4me1 is largely associated with RNAPII elongation and 
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antagonizes the repressing effect of di-methylation on histone H3 lysine 9 (H3K9me2) [90]. 

Intriguingly, the individual methylation states of H3K4 are associated with transcriptional initiation 

(H3K4me3), early elongation (H3K4me2) and productive elongation (H3K4me1) in Arabidopsis. 

It is tempting to speculate that the dynamics of H3K4 methylation-state conversion could guide 

the progression of plant RNAPII transcription.    

H3K36me2 represents an additional key histone PTM for productive transcriptional elongation 

[88]. In Arabidopsis, the distribution of H3K36me2 spreads over gene bodies and peaks towards 

the 3’-end of genes [25, 91]. The distribution of H3K36me2 shifts further towards 3’-ends of 

genes in RNAPII elongation factor mutants [92]. Although direct evidence for a role of H3K36me2 

in promoting RNAPII elongation is lacking, there is evidence to implicate H3K36 methylation in 

alternative splicing. In rice, the distributions of H3K36me2 or H3K36me3 correlate with 

differences in intron retention [93]. In addition, H3K36me2 showed a possible interaction with 

mRNA m6A modification in Arabidopsis [94]. Collectively, these studies support the co-

transcriptional roles of H3K36me2 in modulating transcriptional elongation and RNA processing 

events such as splicing and RNA modification in Arabidopsis. 

The histone variant H2A.Z is linked to transcriptional regulation in plants. On the one hand, 

H2A.Z is enriched near TSSs and anti-correlates with repressive DNA methylation [95]. On the 

other hand, H2A.Z is also enriched over gene bodies of lowly expressed genes [96]. H2A.Z may 

have the ability to activate or to repress transcription, depending on its genomic deposition. 

Curiously, H2A.Z can also regulate transcription by balancing the gene accessibility of +1 and -

1 nucleosomes in Arabidopsis [97]. H2A and H2A.Z carry PTMs, for example ubiquitination. 

H2Aub co-localizes with repressive chromatin marks (e.g. H3K27me3), showing a profile 

peaking towards 5’-end of repressed genes [98] (Figure 1). In Arabidopsis, Polycomb 

Repressive Complex 1 (PRC1) and PRC2 mediates gene repression. Although the sequence of 

PRC1 and PRC2 recruitment during gene repression is actively debated, H2A.Zub deposition 

by PRC1 shows a strong correlation with PRC2-independent gene repression genome-wide in 

Arabidopsis [99, 100]. Interestingly, the Arabidopsis histone H3 reader YAF9 (YEAST ALL1-

FUSED GENE FROM CHROMOSOME 9) proteins mediate the acetylation of H2A.Z and H4 at 

target loci potentially through the interaction with histone acetyltransferase HAM1 in Arabidopsis 

(HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1) [101]. Collectively, the diversity 
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of PTMs on H2A.Z may help to explain the its dual roles in transcription regulation suggested for 

bulk H2A.Z. In conclusion, chromatin-based signatures linked to RNAPII elongation interact with 

pre-mRNA processing and transcriptional initiation, highlighting important aspects of plant gene 

expression.  

Genomic information for transcriptional termination 

The final stage of the transcription cycle represents transcriptional termination. RNAPII 

transcribes through the poly (A) sites (PAS) at 3’-end of genes. Here, RNAPII decelerates and 

stalls downstream of PASs, presumably to facilitate nascent RNA cleavage and poly-adenylation 

by CF/CPFs (Cleavage/Cleavage and Polyadenylation Factors) [102-104]. RNAPII elongates 

beyond PASs until the process of transcriptional termination releases RNAPII from the DNA 

template. RNAPII dissociation from the DNA template is presumably triggered when 5’-3’ 

exonucleases acting on the non-capped 5’-end reach RNAPII [20, 21, 105]. 

In plants, H3K36me2 marks late transcriptional elongation and peaks upstream of PASs. This 

profile may indicate a role for H3K36me2 in transcriptional termination. ChIP-seq analyses of 

the Arabidopsis histone H3 variant H3.3 revealed a positive correlation with transcription level 

[106-108]. Moreover, H3.3 density is low in gene bodies and enriched at gene boundaries, in 

promoter regions and close to PASs in Arabidopsis. The spatial correlation between PASs and 

H3.3 levels would be consistent with a role of H3.3 in transcriptional termination. Interestingly, 

the histone H3 variant H3.1, which differs from H3.3 by only 4 amino acid residues, preferentially 

marks heterochromatin represented by H3K9me2 and H3K27me3 [109, 110]. In conclusion, 

meta-genomic associations spatially connect chromatin marks to transcriptional termination, but 

experimental evidence testing these correlations are currently missing.  

Transcriptional termination involves RNAPII stalling near PAS of genes [20, 21]. In mammals, 

PAS-associated RNAPII pausing can be achieved through local heterochromatin formation 

marked by H3K9me2 and the formation of R-loops [111]. R-loops are chromatin structures 

formed by DNA:RNA hybrids, which often correlate with RNAPII pausing during transcriptional 

termination in mammals [112]. Interestingly, another non-canonical DNA secondary structure G-

quadruplex (G4) may interact with R-loops and facilitate transcriptional termination in human 

cells [113, 114]. However, in plants, genome-wide mapping of R-loops revealed a strong 

correlation with repressive histone PTMs (e.g. H3K9me2), whereas R-loop levels are low in 
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transcriptional termination regions, suggesting distinct regulatory mechanisms of R-loops in 

transcriptional termination in plants [115]. Curiously, Arabidopsis anti-sense R-loops and maize 

anti-sense G4s localize to 5’-UTR of genes [115, 116], perhaps indicating a role in transcriptional 

initiation in sense direction or transcriptional termination of anti-sense RNAPII transcription in 

plants. Arabidopsis BORDER proteins contribute to transcriptional termination, however the links 

to chromatin states remain elusive [117]. In summary, while transcription initiation and 

termination share key genomics features of RNAPII transcription, such as NDRs and RNAPII-

stalling, our understanding of chromatin-based mechanisms affecting initiation greatly exceed 

those connected to termination. Whether this represents an opportunity for discovery, or whether 

RNAPII termination may rely less on chromatin-based signals awaits to be resolved in future 

studies.  

Mis-specification of the PTM-based GPS. 

Genome-wide analyses of histone PTMs reveal characteristic patterns indicative of histone-

based regulatory mechanisms in plants. The integration of these epigenomic data yielded a 

database of histone states during gene expression for Arabidopsis, rice and maize [118]. The 

access for scientists to genome-wide experiments interrogating chromatin structures is 

improving through such databases (Box 1). The reproducible patterns of histone modifications 

over transcription units in various tissues raises the question of how they assist RNAPII 

transcription and gene expression [32]. Moreover, it is possible to identity genes deviating from 

this consensus pattern, perhaps highlighting gene regulation through mis-specification of the 

PTM GPS.  

Chromatin-based effects during transcription elongation ensure the fidelity of gene expression 

[52, 72, 119]. In Arabidopsis, the H3K4me1, and H3K36me2 PTMs associate with productive 

elongation of transcription [52]. These two features of transcription elongation were recently 

associated with chromatin-based “repressive transcription” [47]. The qua1-1 T-DNA allele 

represents an insertion upstream of the QUASIMODO1 (QUA1) promoter. In this allele, RNAPII 

elongation over the QUA1 gene promoter results in a recessive loss-of-function phenotype. 

Transcription units within the T-DNA extend together with elongation PTMs into the genome and 

interferes with the consensus PTM profile at the downstream QUA1 promoter. The QUA1 

promoter DNA sequence displays elevated elongation (H3K36me2) signatures, and consistently 
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reduced initiation and early elongation-associated histone PTMs H3K4me3 and H3K36me3. The 

underlying molecular mechanism is consistent with “transcriptional interference”, where the act 

of RNAPII transcription changes the chromatin state at gene promoters to repress functional 

transcriptional initiation (Figure 1B) [120]. In Arabidopsis, Genome-wide data support the idea 

that H3K36me2, when localized to promoters, correlates with negative gene expression.  

Perhaps through a similar mechanism to transcription repression associated with enrichment of 

H3K4me1 at human promoters [121, 122]. It will be instrumental to clarify the consequences and 

mechanisms that trigger mis-enrichment of elongation marks such as H3K36me2 and H3K4me1 

at TSSs. The FACT complex, a known facilitator of chromatin-based transcriptional elongation 

[123], is required for transcriptional interference in qua1-1, as the mutant phenotype was partially 

restored in mutants of the FACT components SSRP1 and SPT16. Thus, in Arabidopsis, FACT 

can both facilitate RNAPII elongation by recycling nucleosomes and repress transcription 

initiation associated with H3K4 methylation dynamics [88]. More generally, FACT restricts the 

usage of TSSs located in intragenic positions in yeast, human and plants [88, 124-126]. In plants, 

the intragenic TSSs repressed by FACT displayed elevated H3K4me1, but the role of H3K4me1 

and its connection to the FACT complex in transcriptional repression in plants awaits clarification. 

It appears that H3K4me1 role in transcription elongation is of interest to understand transcription 

elongation in plants. The H3K4 specific methyltransferase FAD family of FLD; LDL1,LDL2 and 

LDL3 (Table 1) appear to be important for erasing H3K4 methylation at highly regulated genes 

involved in flowering time and root elongation [127]. LDL2, one of the FAD family H3K4 

methyltransferase is important for the maintenance of transcription-associated H3K4me1 in 

gene bodies and prevents deposition of the silencing H3K9me2 modification [90]. Interestingly, 

the LDL1 histone demethylase forms a complex with the deacetylation factor HDA6 (Table1) to 

repress transcription [128]. Characterizations of the chromatin-based gene repression through 

the act of RNAPII transcription in the qua1-1 mutant provided important first insights into the 

functional significance of histone PTM mis-specification of across gene bodies. The identification 

and characterization of additional examples where shifted histone GPS signals mediate 

transcriptional interference represent an exciting future research area. 
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Functional implications of plant-specific co-transcriptional chromatin 

profiles. 

Plants and metazoans display an overall similar profile of histone PTMs across transcription 

units. However, some histone PTMs adopt deviant roles in the plant kingdom. In budding yeast, 

drosophila and human cells, H3K36me3 localizes to the 3’-end of gene bodies of expressed 

genes, and H3K36me2 to the 5’ region [7, 129-132]. The marks are deposited at chromatin 

during RNAPII transcription. In yeast, interactions of the RNAPII complex, histone chaperones, 

such as Spt6p FACT, and subunits of the PAF-I complex can maintain the characteristic pattern 

of H3K36me3/me2 during transcription. Depletion of the PAF-I complex shifted H3K36me3 

towards the 5’-end of yeast genes [133]. In contrast, H3K36me3 localizes to the early 

transcriptional elongation zone in rice and Arabidopsis, while H3K36me2 peaks at the 3’-end of 

genes [25, 134-136]. These H3K36me2/me3 profiles thus characterize an intriguing difference 

between plants and metazoans, with implications for the RNAPII GPS, whereby plants 

progressively erase methyl groups from H3K36me3 to H3K36me1 during RNAPII transcription 

elongation (Box 2). The functional implications are presently unclear, yet it may indicate 

evolutionary adjustments of the chromatin-based GPS for RNAPII during the plant lineage. In 

mammals, H3K36m3 represses cryptic initiation through recruitment of histone deacetylases 

during elongation, whereas the repression of intragenic TSSs in Arabidopsis is linked to 

H3K4me1 [137]. In Arabidopsis, H3K36 methylation may repress natural antisense transcripts 

(NATs) at a subset of transcriptionally active genes [50]. In human, H3K36me3 mis-localization 

to gene promoters during RNAPII elongation of non-coding antisense transcription represses 

transcription initiation of the sense mRNA [138]. Finally, the role of the H3K36 methyltransferase 

SDG8 in splicing and capping of pre-mRNAs appears shared with the budding yeast homolog 

Set2p [139, 140]. However, several other transcription-associated chromatin PTMs appear 

under-studied in plants, for instance H4K20me3 is widely studied in animals and represents a 

heterochromatin-associated histone modification, whereas it would associated with transcription 

activation in Arabidopsis. [52, 141] It remains unclear which factors are involved in deposition, 

reading and erasing of the modification. Extending analyses to poorly explored PTMs in plants 

could improve our understanding of how the specifications of the chromatin-based RNAPII GPS 

in plants offer advantages, perhaps linked to a sessile life cycle. 
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Histone-based GPS service guides plant development and environmental 

responses 

The chromatin states are dynamically regulated by the trios of histone “reader-writer-eraser” 

enzymes. Mutants defective in a particular histone modifying enzyme often profoundly affect 

gene expression and are associated with defects in plant growth, development and 

environmental response. We summarize the recent advances in understanding how histone 

PTM enzymes regulate biological processes in plants (Table 1 and Figure 2).   

In plants, H2Aub is deposited by the “writer” enzyme ubiquitin E3 ligase (e.g. RING1A/RING1B 

and BMI1A/BMI1B) [142-145] and removed by “eraser” deubiquitinases (DUBs) (e.g. 

UBP12/UBP13) [146]. Writing and erasing H2Bub requires equivalent enzymatic activities. The 

E3 ubiquitin ligases HUB1/HUB2 and E2 ubiquitin-conjugating (UBC) enzymes (UBC1/UBC2) 

are involved in H2Bub deposition on target genes that control plant development and 

environmental responses [77, 81, 84, 147-149]. In plants, removal of H2Bub requires DUB 

activity for example from the DUB module (DUBm) of SAGA complex [49, 87] or other histone 

deubiquitinases [150, 151].  

In Arabidopsis, methylation on histone lysine residues (i.e. H3K4 and H3K36) are added by the 

“writer” enzymes, SDG (SET Domain Group) proteins [152]. The histone methyltransferases 

(HMTs) SDG4 [153, 154], SDG8 [155, 156], SDG25 [157-162] and SDG26 [156, 159] can 

methylate both H3K4 and H3K36. SDG2 [57, 158, 163-165], SDG27 [42, 166, 167] and SDG30 

[167] are specific writers for H3K4 methylation. SDG14, SDG16 and SDG19 represent additional 

putative HMTs for H3K4 methylation [168]. Arabidopsis histone lysine methylation is largely 

erased by enzymes harboring JmjC domains [169]. For example, JMJ14 [164, 170, 171], JMJ15 

[172, 173], JMJ16 [174], JMJ17 [175] and JMJ18 [176] are responsible for removing H3K4 

methylation states, while JMJ30 is involved in H3K36 demethylation [177, 178]. Additionally, 

H3K4 methylation can also be removed by cofactor FAD-dependent lysine-specific 

demethylases including FLD [179, 180] and LDL1/2/3 (LYSINE-SPECIFIC DEMETHYLASE 1-

LIKE HISTONE DEMETHYLASES 1/2/3) [127, 128, 181, 182].  

The dynamics of histone acetylation is maintained by histone acetyltransferases (HATs) and 

histone deacetylases (HDACs). Arabidopsis HATs classify into four families: the GNAT (GCN5-
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RELATED ACETYL TRANSFERASE) family, the MYST (MOZ-YBF2/SAS3-SAS2/TIP60) family, 

the CREB-binding protein (CBP) family and the TAFII250 family [183, 184]. The GNAT family 

includes H3K14ac-spcific HAT GCN5/HAG1 [30, 33, 185-187], H4K12ac-specific HAT HAG2 

(HISTONE ACETYLTRANSFERASE OF THE GNAT FAMILY 2) [188] and HAG3 [189-192]. 

Arabidopsis HAM1 and HAM2 (HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1 

and 2) of the MYST family catalyze H4K5ac [188, 193]. The CPB family HATs, for example HAC 

(HISTONE ACETYLTRANSFERASE OF THE CBP FAMILY) 1, 2, 4, 5 and 12 are involved in 

general histone H3 and H4 acetylation [194-198]. The TAFII250 family includes HAF1 

(HISTONE ACETYLTRANSFERASE OF THE TAFII250 FAMILY 1) and HAF2, which are the 

homologues to TAF1, the largest subunit of transcription initiation factor TFIID in metazoans 

[195, 199-201]. Arabidopsis HDACs are largely from Reduced Potassium Dependency 3 

(RPD3)/Histone Deacetylase 1 (HDA1) family, that can be further divided into Class I and Class 

II [184]. The RPD3/HDA1 family Class I HATs include HDA6 [128, 202-205], HDA7 [206], HDA9 

[207-211] and HDA19 [204, 212-217]. Class II contains HDA5 [218], HDA14 [219], HDA15 [212, 

220-223] and HDA18 [200, 224]. Interestingly, Class I and Class II enzymes can have opposite 

roles in regulating particular plant biological functions [225, 226], suggesting antagonistic 

regulation by the same type of histone modifying enzymes. Another HDAC family in plant is the 

Silent Information Regulator 2 (SIR2) family including SRT1 and SRT2 (SIRTUIN 1 and 2) [227-

229]. Additionally, the Histone Deacetylase 2 (HD2) family contains the plant-specific histone 

deacetylases HD2A, HD2B, HD2C and HD2D, which are also involved in various plant 

development processes [230-232] and environmental response [233-235].  

Histone readers also contribute to the regulatory functions of histone PTMs. For example, 

Arabidopsis H3K4me3 reader EBS and SHL can read both H3K4me3 and H3K27me3 [38, 39]. 

The H3K36me3 reader MRG1 and MRG2 (MORF RELATED GENE 1 and 2) read H3K36me3 

and interact with histone acetyltransferases (HATs) for the deposition of histone H4 acetylation 

(H4ac) [65, 66]. Histone acetylation readers MBD9 and NPX1 mediate the deposition of histone 

variant H2A.Z and further lead to DNA demethylation to activate gene transcription [35]. Thus, 

histone readers and effectors not only recognize particular histone PTMs, but also mediate the 

downstream regulation and contribute to the crosstalk between different histone PTMs. Trios of 

“reader-writer-eraser” enzymes collectively regulate gene expression through the dynamics of 

histone PTMs/variants. In general, loss-of-function mutant of a particular “writer”, “eraser” or 
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“reader” enzyme will directly or indirectly affect the local or global histone PTM/variant levels, 

which may further impairs the RNAPII functions associated with transcription stages, reflected 

by changes of RNAPII occupancy or expression level of target genes. Even though the chromatin 

state profiles in many of the mutants listed in Table 1 is incomplete, it may be interesting to 

interpret the resulting phenotypic defects through the GPS model presented in this review. This 

view may reveal defects resulting in the mis-specification of transcription stages and associated 

defects in pre-mRNA processing. Future progress in this area would help to appreciate the 

biological significance of diverse spatially resolved effects chromatin modifications may have on 

gene isoform expression.  

 

Conclusion Remarks and Future Directions 

The roles of histone PTMs and associated factors in plant RNAPII transcription cycles remain 

largely uncharacterized. In this review, we summarized the current information on how histone 

PTMs appear to serve as coordinates to guide RNAPII transcription. Thus, histone PTMs can 

regulate progression through plant RNAPII transcription cycles. The act of transcription activity 

deposits histone PTMs throughout the cycle. It remains unclear for most histone modification 

and histone variants whether they affect transcription, are the result of transcription, or form a 

positive feedback loop. The number of possible combinations of histone PTMs and variants may 

build a complex chromatin-based regulation system for RNAPII transcription. Considering that 

some histone PTMs differ in their basic genomic distribution and functions from metazoans to 

plants, the epigenetic regulation of RNAPII transcription is largely unclear. The histone-based 

GPS associates the common histone PTM profiles at most expressed genes and aids the 

discovery of potentially regulatory “repressive transcription” events through dynamic mis-

specification of histone PTMs. The combination of histone ChIP-seq experiments and emerging 

transcriptomics methods promises to stimulate future research to understand chromatin-based 

effects exerted through the act of RNAPII transcription in plant genomes (see Outstanding 

Questions).    
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FIGURE LEGENDS 

Figure 1 Key Figure. Histone-based genomic positioning system (GPS) for RNAPII 

transcription.  

(A). (Top) A combined metagene plot illustrating the profiles of histone post-translational 

modifications (PTMs) during RNAPII transcription of Arabidopsis thaliana genes. The metagene 

plots are derived from reanalysis of published ChIP-seq data (Summarized in Table S1).The Y-

axis represents the normalized ChIP-seq signal of histone PTMs. The raw values to plot these 

data are provided in (Table S2). The X-axis indicates the relative position across a gene (grey), 

from transcription start site (TSS) to polyadenylation site (PAS) with flanking regions. Colored 

curves represent the genomic distributions of indicated histone PTMs. mono-, di- and tri-

methylation (me1/me2/me3) at histone H3 residues lysine 4 (K4) and lysine 36 (K36); 

ubiquitination of H2A and H2B (H2Aub and H2Bub); grouped profile of all lysine acetylation 

modifications on H3 and H4 (H3ac/H4ac). (Bottom) Schematic illustration of plant transcription 

cycle by RNAPII includes transcriptional initiation (light red), early elongation (light green), 

productive elongation (light blue) and termination (light purple) across a gene. PIC: preinitiation 

complex; GTFs: general transcription factors; P-TEFb: positive transcription elongation factor b; 

PAF1-C: polymerase-associated factor 1 complex; FACT: facilitates chromatin transcription; 

SPT4/5: suppressor of Ty 4/5; CFs/CPFs: cleavage factors/cleavage and poly-adenylation 

factors; XRNs: exoribonuclease [72, 102-104]. All histone PTMs are positively correlated with 

RNAPII transcription, yet their localization to different positions has functional implications for 

RNAPII.  

(B). Mis-specification of histone-PTM-based GPS indicates potential genomic transcription 

conflicts. In plant genome, most of transcription events are restrained within their own genomic 

territories. In the case of tandem transcription interference (TI), where upstream transcription 

represses the transcription initiation from downstream promoter through the function of FACT 

complex, thus setting transcription elongation associated histone PTMs in transcription initiation 

region. 

Figure 2 Histone-based GPS guides gene expression in various biological process in 

plants.  

A histone octamer consists of 2 copies of histone H2A (green cycles), H2B (yellow circles), H3 
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(blue circles) and H4 (purple circles), wrapped by DNA (black curve). Lysine residues (grey 

circles, numbers denote the residue positions from C-terminals) on histone tails are subject to 

intensive post-translational modifications (PTMs), for example ubiquitination (ub, green 

rectangles), methylation (me, blue rectangles) and acetylation (ac, red rectangles). Histone 

residues can be mono-, di- and tri-methylated (double and triple blue rectangles). Histone PTMs 

regulate gene expression that control various biological processes in plants, including plant 

growth, germination, flowering, defense, environmental responses and circadian rhythm. 

Figure Box 1 

In chromatin immunoprecipitation (ChIP, left), plant tissues are first cross-linked to stabilize the 

histone-DNA interaction. Then, the cross-linked chromatin is fragmented by sonication or MNase 

digestion. Specific antibodies are used to target certain histone PTM or variants (red triangle) 

and for further precipitation. DNA that binds to histones is released by reverse cross-linking. 

Purified DNA can be used in microarray (ChIP-chip) or library construction and followed by next-

generation sequencing (NGS, ChIP-seq). When using CUT&RUN technology (right), antibodies 

control the digestion in situ by linking to protein A-MNase fusion. Chromatin fragments generated 

after MNase digestion can be used for further DNA purification. Purified DNA can be used for 

library construction and followed by next-generation sequencing (NGS, CUT&RUN-seq). 

CUT&tag represents an updated version of CUT&RUN. Instead of using protein A-MNase fusion, 

CUT&tag uses protein A-Transposase Tn5 fusion which mediates the tagmentation of NGS 

sequencing adapters to the targeted loci. Purified DNA can be PCR-amplified and directly used 

in NGS sequencing.    
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TABLE 

Table 1 Summary of Histone PTM readers/writers/erasers and related 

biological functions in Arabidopsis.   

Histone 
PTMs 

Role Enzyme (Gene locus) Functions 

H2Aub 

Writer 

RING1A (AT5G44280) 
RING1B (AT1G03770) 

Part of PRC1, double mutant exhibits globally 
reduced H2AUb, curly leaves and late flowering 
[144, 145]. 

BMI1A (AT2G30580) 

BMI1B (AT1G06770) 

Part of PRC1, mutants regulates and drought 
responses Part of PRC1, mutants exhibits globally 
reduced H2AUb, regulates cotyledon and root 
development [143] and drought responses [142].  

Eraser 
UBP12 (AT5G06600) 
UBP13 (AT3G11910) 

Interact with polycomb protein LHP1, prevent 
autonomous endosperm development during seed 
development [146]. 

H2Bub 

Reader/ 
Effector 

DET1 (AT4G10180) 

Mutant exhibits reduced bulk H2Aub, DET1 
regulates the light-dependent degradation of DUBm 
[49], represses light-induced seed germination [236] 
and light induced photomorphogenesis [237]. 

Writer 
HUB1 (AT2G44950) 

HUB2 (AT1G55250) 

Mutants exhibit reduced seed dormancy [147], early 
flowering Mutants exhibit reduced seed dormancy 
[147], early flowering [84], changes in plant defense 
[149] and circadian clock gene expression , 
changes in plant defense [149] and circadian clock 
gene expression [77]. 

Eraser 

SGF11 (AT5G58575) 
Part of DUBm of Arabidopsis SAGA-like complex 
[87]. 

UBP22 (AT5G10790) 
Part of DUBm of Arabidopsis SAGA-like complex, 
function as a major H2Bub deubiquitinase [49, 87]. 

ENY2 (AT3G27100) 
Part of DUBm of Arabidopsis SAGA-like complex 
[87]. 

UBP26 (AT3G49600) 
Mutant exhibits early flowing phenotype and high 
rate of seed abortion [150]. 

OTLD1 (AT2G27350) 
Erases H2Bub, work with KDM1C to repress gene 
expression [151].  

H3K4me1 Reader/ EBS (AT4G22140) 
Reads H3K4me3 and H3K27me3, mutant exhibits 
early flowering phenotype [38].  
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H3K4me2 

H3K4me3 

Effector 

SHL (AT4G39100) 
Reads H3K4me3 and H3K27me3, mutant exhibits 
early flowering phenotype [39].  

Writer 

SDG2/ATXR3 (AT4G15180) 

Writes H3K4me3, mutant exhibits global 
development defects, early flowering phenotype 
[158, 163], changes in circadian clock gene 
expression [57, 164] and defects in gametogenesis 
[165]. 

SDG8/ASHH2 (AT1G77300) 
Writes H3K4me3 (can also write H3K36 
methylation, listed below), mutant exhibits growth 
defects [155] and early flowering phenotype [156]. 

SDG25/ATXR7 (AT5G42400) 

Writes H3K4me1/me2/me3, mutant exhibits early 
flowering phenotype [157-159], reduced seed 
dormancy [160] and changes in plant defense [161, 
162]. 

SDG26/ASHH1 (AT1G76710) 
Writes H3K4me3, mutant exhibits late flowering 
phenotype [156, 159]. 

SDG4/ASHR3 (AT4G30860)  

Writes H3K4me2/me3 (can also write H3K36 
methylation, listed below), mutant exhibits 
reproductive defects in ovules [153] and 
unsynchronized DNA replication and cell division, 
further leading to defects in root development [154]. 

SDG27/ATX1 (AT2G31650) 
Writes H3K4me3 [42], mutant exhibits defects in 
root developments [166] and early botting [167]. 

SDG30/ATX2 (AT1G05830) 
Writes H3K4me2, mutant displays no clear 
phenotypes [167], 

SDG14/ATX3 (AT3G61740) 
SDG16/ATX4 (AT4G27910) 
SDG29/ATX5 (AT5G53430) 

Write H3K4me2/me3, triple mutants display drastic 
defects in seed development and plant growth [168]. 
atx4/5 double mutant showed drought tolerance in 
seed development [168]. 

Eraser 

FLD (AT3G10390) 
Erases H3K4me2, mutant exhibits late flowering 
[238] and defects in plant systemic acquired 
resistance [179, 180]. 

LDL1 (AT1G62830) 

LDL2 (AT3G13682) 

LDL3 (AT4G16310) 

Erase H3K4me2/me3, mutants exhibit late flowering 
phenotype [127, 181], increased seed dormancy 
[182] and changes in circadian clock gene 
expression [128]. 

JMJ14 (AT4G20400) 

Erases H3K4me1/me2/me3, mutant exhibits early 
flowering phenotype [170], changes in RNA-directed 
DNA methylation [171] and circadian clock gene 
expression [164]. 
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JMJ15 (AT2G34880) 
Erases H3K4me3, overexpression leads to early 
flowering [172] and increased salt tolerance [173]. 

JMJ16 (AT1G08620) 
Erases H3K4me1/me2/me3, mutants display leaf 
senescence phenotype [174]. 

JMJ17 (AT1G08620) 
Erases H3K4me1/me2/me3, mutants exhibit 
enhanced resistance to dehydration [175]. 

JMJ18 ( AT1G30810) 
Erases H3K4me2/me3, mutant shows late flowering 
phenotype while overexpression leads to early 
flowering phenotype [176]. 

H3K36me1 

H3K36me2 

H3K36me3 

Reader/ 

Effector 

MRG1 (AT4G37280) 

MRG2 (AT1G02740) 

Bind H3K36me3 and interact with HATs to mediate 
H4 acetylation. Double mutant is late flowering 
under long day condition [65, 66]. 

Writer 

SDG4/ASHR3 (AT4G30860) 
Writes H3K36me1/me2, mutant displays 
unsynchronized DNA replication and cell division, 
further leading to defects in root development [154]. 

SDG8/ASHH2 (AT1G77300) Writes H3K36me2/me3 [239]. 

SDG25/ATXR7 (AT5G42400) Writes H3K36me2 [240]. 

SDG26/ASHH1 (AT1G76710) Writes H3K36me3 [159]. 

Eraser JMJ30 (AT3G20810) 
Erases H3K36me2/me3, regulates circadian clock 
related flowering gene expression [177], root 
development and response to auxin [178]. 

H3ac 
Reader/ 

Effector 

YAF9A (AT5G45600) 

YAF9B (AT2G18000) 

Read acetylated and unmodified H3, regulates H4 
and H2A.Z acetylation. Mutant shows late flowering 
phenotype [101]. 

MBD9 (AT3G01460) 

Binds to acetylated histone H3 and H4, mutants 
exhibit enhanced shoot branching and early 
flowering phenotype [241] . MBD9 also regulates 
SWR1 complex mediated H2A.Z deposition and 
DNA demethylation Binds to acetylated histone H3 
and H4, mutants exhibit enhanced shoot branching 
and early flowering phenotype [241]. MBD9 also 
regulates SWR1 complex mediated H2A.Z 
deposition and DNA demethylation [35, 242].  

NPX1 (AT5G63320) 
Binds acetylated histone H3 and regulates SWR1 
complex mediated H2A.Z deposition and DNA 
demethylation [35]. 
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Writer GCN5/HAG1 (AT3G54610) 

Writes H3K14ac, globally associated with growth 
and developmental defects [33, 185, 186]. 
Regulates plant heat tolerance [30], plant 
regeneration [187] 

H4ac 

 

Reader/ 

Effector 
BRAT1 (AT1G05910) 

Reads H4K5/K8/K12ac. Functions as an anti-
silencing factor that prevents gene silencing at 
methylated loci [34]. 

Writer 

HAG2 (AT5G56740) Writes H4K12ac [188]. 

HAM1 (AT5G64610) 
HAM2 (AT5G09740) 

Write H4K5ac [188] and is involved in gametophyte 
development [193]. 

Histone 
Acetylation 

HAG3/ELO3 (AT5G50320) 
Involved in plant response to UV [189], leaf growth 
[190], plant defense [191] and associated with 
RNAPII elongation [192]. 

HAC1 (AT1G79000) 

HAC2 (AT1G67220) 

HAC4 (AT1G55970) 

HAC5 (AT3G12980) 

HAC12 (AT1G16710) 

Regulate leaf senescence [194], response to UV 
[195] and ethylene [196], plant defense [197] and 
global plant growth and development [198]. 

HAF1 (AT1G32750) 

HAF2 (AT3G19040) 

Involved in circadian clock gene expression [199], 
response to UV [195], root development [200] and 
male gamete development [201], 

Eraser 

HDA5 (AT5G61060) 

Interacts with other histone modifying enzymes, 
such as HDA6 and FLD. Mutant displays late 
flowering phenotype [218]. Quadruple mutant 
hda5/14/15/18 exhibits hypersensitivity towards salt 
[225].  

HDA6 (AT5G63110) 
Involved in circadian clock gene expression [128], 
plant defense [202], transposon silencing [203], 
flowering [204] and seed dormancy [205]. 

HDA7 (AT5G35600) 
Involved in the development of female gametophyte 
and embryo [206]. 

HDA9 (AT3G44680) 

Mediates the H3K27 deacetylation and further leads 
to FLC gene repression by H3K27me3 [207]. 
Mutants also display differential responses to salt 
and drought [208]; enhanced pathogen resistance 
by activating NLR genes [209]. HDA9 also involves 
the regulation of flowering [210] and leaf 
development [211]. 

HDA14 (AT4G33470) 
Potentially links to protein acetylation to 
phosphorylation [219].  
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HDA15 (AT3G18520) 
Regulates temperature sensing [212], cell 
elongation [220, 221], response to auxin [222] and 
light [223] . 

HDA18 (AT5G61070) 
Involved in cell fate control in root epidermis [200, 
224]. 

HDA19 (AT4G38130) 

Regulates photoperiod-dependent flowering time 
[204], temperature sensing [212], root development 
[213], germination [214, 215], plant defense [216] 
and plant stress responses [217]. Quintuple mutant 
hda5/14/15/18/19 exhibits salt tolerance [226].  

HD2A (AT3G44750) 

HD2B (AT5G22650) 

HD2C (AT5G03740) 

HD2D (AT2G27840) 

Plant-specific histone deacetylases, involved in 
stem vascular development [230], root meristem 
development [231], flowering [232], plant defense 
[233], heat and cold stress response [234, 235]. 

SRT1 (AT5G55760) 

SRT2 (AT5G09230) 

Involved in mitochondrial metabolite transport [227, 
228] and ethylene signaling pathway [229]. 

 

Table 1. Summary of Histone PTM readers/writers/erasers and related biological functions in 

Arabidopsis. Enzymes are clustered by their roles (column 2) as histone PTM (column 1) readers, 

writers and erasers. Gene name and ID are shown in column 3. The biological functions of 

corresponding enzymes are shown in column 4.   
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TEXT BOX 

Box 1 

ChIP-chip: Chromatin immunoprecipitation (ChIP) followed by microarray (chip) to determine the 

protein-DNA interaction in genome-wide, 

ChIP-seq: ChIP sequencing (ChIP-seq) is the combination of chromatin immuno-precipitation 

(ChIP) and next-generation sequencing (NGS). The DNA-bound protein is immune-precipitated 

by antibody and the associated DNA is then fragmented, purified and sequenced. ChIP-seq 

analyzes the protein-DNA interaction and reveals the genomic distribution of a particular DNA-

bound protein by NGS.   

CUT&RUN-seq: CUT & RUN (Cleavage Under Targets and Release Using Nuclease) followed 

by next-generation sequencing is a technology to study DNA-protein interaction. DNA-protein 

complex is separated by the antibody-targeted in situ MNase cleavage and the DNA is 

subsequently purified and sequenced.  

PCSD: a Plant Chromatin State Database providing information of chromatin states across the 

genomes of Arabidopsis thaliana, Oryza sativa and Zea mays based on various epigenomic 

sequencing data sets [118]. Based on Hidden Markov model, the genomes where clustered in 

relation with their chromatin environment. It is possible to download genome browser files for 

various ChIP-Seq experiments (i.e transcription factors, histones PTMs, or chromatin 

associated factors).  

PlantDHS: a Plant DNase I Hypersensitive Site database also including the genomic 

information of histone PTMs, nucleosome positioning and transcription factor binding sites in 

plants [243]. The database provides downloadable ChIP-Seq files to load into a genome 

browser for several nucleosome related sequencing methods. 

ReMap: A large database including integrative analysis of Arabidopsis ChIP-seq and DAP-seq 

data sets, providing the distribution information of histone PTM/variants, transcription 

regulators and factors [244].  

WERAM: a database for writers, erasers and readers of histone acetylation and methylation in 

eukaryotes including many plant species [245].  
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PlantPAN3.0: A database exploring transcription factors from ChIP-Seq experiments from 78 

plant species [246]. 

 

Box 2 

In plants, the intragenic distribution profiles of H3K36me3 and H3K36me2 differs from many 

other higher organisms. Perhaps, H3K36me3 is progressively de-methylated in plants, where 

H3K36 is thought to be progressively methylated during RNAPII elongation in animals. These 

differences may result in plant-specific chromatin states [247]. The molecular mechanism 

responsible for the specific positioning of H3K36me3 and H3K36me2 along genes bodies in 

plants remains unclear. In yeast, a single H3K36 methyltransferase (Set2p) is responsible for all 

methylation states of H3K36. There are around eight H3K36 methyltransferases in mammals, 

but many more histone methyltransferases in Arabidopsis. H3K36-specific histone 

methyltransferase in plants, such as Arabidopsis SDG8 and SDG26 or SDG725 in rice, currently 

represent the main candidates responsible for these H3K36me patterns [134]. Since the 

H3K36me3 and H3K36me2 distributions along gens are opposite in plants compared to the 

distribution in animals, it remains to be investigated how this effects H3K36 methylation-

associated events such as splicing and intragenic transcription initiation. A focus on the plant 

equivalents of H3K36me3, H3K36me2 and rarely studied H3K36me1 (peaking at the extreme 3’ 

end of genes in rice) in association with transcription elongation, termination and gene regulation 

promises to instruct intriguing lessons about plant-specific transcription regulation mechanisms. 
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GLOSSARY 

Histone 

A histone is a basic protein component of eukaryotic chromosomes, packaging DNA into ordered 

structures named nucleosomes. Core histones include histone H2A, H2B, H3 and H4.    

Histone PTM 

A histone post-translational modification (PTM) describes the chemical modification on histone 

residues, such as acetylation of histone H3 lysine 4 (H3K4ac). The common histone PTMs 

include methylation (me), phosphorylation (ph), acetylation (ac) and ubiquitination (ub). A 

histone residue can be modified in different states. For example, lysine residues can be mono-, 

di- and tri-methylated (me1, me2 and me3), expanding the diversity and functionality of histone 

PTMs.       

RNAPII 

DNA dependent RNA polymerase II (RNAPII or Pol II) is a multiprotein complex including 12 

subunits. It is responsible for the transcription of messenger RNA (mRNA), long non-coding RNA, 

snRNA and microRNA.  

PIC 

A transcription preinitiation complex (PIC) is an assembly of RNAPII, co-factors and transcription 

factors in gene promoter region that facilitates RNAPII transcription initiation.   
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