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Abstract 

As the outbreak of COVID-19 has accelerated, an urgent need for finding strategies to combat the 

virus is growing. Thus, gaining more knowledge on the pathogenicity mechanism of SARS-CoV-

2, the causing agent of COVID-19, and its interaction with the immune system is of utmost 

importance. Although this novel virus is not well known yet, its structural and genetic similarity 

with SARS-CoV as well as the comparable pattern of age-mortality relations suggest that the 

previous findings on SARS can be applicable for COVID-19. Therefore, a systems biology study 

was conducted to investigate the underlying mechanism for the differences in the age-specific 

mortality of SARS and the most important signaling pathways activated by the virus. The results 

were then validated through a literature review on COVID-19 and the other closely related viruses, 

SARS and MERS.  

Interferons have shown to possess a crucial role in the defense against coronavirus diseases. The 

virus can impede the interferon induction in humans. Moreover, STAT1, a key protein in the 

interferon mediated immune response, is antagonized by the virus. This could explain the increased 

response threshold of immune cells to IFNs during CoV infections.   

A vivid correlation between the innate immune response threshold and the fatality rates in COVID-

19 can be found. Differences in the dynamics of the interferons-related innate immune responses 

in children, adults and elderly may explain the reported fatality rates. The increased mortality rates 

in the elderly can be explained by the higher threshold of interferon-mediated immune responses. 

Earlier induction of interferons in children and their less developed immune system could be the 

reason behind their zero or near to zero fatality rate. Administration of interferon-inducing agents, 

such as Poly (ICLC), could reduce the mortality of SARS at the very early stages of the disease. 

Adding interferon-γ to an interferon-I, as a synergistic combination therapy, might maximize the 

benefits. 

At the later stages of the disease, however, the balance of the immune reactions would be disrupted 

and the responses would shift toward immnopathogenic over-reactions and probably cytokine 

storm. Moderating the activity of the immune system and supportive care in such conditions might 

be the optimum approach. 

 

Keywords: 2019 novel coronavirus infection, coronavirus, SARS-CoV, interferon, systems 

biology 
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Introduction 

Coronaviruses (CoVs) are a group of RNA viruses that have the largest RNA genome among all 

the viruses known to date (1,2). Their genome is surrounded by a bilayer lipid envelope containing 

the spike and membrane proteins (3). CoVs replicate by the attachment of their spike protein to 

the host cell receptors resulting in release of the viral genome into the cell (4). They have several 

hosts including animals  and human (5). They mainly cause respiratory disease and common cold 

(6), but can also cause central nervous system (CNS) infection (7). 

The recent outbreak of COVID-19, the new disease caused by a novel coronavirus species, named 

SARS-CoV-2, has alerted many researchers around the world to find treatment for this condition. 

Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory 

syndrome coronavirus (MERS-CoV), two other known viruses from the same genera, were 

identified in 2002 and 2012, respectively, causing serious respiratory ailments (8).  

COVID-19, though a new virus, seems to have a similar pattern to SARS and MERS (9). Despite 

the differences in the mortality and epidemiological rates of these three diseases, the pattern of 

age-specific mortality is similar; and the mortality rates get higher as the age increases with in the 

highest mortality rates among the elderly (9) (Table 1). 

 

Table 1. COVID-19 fatality rate by age, as stated by the "Worldometers" website (10) 

Age Death rate*  

80+ years old  14.8% 

70-79 years old  8.0% 

60-69 years old  3.6% 

50-59 years old  1.3% 

40-49 years old  0.4% 

30-39 years old  0.2% 

20-29 years old  0.2% 

10-19 years old  0.2% 

0-9 years old  no fatalities  

*Death Rate = (number of deaths/number of cases) = probability of dying if infected by the virus (%). This probability 

differs depending on the age group. The percentage shown below does NOT represent in any way the share of deaths 

by age group. Rather, it represents, for a person in a given age group, the risk of dying if infected with COVID-19. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 March 2020                   doi:10.20944/preprints202003.0206.v1

https://doi.org/10.20944/preprints202003.0206.v1


4 

 

The zero fatality in children under nine years old (Table 1) seems contradictory to the fact that  the 

immune system gets stronger when a child grows up (11). However, there are differences at the 

timing of the initiation of immune responses in children versus adults (11). 

It has been shown that the potential first lines of defense against SARS are mediated through 

mannose-binding lectin as a pattern recognition molecule (PRM) of innate immunity (12). 

Additionally, interleukin (IL)-12 seems to play a vital role in SARS (13). IL-12 activation would 

lead to the induction of interferons (IFNs) (14). IFN-γ is a key moderator in linking the innate 

immunity to adaptive immune responses (13). 

IFNs are a group of cytokines, which communicate between cells against pathogens and have a 

critical role in the immune system, such as activating natural killer (NK) cells and macrophages, 

in addition to the flu-like symptoms of various diseases. There are three classes of IFNs: I (such 

as IFN-α and –β), II (IFN-γ), and III, all of which play roles against viral infections (15). 

In SARS-CoV and MERS-CoV, the reaction to viral infections by type I IFNs is suppressed. Both 

CoVs use variant strategies to decrease type I IFN production. This dampening approach is highly 

associated with the disease severity and increased mortality (16). 

On the other hand, in the lethal cases of SARS-CoV or MERS-CoV infection, the increased influx 

of inflammatory cells is always observed. In a mouse model of SARS- CoV infection, imbalanced 

type I IFN and inflammatory cells were shown as the main causes of fatal pneumonia (17). 

Understanding the pattern of the immune system induction in adults and children in the CoV-

associated respiratory syndromes could help to find treatment strategies for these fatal diseases.  

Considering the lack of available data on COVID-19, SARS can be a helpful model in this regard. 

Because SARS-CoV-2 has the highest similarity in structure and nucleotide sequence to SARS-

CoV among other viruses of this family, showing 96% and 89.6% sequence identity in the proteins 

of their envelope and nucleocapsid, respectively (18). 

In this study, to figure out the underlying mechanism for the differences in the age-specific 

mortality of SARS, the most important signaling pathways activated by the virus will be studied 

using bioinformatics tools and a systems biology approach (19). The obtained results will be 

validated through a literature review on SARS, MERS, and COVID-19 to indicate how the 

dynamics of IFN-mediated antiviral response in adults, elderly, and children could determine the 

severity of the disease and treatment outcomes.  
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Methods 

 

Identification of the deferentially expressed genes using high-throughput RNA-Seq datasets 

At first, “coronavirus” was searched through iLINCS at http://ilincs.org (20). iLINCS is an 

integrative online platform that brings together different levels of physiological data and integrates 

them with a bioinformatics analysis engine aiming to analyze and interpret omics data.  

The enquiry identified five non-iLINCS datasets about coronavirus infection. GreinGSE52405 

dataset was chosen for further analysis. This dataset contains transcriptomics responses in mice 

infected with either PR8  (highly pathogenic mouse-adapted Influenza A virus) or MA15 (mouse-

adapted severe acute respiratory syndrome coronavirus). 

Geo RNA-seq experiments Interactive Navigator (GREIN) )http://www.ilincs.org/apps/grein/( 

(21) was applied to analyze the differences in the gene expression level (signature) between the 

C57BL/6J mice at four days post-infection with MA15 (three experimental groups) and two 

control groups. 

GREIN is a web application with comprehensive analytical toolbox, which provides manipulation 

and analysis of RNA-seq data. The obtained results were then exported to iLINCS (20) for further 

analysis. 

 

Gene set enrichment analysis 

Gene set enrichment analysis is a method to interpret deferentially expressed genes )DEGs( in 

terms of the affected biological pathways and obtain information regarding signature. Gene 

ontology (GO) enrichment analysis on DEGs was performed by Enrichr (22,23) method at 

http://amp.pharm.mssm.edu/Enrichr/. 

GO knowledgebase )http://geneontology.org/( contains comprehensive information about the 

function of genes in three main aspects, including biological process (BP), molecular function 

(MF), and cellular component (CC).  

In addition, pathway enrichment analysis for the top 100 DEGs was done by Enrichr as well. 

NCATS BioPlanet (https://tripod.nih.gov/bioplanet) (24), Kyoto encyclopedia of genes and 

genomes (KEGG) (https://www.genome.jp/kegg/) (25), and Reactome (https://reactome.org/) (26) 

pathway databases were used for pathway enrichment analysis to assess the potential association 

of the signature with pathways. 
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Protein-protein interactions network reconstruction 

In order to find the essential proteins and pathways in the gene set, the protein-protein interaction 

(PPI) network of the signature was extracted from the International Molecular Exchange 

Consortium (IMEx) protein interactions database (27) through NetworkAnalyst 

(https://www.networkanalyst.ca) (28). 

NetworkAnalyst is a powerful and user-friendly analytics platform, which assists biologists in the 

interpretation of systems-level data. This tool was implemented to visualize and analyze the PPI-

network of top 100 DEGs. Noteworthy, in order to control the network size, the minimum network 

tool was selected amongst network tools, which keeps seed proteins and non-seed proteins that are 

crucial for network connections. 

 

Results and discussion 

 

Identification of DEGs between control and experimental groups and enrichment analysis 

The currently available wealth of omics data prompt the researchers to develop tools and 

algorithms to fully exploit the information contained within these data. The list of the DEGs 

obtained through iLINCS is represented in the supplementary, Tables S1 (top 100 selected genes) 

and S2 (complete signature). As seen on Fig. (1), the results of the enrichment analysis indicated 

that the 100-top selected genes are mostly significantly associated with the immune system, IFN 

signaling, and viral infections.  

The findings of our omics analysis showed good congruence with several studies in which the 

importance of the IFN signaling pathways in CoV infections was reported (29–31), which supports 

the validity of our selected approach and the notion that CoV infection can trigger IFN signaling 

pathway. 
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Figure 1. Gene set enrichment analysis (performed via Enricher) of top DEGs of several subgroups 

of GreinGSE52405 dataset obtained through: (a) BioPlanet 2019 (b) KEGG (c) Reactome (d) GO 

Biological Process 2018 (e) GO Molecular Function 2018.- The tested subgroups included the 

C57BL/6J mice infected with MA15 (mouse-adopted severe acute respiratory syndrome 

coronavirus) at four days post-infection. The differences in the gene expression level (signature) 

between three experimental groups and two control groups were analyzed in this study. 

 

 

The PPI network of top100 DEGs 

The protein-protein interaction network for the signature was constructed using IMEx protein 

interactions database through NetworkAnalyst (Fig. 2), representing the crucial proteins in the 

network, which are called hub proteins. It is well established that the virus-host interaction has a 

crucial role in the disease outcome, and infecting the host system is mainly mediated through 

affecting host’s important proteins. Though studying the related PPI network can clarify some 

routes that virus uses in this regard.  

The list of all proteins in the network and node centralities (degree and betweenness) is available 

in Table S3. Noteworthy, the degree of a node is defined as the number of connections that a node 

has to other nodes and betweenness centrality is the number of the shortest paths passing through 

the node in a graph (28). 

As shown in the PPI network (Fig. 2 and Table S3), STAT1 (Degree: 44, Betweenness: 5916.08), 

IRF7 (Degree: 18, Betweenness: 1324.53), and ISG15 (Degree:10, Betweenness: 437.65) could 

be considered as major hub proteins in the network.  
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Several studies revealed that CoV implements some strategies to evade the immune response by 

antagonizing the arms of IFN signaling pathway (32). In this regard, Frieman et al. indicated that 

SARS-CoV ORF6 protein blocks the expression of STAT1-activated genes and finally acts as an 

IFN antagonist (33). Yang and colleagues indicated that MERS-CoV ORF4b antagonizes the 

antiviral IFN-β response by inhibiting IRF3 and IRF7 (34). In addition, it is well established that 

SARS-CoV and MERS-CoV encode papain-like proteases (PLPs) that are able to impede the 

immune response function (35). Daczkowski et al. demonstrated that CoV could interact with IFN-

stimulated gene 15 (ISG15) and antagonize the IFN-mediated antiviral response (36).  

Therefore, it seems that coronavirus targets the most important proteins in the IFN signaling 

pathway to evade the immune system. This highlights the key role of the IFN-mediated antiviral 

responses in the CoV infections. 

 

 

Figure 2. Network analysis of the tested subgroups of GreinGSE52405 dataset (the C57BL/6J 

mice at four days post-infection with MA15, as three experimental groups, and two control 

groups)  . Nodes with bigger size are considered as hubs in this network. 
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Dynamics of antiviral response determines the severity of the disease 

The dynamics of IFN-related antiviral responses may be the lost circle in understanding the 

virulence of CoVs. There are some observations and facts supporting this notion. 

The zero fatality in children under nine years old (Table 1) seems contradictory to the fact that the 

immune system gets stronger when a child grows up.  

Considering the immunologic differences between adults and children, the IFN-γ induction by NK 

cells are higher in adults but has a lower threshold in children (11,37). It seems that children 

respond faster to the virus in the incubation period (38), so that their immune system inhibits the 

virus replication and prevents high virus titers. On the other hand, in adults, the immunologic 

response is postponed as the virus impairs the innate immune response by shutting down the 

signaling pathways.  

In a study (39) on the dynamics of the innate immune responses of human cells to SARS-CoV 

infection, it was indicated that the activation of the IFN regulatory factor )IRF(-3/7 pathway did 

not occur until 48 hours post-infection. The authors concluded that the delayed IFN-related 

antiviral response is a possible strategy implemented by CoV to evade the immune response (40). 

The virus also circumvents the immune system by hiding its double-stranded RNA in vesicles, 

causing less IFN induction (32).  

In a study by Reghunathan et al. (41), the immunologic responses of 10 adult hospitalized patients 

with SARS were investigated. It was concluded that the immune response of SARS-affected 

patients is mainly innate immune response rather than specific antiviral responses. Even though 

their finding may seem contradictory to the uncovered crucial role of IFN signaling in CoV 

infections (40) at first, it affirms that SARS-CoV can impede IFN induction and the IFN mediated 

responses may be suppressed in severe cases of the infection. In other words, the lack of proper 

antiviral immune responses in the affected patients can be due to antagonization of the sensing and 

signaling arms of IFN pathways following a high level of virus replication and the consequent 

impairment in the immune system functions at several days post-infection. Thus, it can be 

concluded that a delayed IFN-related antiviral response could debilitate the host immunity to 

inhibit rapid virus replication at the early stages of infection.  

This immune system inhibition might happen through affecting STAT1 and other important 

discussed proteins or some other strategies that CoV implement to antagonize IFN signaling (31), 

which finally compromises effective IFN mediated antiviral immune responses. 
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To validate this assumption, the dataset of the above-mentioned study (41), GDS1028, was 

searched and reanalyzed with the help of iLINCS (42). Noteworthy, this dataset contains the 

expression profiling of peripheral blood mononuclear cells (PBMC) from 10 adult hospitalized 

patients with SARS and four healthy controls. 

The pathway (24,25,43,44) and diseases (45,46) enrichment analysis of the top 100 DEGs was 

also performed via Enrichr (22,23). Interestingly, disease enrichment analysis demonstrated that 

the signature was highly associated with some diseases that are the result of the immune system 

malfunction, including septic shock, obstructive pulmonary bronchitis, allergic diseases, and 

autoimmune diseases.  

Besides, the pathway enrichment analysis revealed that the signature is highly associated with the 

apoptosis pathway. This result is consistent with the recent study, which represented that the 

number of T cells in patients with COVID-19 were reduced and functionally exhausted, especially 

among elderly patients (≥60) and in patients requiring Intensive Care Unit (ICU) (47).  

The enrichment analysis results are represented in Fig. S2 and Tables S3. Moreover, the list of the 

DEGs obtained through iLINCS is represented in the supplementary, Tables S4 (top 100 selected 

genes) and S5 (complete signature). 

The importance of T cell-mediated immune response in respiratory CoV is well established (48).  

Type I IFN response is shown crucial in T cell survival (49,50). Moreover, the phosphorylation of 

STAT1 and STAT5 was increased in the activated naïve CD4+ T cells taken from young adults in 

order to lower their response threshold to type I IFN stimulation. However, this mechanism was 

subdued in the elderly naïve CD4+ T cells (51). Likewise, the impaired innate IFN secretion in the 

elderly is well documented in several studies (46,48). 

As mentioned above, SARS-CoV ORF6 protein antagonizes the function of STAT1. Therefore, 

STAT1 inactivation by ORF6 protein might be the cause of reduced and functionally-exhausted T 

cells in patients with COVID-19, especially in the elderly patients (33). 

Channappanavar et al. (29) have also demonstrated that suboptimal T cell responses occurred in 

SARS-CoV-infected BALB/c mice. Although the authors concluded that IFN-I-mediated 

inflammatory responses caused impaired T cell function, it seems that antagonizing the function 

of STAT1 by SARS-CoV can play a crucial role in this impairment. Considering the fact that T 

cells reduce cytokine storm by modulating the innate immune response (52), it seems that the 
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higher response threshold in the elderly, which is aggravated by the antagonizing effects of ORF6 

on STAT1 (33), leads to their poor clinical outcome. 

Altogether, it might be concluded that the patients with SARS-CoV at the late stages of the disease 

suffer from many abnormalities, which are the result of immune system imbalance and 

malfunction  and lack of effective IFN-specific immune responses that can lead to proinflammatory 

reactions and immunopathological conditions, presented by lethal inflammations in the lungs and 

vascular leakage (29). 

 

Approaches to control COVID19: a systems biology perspective 

Induction of IFNs can play a key role in the body defense against CoVs infections, as supported 

by several studies mentioned in the following.  

Numerous studies have presented the success in defeating CoVs by the direct administration of 

IFNs. A combination of type I IFN and either IFN-γ or IFN-λ, was shown to synergistically inhibit 

the virus replication in vitro (40,53,54). Larkin et al. (55) indicated that a combination of IFN-α 

and IFN-γ in vitro provided strong synergistic antiviral activities at much lower dosages of IFN 

than normally required. Lowering the dose of IFNs in combination therapy offers the advantage 

of reduction in undesired adverse reactions for the patients. Nagata et al. (56) has described the 

destructive effect of cytokine storm in adult mice after SARS-CoV infection. While IV injections 

of TNF-α was not beneficial, intraperitoneal IFN-γ injection showed a protective effect. Cinatl et 

al. (57)  reported the in vitro superiority of IFN-β over -α and -γ, while suggesting the effectiveness 

of IFN-γ over IFN-α in Vero cell cultures of SARS-CoV infection. Bellomi et al. (58) also reported 

the synergistic effects of IFN-γ and -β on Vero cells infected with SARS-CoV. Another study, 

demonstrated that IFN-α and -γ co-administration caused hyper-activated IRF-1 and STAT1, 

which finally led to a more robust antiviral symphony against virus replication (59).  

Altogether, it seems that combinational IFN therapy could significantly inhibit virus replication 

and overcome the increased response threshold of IFN induction that has been resulted by STAT1 

inhibition in the immune cells by CoVs, especially in the elderlies 

Additionally, another study uncovered that the timing of IFN therapy would be of great 

importance. In an in vivo study, mice were protected against the virus when IFN-I was given before 

the maximum rise of the virus, during one day after the infection, though the expression of the 

ISGs and inflammatory cytokine genes was reduced. On the other hand, treatment failure was seen 
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in case of later injection of IFN-β, because the virus titer went up, and monocytes, macrophages, 

and neutrophils were accumulated and activated in the lungs, and proinflammatory cytokines were 

induced, which finally led to severe lethal pneumonia (60).   

As another approach, the IFN level can be increased indirectly. Noteworthy, toll like receptor 

(TLR)3 activation, could induce these IFNs (61–64).  

In this regard, two distinct studies (65,66) demonstrated that the pretreatment of mice with TLR3 

agonists protected them from mouse-adapted SARS-CoV infection. The used TLR3 agonists, poly 

ICLC and poly (I:C) (polyinosinic:polycytidylic acid) could augment the production of IFN-α, -β, 

and -γ, which consequently inhibited CoV replication and compensated for the inhibitory effects 

of CoV on IFN signaling pathways (45). Poly (I:C) is a synthetic double-stranded RNA 

immunostimulant, which is used as adjuvant in vaccine production (67). Poly (I:C) treatment 

induces not only IFN-α and -β, but also IFN-γ (65). The intranasal or aerosols of poly (I:C) within 

48 hours of infection were shown beneficial in mice (65,66). In another study on the infected mice, 

IFN-α or poly (I:C) were suggested as the only compounds able to inhibit SARS-CoV replication 

when compared to several different compounds including nelfinavir, calpain inhibitor VI, 3-

deazaneplanocin A, β-D-N4-hydroxycytidine, and Alferon® (human leukocyte IFN-α-n3) as well 

as some anti-inflammatory agents, i.e. chloroquine, amodiaquin, and pentoxifylline (68). 

Interestingly, chloroquine, a recently proposed medication for COVID-19 (69), interacts with poly 

(I:C) as an endosomal acidification inhibitor, which inhibits poly (I:C)-mediated IFN-β expression 

(70). Therefore, it can be concluded that TLR3 agonists can be a proper option for employment in 

development of vaccines against COVID-19. 

In addition to TLR-3 agonists (poly ICLC (66), poly (I:C) (71), and rintatolimod (32)), some other 

substances such as TLR7 agonists (e.g. imiquimod) (72), lipopolysaccharides (as TLR4 agonists 

(73)), and phytohaemagglutinin (PHA) can induce IFN production in the human body as well (74). 

Nevertheless, some of them may strongly stimulate the immune system and lead to unwanted 

reactions or toxicity. For example, PHA is a natural compound found in high concentrations in red 

kidney beans and with lower concentrations in other beans (75). The oral consumption of uncooked 

red kidney bean has been announced to induce gastrointestinal toxicity and mitogenicity (75) 

because of high levels of PHA. However, whether a low concentration of PHA could be beneficial 

at the early stages of the disease or incubation period to stimulate IFN production can be a subject 

for further research.  
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Although IFNs are available as medicinal products, some adverse effects such as bone marrow 

suppression should be considered for their direct indication (76). Moreover, the protocol for their 

indication including proper timing and dosing should be confirmed.  

All in all, IFN induction in the incubation period and at the very early stages of the disease could 

be the key to prevent CoV-associated mortalities, yet the proper dosing needs further 

investigations. Research and clinical trials for finding the right timing for such interventions as 

well as introducing the proper dose-adjustment protocols are urgently needed. 

On the other hand, at the later stages of the disease, the balance of the immune system becomes 

impaired, hence probable inflammatory over-reactions, cytokine storm, and possible autoimmune 

responses should be considered. In such circumstances, therapeutic approaches to reduce possible 

lung inflammations may be needed.  

 

Conclusion 

A vivid correlation between the innate immune response threshold and the fatality rates in COVID-

19 can be found. The increased mortality rates in the elderly can be explained by the higher 

threshold of IFN immune responses. Differences in the dynamics of the IFN-related innate immune 

responses in children, adults, and elderly may explain the different reported fatality rates. Earlier 

induction of IFNs in children and their less developed immune system could be the reason behind 

their zero or near to zero mortality.  

The key for success in reducing the disease fatality might be the stimulation of the innate immune 

responses to trigger IFN production at the very early stages of the disease, which might be done 

through administration of agents that are able to augment IFNs production such as poly ICLC.  

Despite the evidences for the efficacy of IFNs in treating CoV-induced infections, the proper 

dosing and ideal timing for such interventions needs to be verified in clinical trials. Moreover, 

adding IFN-γ to an IFN-I as a combination therapy is strongly suggested.  

At the later stages of the disease, the balance of the immune reactions would be disrupted and the 

responses would shift toward immnopathogenic over-reactions and probably cytokine storm 

presented by severe respiratory syndrome, which might indicate a need for tempering the immune 

system activity, although this suggestion might need more clinical evidences. 
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All of the stated theories are based on the assumption that the immune response against COVID-

19 is similar to other coronaviruses, which should be validated through future insights on SARS-

CoV-2. 
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Appendix A. Supplementary data 

Figure S1. Gene set enrichment analysis of top DEGs of GDS1028 dataset. 

Table S1. Top 100 selected DEGs (deferentially expressed genes) of some subgroups from 

GreinGSE52405 dataset. 

Table S2. The complete signature of the MA15 group data from GreinGSE52405 dataset. 

Table S3. The list of all proteins in the network and node centralities (degree and betweenness) of 

the tested subgroups of GreinGSE52405 dataset. 

Table S4. Top 100 selected DEGs (deferentially expressed genes) of GDS1028 dataset. 

Table S5. The complete signature of GDS1028 dataset. 
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Figure S1. Gene set enrichment analysis of top DEGs of GDS1028 dataset (performed via 

Enricher). (a) BioPlanet(b) KEGG (c) WikiPathways (d) PheWeb 2019 (e) GWAS catalog 2019 

(f) Jensen disease. This dataset contains the expression profiling of peripheral blood mononuclear 

cells (PBMC) from 10 adult hospitalized patients with SARS and four healthy controls (41). 

 

Supplementary tables legends  

 

Table S1. Top 100 selected DEGs (deferentially expressed genes) of some subgroups from 

GreinGSE52405 dataset. The data is obtained through iLINCS and analyzed by Grein. The tested 

subgroups included the C57BL/6J mice infected with MA15 (mouse-adopted severe acute 

respiratory syndrome coronavirus) at four days post-infection. The differences in the gene 

expression level (signature) between three experimental groups and two control groups were 

analyzed in this study. 

 

Table S2. The complete signature of the MA15  group data from GreinGSE52405 dataset obtained 

through iLINCS and analyzed by Grein. The tested subgroups included the C57BL/6J mice 

infected with MA15 (mouse-adopted severe acute respiratory syndrome coronavirus) at four days 
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post-infection. The differences in the gene expression level (signature) between three experimental 

groups and two control groups were analyzed in this study. 

 

Table S3. The list of all proteins in the network and node centralities (degree and betweenness) of 

the tested subgroups of GreinGSE52405 dataset (the C57BL/6J mice at four days post-infection 

with MA15, as three experimental groups, and two control groups) obtained through analysis of 

the protein-protein interaction network.  

 

Table S4. Top 100 selected DEGs (deferentially expressed genes) of GDS1028 dataset, obtained 

through iLINCS. This dataset contains the expression profiling of peripheral blood mononuclear 

cells (PBMC) from 10 adult hospitalized patients with SARS and four healthy controls (41). 

 

Table S5. The complete signature of GDS1028 dataset, obtained through iLINCS and analyzed 

by Grein. This dataset contains the expression profiling of peripheral blood mononuclear cells 

(PBMC) from 10 adult hospitalized patients with SARS and four healthy controls (41). 
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