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Abstract: Constitutive models for plastic deformation of metals are typically based on flow rules
determining the transition from elastic to plastic response of a material as function of the applied
mechanical load. These flow rules are commonly formulated as a yield function, based on the equivalent
stress and the yield strength of the material, and its derivatives. In this work, a novel mathematical
formulation is developed that allows the efficient use of machine learning algorithms describing the
elastic-plastic deformation of a solid under arbitrary mechanical loads and that can replace the standard
yield functions with more flexible algorithms. By exploiting basic physical principles of elastic-plastic
deformation, the dimensionality of the problem is reduced without loss of generality. The data-oriented
approach inherently offers a great flexibility to handle different kinds of material anisotropy without the
need for explicitly calculating a large number of model parameters. The applicability of this formulation
in finite element analysis is demonstrated, and the results are compared to formulations based on Hill-like
anisotropic plasticity as reference model. In future applications, the machine learning algorithm can
be trained by hybrid experimental and numerical data, as for example obtained from fundamental
micromechanical simulations based on crystal plasticity models. In this way, data-oriented constitutive
modeling will also provide a new way to homogenize numerical results in a scale-bridging approach.
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1. Introduction

Finite Element Analysis (FEA) is a widespread numerical tool for studying the mechanical behavior
of structures. While in many applications it is sufficient to know under which conditions a part of the
structure fails plastically or suffers damage or fracture, in some cases, like in sheet forming or for crash
simulations, it is important to be able to simulate the plastic deformation during loading and to obtain the
shape of the structure after the external load is released. Such non-linear behavior is typically described by
constitutive models that relate stress and strain in a material, as described in any textbook on non-linear
finite element modeling, e.g., see [1]. Conventionally, constitutive relations for plasticity are formulated as
flow rules based on a plastic potential. In the simplest case, the latter is the yield function of the material,
determining at which local stress the material starts yielding plastically and which plastic strain increment
will result from such plastic deformation. As described in the next section, such yield functions relate the
equivalent stress and the yield strength of a material, which needs to be determined experimentally or
with the help of more fundamental models in a scale-bridging approach.

Experimentally, the yield strength is typically determined in uniaxial tensile tests, in which materials
frequently exhibit an anisotropy in their plastic behavior, i.e., the yield strength depends on the orientation
of the loading axis with respect to the material coordinate system, defined for example by rolling, normal,
and transverse direction. In conventional approaches such anisotropic plastic behavior is described by
defining a proper equivalent stress that takes into account material anisotropy, such that yielding occurs at
a constant scalar yield strength. This approach has been introduced by Hill [2] and applied to orthotropic
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plasticity in sheet metals [3]. The concept has been generalized to linear transformation-based anisotropic
yield functions by Barlat et al. [4] and to methods describing distortions of the yield surface caused by
anisotropic work hardening [5]. In forming technology, similar ideas have been successfully applied to
predict the resulting shape of sheet metals after deep drawing [6]. All these approaches have in common
that the information about the material anisotropy is mapped into the definition of the equivalent stress,
while they differ in the amount of material parameters that is required to describe the anisotropy in the
material’s flow behavior. To determine these parameters, a series of experiments with different mutual
orientations of loading axis and material axis is necessary. Alternatively, micromechanical models, in
which discrete representations of the material’s microstructure are used together with quite fundamental
crystal plasticity models, can be used to calculate the anisotropic flow behavior of a polycrystalline metal
[7,8].

To model non-linear material behavior, in more recent approaches, the method of data-based
mechanics has been introduced by Kirchdoerfer and Ortiz [9], in which stress-strain data from experimental
tests are used directly, rather than constitutive rules. While the first approaches have been limited to elastic
structures under static loads, recently, this concept has been extended to dynamics [10] and to inelastic
material behavior [11]. These methods are based on a fundamental re-formulation of the basic equations of
mechanics and thus require completely new mechanical solvers. Other data-driven methods in plasticity
are formulated as process models, e.g. for air-bending [12], or focus on the application of data-oriented
methods as constitutive models in computational plasticity [13]. The latter idea allows the use of existing
FEA solvers for mechanical problems, and is also followed in this work, where conventional constitutive
models — formulated in a mathematical closed form — are replaced by machine learning (ML) algorithms,
which provide a great flexibility to describe arbitrary mathematical functions, and at the same time, they
offer the possibility to handle large data sets and multi-dimensional feature vectors as input. Hence, using
ML algorithms as constitutive rules for plastic material behavior offers the possibility to explicitly take
into account the microstructural information of the material in constitutive modeling. Furthermore, data
resulting from experiment and micromechanical simulations can be hybridized to generate training data
sets. An overview on applications of ML and data-mining methods in continuum mechanical simulations
of material behavior has been provided by Bock et al. [14].

ML algorithms can be classified into algorithms for supervised and unsupervised learning. The
former group can be further categorized into classification algorithms, which divide a multi-dimensional
feature space into regions with similar properties, and into regressors, which provide linear or non-linear
regression functions for the given multi-dimensional data set. Support Vector Machines (SVM) are
successfully applied both as classifiers (SVC) [15] and regressors (SVR) [16,17]; an overview on both
applications is given in a technical report by Gunn [18]. Since yield functions in continuum plasticity are
also employed to subdivide stress space into elastic and plastic regions, this work aims at investigating the
possibility of using SVC for the purpose of constitutive modeling in plasticity. An overview on data-mining
methods and statistical learning, also covering the SVM method, is given by Hastie et al. [19].

The present paper is organized as follows: In the next section, the basic concepts of continuum
plasticity are briefly summarized, and a new mathematical formulation is introduced, which enables
a data-oriented approach to constitutive modeling. Subsequently, a consistent formulation of the SVC
method to serve as yield function in continuum plasticity is introduced, which is then trained with artificial
data resulting from a Hill-like reference material. Using such data has the advantage of being able to judge
the quality of the approximations in an objective way. In the next step, trained ML yield function is applied
as constitutive model in simple finite element simulations to demonstrate its applicability for this purpose.
Finally, the results of ML and conventional flow rules are compared and the conclusions drawn from this
comparison are presented.
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2. Methods

2.1. Anisotropic Continuum Plasticity

In order to describe the elastic-plastic deformation of a material, we introduce the strain tensor € that
describes the deformation of the material and the stress tensor ¢ that describes the forces acting on the
surface of the material. Note that tensorial quantities with rank> 1 are typeset in bold letters, whereas
scalar quantities are represented by standard characters. In the elastic regime, Hooke’s law is used as
constitutive relation between stress and strain, such that

o = Ce, 1)

where C is the fourth-rank elasticity tensor of the material. To describe plastic deformation, the yield
function of the material is introduced as

flo) = Ueq — Oy, 2

which takes negative values if the equivalent stress 0eq is smaller than the yield strength ¢, of the material,
i.e. in the elastic regime. When f = 0 plastic yielding sets in, and in case of work hardening, ¢, should
be considered as flow stress after this point. Since this work only deals with the onset of plastic yielding,
ideal plasticity will be assumed throughout, such that 0, is a constant, irrespective of the deformation
history of the material. Denoting the principal stresses of the stress tensor o as 0j with (j =1,2,3) , the
equivalent stress takes the form

(75 = \/; [(01 - cfz)z + (0p — (73)2 + (03 — 01)2} , (3)

which — following the definition of von Mises (see e.g. the translation of the original work by
D. H. Delphenich [20]) — is based on the second invariant of the stress deviator (J2). In conjunction
with the yield function of Eq. (2), it describes the onset of plastic yielding for isotropic materials. Note that
the formulation in Eq. (3) is intrinsically independent of hydrostatic stress components p = 1/3Trace(0)
and thus does not require to explicitly calculate the deviatoric stress

o =0-pl, )

where U is the unit tensor. By this definition of the equivalent stress, it is inherently assumed that
hydrostatic stress components do not affect the plastic flow behavior of the considered material, which is
typically fulfilled for metals, but not for polymers or rocks, such that the method formulated here, will
mainly apply to metallic materials or, more generally, to materials, where hydrostatic stresses do not
influence the plastic behavior.

As described in the introduction, many materials exhibit a directionally dependent yield strength,
such that anisotropic flow rules need to be introduced. A first definition of such anisotropic flow rules
was introduced by Hill [2], who used a generalized definition of the equivalent stress to achieve a
directionally dependent mapping of the equivalent stresses to maintain a constant yield strength. Hence,
in this formulation, the anisotropy is considered in the stress rather than in the yield strength. Since the
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mathematical formulations in this work are purely based on principal stresses, we use a simplified version
of the Hill definition and introduce an Hill-like anisotropic definition of the equivalent stress as

Ueq = \/1 [Hl (01 — 02)* + Hp (0 — 03)* + H3 (03 — ‘71)2} , ®)

2
with only three material parameters Hj, H, and H3, whereas in his original work, Hill introduced three
more parameters to scale also the shear components of the stress. Hence, the formulation introduced
here, will apply for materials with orthotropic flow anisotropy. The definition of the equivalent stress
following Hill can be considered as a generalization of the ]2 equivalent stress, because for isotropy;, i.e.,
H; = Hy = H3 = 1, both definitions are equal.

Note that in this work, the mathematical notation is simplified by only considering principal stresses.
This formulation is still seen as general, because for any stress state, there exists a coordinate system
in which the given stress tensor becomes a diagonal tensor composed of the principal stresses ¢;. This
coordinate system is given by the eigenvectors of the stress, such that the coordinate system of the original
stress tensor — and with it the material axis — can be rotated into the coordinate system of the eigenvectors
of the stress tensor. In this orientation the stress tensor becomes a diagonal tensor, and Eq. (5) can be
evaluated with parameters H ]’ in the rotated state of the material axis.

The thus defined yield function can be used to determine whether a given stress state results in a
purely elastic or rather in an elastic-plastic deformation of a material. The condition f(0) = 0 relates
stresses lying on a specific hyperplane in stress space, the so-called the yield-locus. Since a material
does not sustain any stresses larger than the yield stress (for ideal plasticity) or the flow stress (in case of
work hardening), acceptable stress states either produce a negative value of the yield function (elasticity)
or lie on the yield locus (plasticity), which should be a convex hull of the elastic stress states. Hence,
if a predictor step in finite element analysis (FEA) produces a stress outside the yield locus, a plastic
strain increment must be calculated that leads again to an accepted stress state on the yield locus. The
return mapping algorithm to calculate such strain increments has been described in many text books
on continuum plasticity and non-linear FEA, such that here only a very brief summary based on [1] is
reproduced. According to the Prandtl-Reuss flow rule, the plastic strain increment for a given time step
can be calculated as

o of .
e,,:A%:An, (6)

where n is the normal vector to the yield locus, defined by the gradient of the yield function df /do, and
A > 0is the so-called plastic strain multiplier that can be evaluated as
n-Cé

A= @)

" n-Cn’

where € is the total strain increment of the FEA predictor step that leads to a stress state outside the yield
locus and which is consequently decomposed into the plastic strain increment, given by Eq. (6), and the
elastic strain increment or stress increment given by

o=Ci 8)
with the tangent stiffness tensor
Cn®Cn
Ct_c_in'Cn )

where “®” denotes the tensorial product in the form a; ® b; = a;b;.
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The gradient of the yield function with respect to the principal stresses can be evaluated analytically
as

of _ 90y _ (Hy+ H3) o1 — Hiop — Hzos

8(71 8(71 (Teq

of 00y  (Hp+ Hy)op — Hyoy — Hyo

Ay = (10)
80'2 80'2 Ueq

of _ 90y _ (Hz+ Hy) o3 — Haoy — Hhop

80'3 o 8(73 o Ueq

Note that in the case of isotropic plasticity (H; = Hy = H3 = 1), the gradient takes the simple form

/
% - 3”;77711 - 3(;'—. (11)
eq €q
This section served the purpose to introduce the main physical quantities in the notation used in
this work. For further details of continuum plasticity or FEA, the reader is referred to standard textbooks,
as for example [1]. In the following, the formalism for the data-oriented constitutive model based on a
machine learning (ML) yield function is laid out.

2.2. Stress space in cylindrical coordinates

Since plastic deformation in most metals does not depend on hydrostatic stress components, it is
useful to transform principal stresses from their representation as a 3-dimensional (3D) Cartesian vector
of principal stresses ¢ = (01,07,03) into a cylindrical coordinate system with s = (0eq, 6, p), where
the equivalent stress 0eq represents the norm of the stress deviator ¢/, and the polar angle 6 lies in
the deviatoric plane normal to the hydrostatic axis p, which has already been used by Hill [2]. This
coordinate transformation improves the efficiency of the training, because only two-dimensional data for
the equivalent stress and the polar angle need to be used as training features, whereas the hydrostatic
component is disregarded. Hence, by exploiting basic physical principles, we effectively reduce the
dimensionality of the problem from 6 independent components of an arbitrary stress tensor to 2 degrees
of freedom, without loosing the generality of the formulation. As the polar angle 6 can be considered
a generalized Lode angle [21], it is noted that the Lode angle, by definition, describes the axiality of a
loading state in a way that uniaxial loads in different directions result in the same Lode angle. Since
our formulation aims at describing anisotropy in the plastic deformation, uniaxial stresses in different
directions must possess different angles. To achieve this, we introduce a complex-valued deviatoric stress

ol =0-a+ic-b=/2/30q¢", (12)
where i is the imaginary unit, such that the polar angle

c-a+ioc-b

n—m—.
V2/30eq

with the unit vectors a = (2,-1,-1)/ V6and b = (0,1,-1)/ V2 that span the plane normal to the
hydrostatic axisc = (1,1,1)/ V3.

To transform the gradient of the yield function from this cylindrical stress space back to the principle
stress space, in which form it is used to calculate the direction of the plastic strain increments in the

6 =argo. =—il (13)
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return mapping algorithm of the plasticity model, we introduce the Jacobian matrix for this coordinate

transformation as
9%q 30 9p
801 801 801
I:is: deq 90 Op. (14)
ao— dop, dop doq
90eq 20 Op.
doz  doz doq

where doeq/doj is given in Egs. (10), dp/do; = 1/3 and

. /
B _ j( atib 30 (15)
oo c-atic-b g
With this Jacobian, the gradient can be calculated as
of _ of
3 = 13s (16)

2.3. Data-oriented yield function

While the concept of mapping the equivalent stress in describing anisotropic flow behavior has been
applied successfully in the approaches of Hill [2,3] and Barlat [4], for a data-oriented yield function, it
is impracticable to calculate the necessary parameters for this stress mapping explicitly. Hence, it is of
advantage to reformulate the flow rule in such a way that the yield strength is considered to be directionally
dependent, whereas the equivalent stress is formulated in an objective way, without prior knowledge
of the material behavior. This is achieved by using the J2 equivalent stress in the flow rule and formally
considering the flow stress to be a function of the polar angle in the deviatoric plane, such that

fa(s) = 51— 0y(s2) = 0l — 0/ (6). 17)

A further advantage of this formulation is that the dependence of the yield function on the two degrees
of freedom of the cylindrical stress notation is separated into two independent terms. Furthermore, for
symmetry reasons, it is required that the yield strength is a periodic function of the polar angle. The
gradient of the ML yield function w.r.t. the cylindrical coordinates reads

Ua _ 9fa _
1 doly

o _ 3% _ doy
05 o0 do
i
dsz  dp '

It is seen that in the cylindrical stress space df;/d0eq = 1 and df;/dp = 0, under the condition that
plasticity is independent of hydrostatic stress components. Hence, the only non-constant component
of the gradient is df;/96, which simplifies the numerical implementation of the method. For isotropic
plasticity, df;/98 = 0, and in this case it is particularly easy to calculate the gradient and to see that the
formulations in both coordinate systems result in the same gradient. The transformation of this gradient
into the principal stress space is achieved by multiplication with the Jacobian, according to Eq. (16).

To establish a data-oriented formulation, we introduce a yield function in the form of a machine
learning (ML) algorithm, rather than in a mathematically closed form with a number of model parameters
that need to be fitted to the data. This enables us to use the available data directly for the training of the
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ML algorithm. Furthermore, ML methods allow for the use of higher dimensional feature vectors, such
that — in future work — information about the material properties and the microstructure of the material
can be directly used as input into one single ML yield function able to handle different microstructures.

In this work, Support Vector Classification (SVC) is applied to categorize data sets consisting of
principal stresses into the classes “elastic” and “plastic”. During training, SVC constructs a hyperplane
in stress space, which separates the two regions from each other. This hyperplane, consequently;, is the
equivalent to the yield locus, defined by the zeros of the yield function, and it is constructed such that it
has the largest distance to the nearest training data points of both classes. It is, therefore, essential to have
sufficiently many training data points in close proximity to the yield locus. Data points that lie deeper
within the elastic and plastic regions are required to prevent the decision function from falling back to zero,
which would produce erroneous results. Such data points, however, can be constructed from available
raw data lying close to the yield locus by linearly scaling principal stresses in the elastic region towards
smaller values, such that they stay within the elastic region, and, likewise in the plastic region, scaling
principal stress data towards higher values. Thus, the raw data can be spread throughout the stress space,
without knowing the strain value associated with each constructed data point. Only the knowledge of its
class “elastic” or “plastic” is required for this data extension step necessary for the training purpose. The
SVC decision function is defined as [15]

n
fove(s) =), yeK(s%),8) +p, (18)
=

where 7 is the number of support vectors identified during the training process and

K(siy,s) = exp (s =tV |1) 19)

is the Radial Basis Function (RBF) kernel of the SVC, which is well suited for non-linear problems, with
the parameter -y that determines how fast the influence of one support vector decays in stress space. The
support vectors sglé)
There are essentially two parameters that control the training process and thus the quality of the obtained
decision function: (i) v > 0, which is a parameter of the RBF kernel function and controls how far-reaching

the influence of each support vector is: the larger the value of -, the more short-ranged and local the

, the dual coefficients yiay, and the intercept p are determined during the training.

influence. (ii) C > 0, which is a parameter used during the training to regularize the decision function. The
larger the value of C, the more flexible but irregular the decision function will become by approximating
the shape of the training data more accurately. The choice if these training parameters is critical for the
successful use of the decision function in a flow rule. In short, the larger both values are, the more flexible
and sensitive to local values the resulting decision function will become. Thus, too small values will
result in a smooth but not accurate approximation of the true yield function, whereas too large values will
result in a noisy yield function that cannot be used in FEA. The numerical example presented later on will
demonstrate this effect and provide examples for values producing accurate yet sufficiently smooth results
for the yield function.

For the supervised training, a set of n; feature vectors sgim has to be provided together with the

result vector y) with j = (1, ..., ;) and with values in two categories: y/) = —1 for those training data
()

points s, in the “elastic” regime and y) = +1 for training data in the “plastic” regime. This training
data are within the core of the method outlined here, because they are directly used to define the plastic
properties of the material. It is noted again, that for each principal stress used as training data point, only
the resulting material behavior in the categories “elastic” or “plastic” needs to be known but no other
information associated with this data point, as for example the plastic strain at this stress is required.
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As seen from Eq. (18), the decision function is a continuous function constructed in an way to
reproduce this category, i.e., the sign of the training data in the respective regions in the optimal way. To
make predictions about the elastic or plastic material behavior at any given stress, the sign of the value of
the decision function fsyc(s) at the given stress is evaluated. Furthermore, the yield locus of the material
can be obtained in the same way as for traditional yield functions, simply by finding the zeros of the
continuous function. In this way, furthermore, the distance of any point in stress space to the yield locus
can be evaluated, which is important for making efficient predictor steps during FEA and for calculating
plastic strain increments for the return mapping algorithm. In particular, as described in the previous
section, the gradient to the yield locus needs to be known in order to calculate plastic strain increments,
that bring the stress back to the yield surface, because the plastic material does not support any stresses
outside. Due to the definition of the ML yield function as convolution sum over the support vectors, the
gradient to the SVC decision function can be calculated analytically as

dfsvc &gys)
o = k; Vet — o (20)
with ()
W = —2yexp (—’)/HS —Sg(;) ||2> (S - Sg(/)) . 21)

The gradient of the yield function in the 3D principle stress space is obtained by multiplication of the
gradient in the cylindrical stress space with the Jacobian defined in Eq. (14). Thus, the formulation of the
data-oriented yield function based on the SVC algorithm can be used directly as ML yield function in FEA.

3. Results

In the following, it will be demonstrated how the derived formulation of the ML yield function can
be trained with data obtained from a reference material and used in FEA as constitutive law for plasticity.
All numerical examples are conducted with the tools provided on the open-source platform Sci-Kit Learn
[22] and a Python library for FEA written by the author of this work. The Python code used for generating
the results presented here is provided as supplementary material in form of a Jupyter notebook.

3.1. Training of ML yield function

A reference material with Hill-type anisotropy is defined with the material parameters as given in
Table 1. The yield locus of this reference material for plane-stress conditions with o3 = 0 is plotted in Fig.
1, in which the yield locus of the reference material with Hill-like anisotropy is compared with that of an
isotropic material with the same yield strength o,,.

Table 1. Elastic and plastic material parameters defining the reference material with Hill-like anisotropy
in its plastic flow behavior. For simplicity, isotropic elastic behavior and ideal plasticity without work
hardening are assumed in this work.

Quantity Symbol Value
Young’s modulus E 200 GPa
Poisson’s number v 0.3

Yield strength oy 150 MPa

Hill parameters H{,Hy,H; 0.7,1,14
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Figure 1. Yield locus for plane-stress conditions (03 = 0) and Hill-like anisotropy with parameters given in
Table 1 (red line) and for an isotropic material with the same yield strength, but H; = H, = H3 =1 (blue
line). The values of the principal stresses are normalized by the yield strength oy.

The thus-defined reference material is used to produce training data — and later also test data — for
the machine learning algorithm. To accomplish this, a set of stress values in form of principal deviatoric
stresses is produced in a way to cover the complete space of polar angles and also sufficiently many
equivalent stresses in the elastic and plastic regimes. This is conveniently achieved by creating a set of
Nang equally distributed polar angles (%) in the range of [, 77] and a set of 15 equivalent stresses Ugé(l )
in the range [0.10y, 50, ]. Note that for the entire procedure, the yield strength o, of the material is assumed
to be known. This is not a restriction, because the yield strength of an unknown material can be easily
determined from the input data in a pre-analysis step.

The transformation into principal stresses is performed as

o-t(gin = \/2%05(1) (a cos0%) £ bsin g(k)) 22)
with
j = k + (l — 1)nang (k = 1,.-., nang; l = ].,..., Tls) (23)

and the unit angles a and b spanning the deviatoric stress plane as given above. This produces a set of
1t = Nanghs principal stresses with which, finally, the set of result vectors

is generated by evaluating the yield function f of the reference material, as defined in Egs. (2) and (5), with
the material parameters given in Table 1.

In the numerical example given here, the full training data set comprises 1ang = 36 values for the
polar angle and ns = 28 values for the equivalent stress for each angle, resulting in a total of n; = 1008
training data sets. Concerning the effort to create this data, it is noted here that only the number of angles
Nang is relevant for the number of experiments or micromechanical simulations necessary to generate the
training data, because each angle defines a load case from which several stresses in the elastic and plastic
regime will result, and other training data points can be easily constructed from this raw data by linear
scaling, as described above. The implications of the number of load cases required to achieve an accurate
representation of the ML yield function will be further discussed in section 4. A graphical representation
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of the training data is shown in Fig. 2, where also the different ways of representing the anisotropy of the
yield function with Hill-type equivalent stresses and von Mises (J2) equivalent stresses are demonstrated.
The actual training data comprise four additional sets of polar angles associated with larger equivalent
stresses scaled to values of up to veq = 50y to prevent the decision function from falling back to zero in
this regime, which might cause erroneous results in FEA. To enforce the periodicity of the training ML
yield function and its gradient, the training data is periodically repeated within the training algorithm,
such that the polar angle covers a range —1.37 < § < 1.371.
e test data above yield e test data above yield

e test data below yield 90 e test data below yield

— ML yield locus —— Hill yield locus

0° 180°

00, does

(a) 270° (b) 270°

Figure 2. Polar plots of a subset of the training data produced from the anisotropic yield function of the
reference material: (a) Von Mises (J2) equivalent stresses according to Eq. (3) are used, such that the yield
strength, rather than the equivalent stress, is a function of the polar angle 6. (b) Equivalent stresses are
calculated according to the Hill definition in Eq. (5) to achieve a constant yield strength by mapping the
equivalent stresses accordingly. In both figures, the yield locus is indicated by a solid black line, data
points in the elastic regime are plotted in blue color and data in the plastic regime in red color. Both figures
represent the same stress data — only mapped in a different way; all stresses are normalized with the
reference yield strength oy.

With this data set, the training of the SVC algorithm is performed. Using the training parameters
C = 10 and v = 4 results in a very good training score of above 99%. However, to evaluate the true
quality of the training procedure and to judge whether overfitting has occurred, it is necessary to verify
the results with an independent set of test data, which has not been used for training purposes. The error
produced on such test data sets with 480 random deviatoric stresses as data points is below 1%, and the
RZ-correlation coefficient between test data and training data is above 98%, which leads to the conclusion
that the trained ML yield function has a very high accuracy and robustness. A variation of the training
parameters revealed that the results are rather insensitive to the parameter C, which can be varied between
2 < C < 20 without having a pronounced influence on the results, whereas changing the parameter v
by more then 20% causes a significant deterioration of the training results. The resulting SVC decision
function, defined in Eq. (18), is plotted together with the training data in Fig. 3 in the deviatoric stress
space.
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Figure 3. Field plot of the trained SVM decision function defined in Eq. (18), where areas in purple color
shades represent negative values and brown shades represent positive values. The numerical value of the
decision function is not relevant because only its sign is taken into account in the flow rule. The isoline for
fsvc = 0is represented as a black line. Training data are plotted in light blue color for data with negative
values (elastic) and in brown color for positive values (plastic).

Finally, to demonstrate the quality of the ML yield function in the full principal stress space, the
predicted categories are plotted in three different slices corresponding to different plane-stress conditions,
together with the yield function of the reference material in Fig. 4. It is seen that the training data in the
deviatoric space covers in fact only a single line in each slice, which demonstrates the power of reducing
the dimensionality of the data-oriented yield function by exploiting basic physical principles.
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Figure 4. Color map of the trained SVC prediction of the yield function in slices through the principal stress
space defined by plane-stress conditions: (a) 03 = 0; (b) o7 = 0; (¢) 02 = 0. Brown regions indicate values
of “+1” (plasticity) and purple regions values of “-1” (elasticity). The ML yield locus, corresponding to
the isoline for fgyc = 0, is represented as a black line; the yield locus of the Hill-like anisotropic reference
material is indicated as a red line. The training data points are plotted with the same color code as in Fig. 3.

3.2. Application of the trained ML yield function in FE analysis

The ML yield function trained and analyzed in the previous step shall now be applied in FEA to
demonstrate its usefulness for this purpose. The numerical examples provided here have been conducted
with the Python library “pyLab-FE” created by the author, which is provided in the supplementary
materials together with a Jupyter notebook following the work-flow defined in this work. The known
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parameters and support vectors resulting from the training process of the ML yield function together with
the mathematical formalism laid out in section 2 allow a rather straightforward evaluation of the yield
function as sum over the support vectors convoluted with the kernel function, such that they can also
be used for implementing a user material subroutine (UMAT) for common commercial FEA tools in any
compiler language.

As numerical examples, four different load cases are simulated with FEA: (i) uniaxial stress in
horizontal direction, (ii) uniaxial stress in vertical direction, (iii) equibiaxial strain under plane-stress
conditions, and (iv) pure shear strain under plane-stress conditions. These four load cases are applied
to the reference material as well as to the material with the ML yield function, and the resulting yield
stresses and plastic strains at the end of each load step are compared in Table 2. In Fig. 5 the resulting
global equivalent stresses and equivalent total strains

2
€eq = ge 1€ (25)

for each load case are plotted for both materials, where the different definitions of the equivalent stress
have been applied to the reference material.

Table 2. Yield stresses (YS) obtained for Hill-like yield function, with parameters given in Table 1, and
machine learning (ML) yield function under the specified load cases. The relative errors in yield stress and
equivalent plastic strain (PE) at maximum load are also specified.

Load Case YS-Hill (MPa) YS-ML(MPa) rel. error YS rel. error PE
uniaxial stress, horizontal 146.4 147.4 0.69% 4.56%
uniaxial stress, vertical 162.7 161.5 -0.73% 0.49%
equibiaxial strain 136.9 138.5 1.17% -0.02%
pure shear strain 161.1 160.3 -0.54% -0.40%
Material: anisotropic Hill Material: anisotropic Hill Material: ML flow rule
o / o /
* e — niaxy T — niacy " — niacy
20 —— equibiax 20 —— equibiax 20 —— equibiax
o —— shear o —— shear o —— shear
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Figure 5. Stress strain curves obtained for elastic-ideal plastic material behavior under the loading
conditions specified in the legend: (a) Equivalent total strain vs. equivalent Hill-stress, (b) equivalent
total strain vs. equivalent J2-stress for Hill-like yield function, and (c) equivalent total strain vs. equivalent
J2-stress for ML yield function.

With these numerical examples, the applicability of the ML yield function developed in this work has
been demonstrated. The new formulation has proven to be numerically stable. The numerical effort is
somewhat higher than that for the mathematical closed-form yield function, because the calculation of
the predictor step requires a higher effort in numerically evaluating the distance of a given point in stress
space to the yield locus. However, in conjunction with the implementation of the ML yield function in a

compiled computer code, FEA even for large engineering models seems to be feasible with the new ML
yield functions.


https://doi.org/10.20944/preprints202003.0164.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2020 d0i:10.20944/preprints202003.0164.v1

13 0of 15

4. Discussion

In this section the requirements on training data for the ML yield function will be more closely
examined. For the first application of the ML yield function, training data for 7ang = 36 load cases have
been constructed from a reference material with Hill-like anisotropy, and it has been demonstrated that
this number of load cases produces rather accurate results. Numerical studies with larger data sets reveal
that the accuracy of the results increases slightly for data sets of up to nang = 200. The accuracy as well
as the numerical stability and efficiency of the method remain stable for even larger data sets, which has
been tested for up to nang = 600, however, the accuracy does not improve further. It is also interesting
to see that the accuracy of the method is only slightly reduced when rather small data sets of ang = 8
load cases are used. Even producing the training data in plane-stress conditions with ¢3 = 0 does not
change the quality of the results significantly, which is a consequence of mapping all stresses onto the
deviatoric plane and extending the results by assuming that the material’s flow behavior does not depend
on hydrostatic stresses, which is fulfilled to a very good degree for metals. If it is assumed, furthermore,
that the material under consideration shows a symmetric flow behavior under tension and compression,
only one half-space of the deviatoric plane needs to be characterized, and the results can be mirrored into
the other half-plane. Thus, only four mechanical tests are required to produce the raw data for the training
of the ML yield function. It can be verified that only knowing the full stress tensors at the onset of plastic
yielding in the four uniaxial or plane-stress load cases given in Table 2 is sufficient to produce training data
from which a useful ML yield function results. To accomplish this, the assumptions of tension-compression
symmetry and of independence of the flow behavior on the hydrostatic stress component are exploited.
This example is also provided in the supplementary material.

From these considerations, it can be concluded that for material with an anisotropic flow behavior
that can be described with a Hill-like formulation, a small number of experiments under plane-stress
conditions, as they can be performed on a bi-axial test rig, are fully sufficient to produce enough raw data
to train the ML yield function. Of course, this experimental data could also be used to calculate the Hill
parameters. However, the ML yield function offers a larger flexibility, and the training process for machine
learning methods like support vector characterization (SVC) is highly efficient. For materials with a more
irregular anisotropy in their flow behavior, these advantages become even more prominent, as the effort to
determine a larger number of material parameters, like the 18 Barlat parameters [4], increases dramatically,
whereas the training effort for the ML yield function remains the same, independent of the volume of
training data.

Data-oriented constitutive modeling thus requires only a limited amount of data, as compared to
other approaches in data-driven mechanics [9,11,13]. Large data volumes, of course, help to increase the
accuracy of the resulting ML yield function, but the results achieved even with small amounts of data
provide already a very good estimate of the material’s anisotropic flow behavior even for load cases that
have not been tested. These comparatively moderate requirements on the volume of training data are a
consequence of exploiting physical symmetry conditions on the material’s flow behavior in the formulation
of the data-oriented yield function. For materials exhibiting a significant influence of the hydrostatic stress
component on the plastic behavior, the method is still applicable, but the requirements on the training
data will be higher.

Another aspect to be discussed here is the use of micromechanical models to produce training data.
With such models, the mechanical behavior of realistic microstructures can be simulated with crystal
plasticity methods [7], providing an accurate description of the plastic properties of polycrystaline metals
with different microstructures and crystallographic textures. One disadvantage of such micromechanical
models is their tremendously high numerical effort making them unsuited for FEA applications of
engineering structures that are much larger than the grain size of a material. However, it is possible to
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employ relatively small micromechanical models, validated by experimental data, for creating a sufficiently
large data volume describing the mechanical properties of the real material under various loading
conditions with a high accuracy. By purposefully varying the microstructure or the texture of the model
material, micromechanical simulations also serve the purpose of extending experimental data. This hybrid
experimental and numerical data can then be used for the training of the ML yield function presented
in this work. In this way, material parameters like grain size, grain morphology, and crystallographic
texture can be explicitly included into the feature vector of the ML yield functions, in addition to the purely
mechanical data used currently as input for the yield function. This microstructure-sensitive ML yield
function can then be used in large-scale FEA for the simulation of engineering structures, which holds the
possibility to consider the trained ML flow rule as a “digital twin” of the material, containing all relevant
information on the material properties. The data-oriented constitutive model developed in this work will,
hence, also pave the way for new approaches to scale-bridging materials modeling.

5. Conclusions

In this work, a new formulation of a data-oriented constitutive model for plasticity has been derived
and applied within finite element analysis. The central element of this new constitutive model is a Support
Vector Characterization (SVC) algorithm serving as yield function. This SVC algorithm is trained by using
deviatoric stresses as input data and the information whether a given stress state leads to purely elastic
or rather to elastic-plastic deformation of the material as result data. In this way, a machine learning
(ML) yield function is obtained, which can determine whether a given stress state lies inside or outside
of the elastic regime of the material. Furthermore, the yield locus, i.e., the hyperplane in stress space
on which plastic deformation occurs, can be reconstructed from the SVC, and the gradient on this yield
locus can be conveniently calculated. Therefore, the standard formulations of continuum plasticity, as
the return mapping algorithm, can be applied in finite element analysis in the usual way. Thus, it has
been demonstrated that the new ML yield function can replace conventional yield functions in finite
element analysis. The main advantage of such data-oriented constitutive models over the conventional
ones is that they can be used with higher-dimensional feature vectors combining mechanical stresses
with microstructural parameters of a material. In forthcoming work, it will thus be demonstrated how
a single ML yield function can be trained to be used as a constitutive rule for a material in different
microstructural states. The production of training data by micromechanical models, based on crystal
plasticity and a discrete representation of the material’s microstructure, allows the ML flow rule to serve
as efficient homogenization scheme, which offers new possibilities in scale-bridging material modeling.
Supplementary Materials: Supporting material in the form of a Python library for finite element analysis and a
Jupyter notebook with the codes that have been used to produce the results presented in this work are available online

at http://www.mdpi.com//xx/1/5/s1 and as a public repository on https://github.com/AHartmaier/pyLabFEA.git
under the GNU General Public License v3.0.
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