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Abstract: In the work, the problem is considered for eliminating mathematically a non-
uniform rectilinear smearing of an image, for example, a picture obtained by a fixed camera of
several cars moving at different speeds. The problem is described by a set of 1-dimensional inte-
gral equations (IEs) of a general type (not a convolution type) with a 2-dimensional point spread
function (PSF) or one 2-dimensional IE with 4-dimensional PSF. IEs are solved by the quadra-
ture/cubature method with the Tikhonov regularization. It is shown that in the case of non-
uniform smearing, the use of a set of 1-dimensional IEs is preferably of one 2-dimensional IE. In
the inverse problem (image restoration), the Gibbs effect (the effect of false waves) in the image
can take place. It can be the edge and inner. The edge effect is well suppressed by the technique
“diffusing the edges” (option 'diffusion'). In the case of an inner effect, it is difficult to eliminate
it, but image smearing itself plays the role of diffusing and suppresses the Gibbs effect. Illustra-
tive results are given.

Keywords: smeared image, non-uniform rectilinear smear, integral equations, edge and inner
Gibbs effects, MatLab
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Introduction. Consider one of the actual tasks of distorted images processing: the elimination
of image smearing by mathematical methods [1-6]. Smearing may be due to the shift of the im-
age registration device (photo camera, video camera, tracking device, etc.) or due to the move-
ment of the subject (person, car, airplane) during the exposure. The problem of mathematical
elimination of smearing consists of two tasks: a direct problem (modeling of smearing) and an
inverse problem (elimination of smearing).

In this paper, we focus on the rarely considered image smearing, which is rectilinear, but it is
non-uniform in speed when the camera or object moves during the exposure. Also, we focus on
various types of integral equations used in the inverse problem. We pay special attention to the
Gibbs effect (the effect of false waves), which often occurs in reconstructed images.

In many publications, a variant is considered for a uniform rectilinear image smearing [1, 4, 6,
7], as well as a variant of an arbitrary (non-uniform curvilinear) smearing by the method of
“blind” deconvolution [8, p. 192], [9], but the intermediate version of an non-uniform rectilinear
smearing is considered in less detail [2, 10, 11].

The purpose of this work is a comparative consideration of two variants for straight-line im-
age smearing (uniform and non-uniform) and clarification of influence of the Gibbs effect on the
quality of the reconstructed image.

Example: a smeared image of objects moving at different speeds, obtained by a fixed camera.
Note that in [2], [10, p. 160—164], the case is considered when the camera (or object) moved rec-
tilinearly at a certain speed v(t) during the exposure, where t is time. In this paper and in [11],
the case of smear A(X) is considered, where X is the spatial coordinate.

First, let us recall the well-known case of uniform smearing [4, 6, 7, 10].

Mathematical description of uniform rectilinear smearing of the image. Consider the di-
rect and inverse problems.

The direct problem [6, 7, 11] of uniform rectilinear smearing is described by the integral
X+A

0y = [wy (@, ()

where A =const is the length of smear; the x and & axes are directed along the smearing, and the
y axis is perpendicular to the smearing (acts as a parameter); wy is original unsmeared image,
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and gy is calculated (modeled) smeared image in each y-row. To calculate g according to (1),

we developed: the main program Autos.m, m-functions smearing.m [6] (for an arbitrary smear
angle 0) and smear.m [11] (for 6 =0). In the MatLab system there are m-functions fspecial.m
and imfilter.m for modeling g [8].

The inverse problem. The inverse (more important and complex) problem can be solved by
two approaches.

In the first approach, to eliminate the smearing, a set of 1-dimensional Fredholm integral
equations of the first kind of convolutional type (for each value of'y) is solved [6, 7]:

[r(x-8)wy(@)de=gy(x), -w<x<o, )
where

€)

IE (2) is obtained from relation (1); the X and & axes are directed along the smearing; h is the
mathematical kernel of the IE, and physically and technically it is the point spread function
(PSF) [3, 4, 6, 9]. The function h usually is differential function, or spatially invariant function,
which means that the smearing is uniform and the length of smear A is the same at all points of
the image (A = const).

The problem of solving IE (2) is incorrect [12, 13]. We use the stable method of Tikhonov’s
regularization (TR) with the Fourier transform (FT) [4, 6, 7, 14]:

) :{I/A, ~A<x<0,

0, otherwise.

Way(8) =5 [Way(@)e o5 do , @
where
H(-»)Gy (o)
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is the regularized Fourier spectrum, or FT of solution; H(w)=F(h(X)) and Gy(w)=F(gy(x))

Wery (@)= )

are Fourier spectra of functions h(X) and gy(X), where F is the sign of FT; o >0 is regulariza-
tion parameter; P =0 is regularization order (usually p=1 or 2). Several ways have been de-

veloped for choosing the regularization parameter o: the discrepancy principle, the method of
training examples, the selection method, etc. [6, 10, 12, 14]. To calculate the reconstructed image
using formulas (4)—(5), we developed the m-function desmearingf.m [6].

In the second approach, to eliminate the smearing (as well as defocusing), a 2-dimensional
Fredholm integral equations of the first kind of convolution type is used (cf. (2)) [6, 7, 10, 11]:

[ Jhox=&y-mwEmdedn=g(xy), -o<xy<wo, (6)
moreover, the X and & axes are directed horizontally, and y and 1 are directed vertically down-
ward. PSF h is displayed on the plane (X, Y) as a narrow strip [6, p. 112].

In this approach, the direct problem is calculated using the m-functions fspecial.m and
imfilter.m [8]. And the solution of the 2-dimensional IE (6) (the inverse problem) by the TR

method and the 2-dimensional FT is equal to wg (X, Y) = F (W (01,®2)), where F~! is the
inverse Fourier transform (IFT), or

Wa (X,Y) =4L _[ _[ (01,07 ) e 1(@X+02Y) ey de, 7

In (7) Wq (o1,m2) is the regularized spectrum (2-dimensional FT) of the solution, equal to
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where H(wp,mp)= F(h(X, y)), G(o,mp) = F(g(x, y)) The MatLab contains the m-function

deconvreg.m [8] for solving IE (6) by the TR and FT methods according to (7)—(8).

We give the well-known formulas (1)—(8) in order to compare the various approaches below.

Mathematical description of non-uniform rectilinear smearing of the image. Taking into
account the formulas (1)—(8), consider non-uniform rectilinear smearing of the image along the
direction of the smearing. Let us consider two approaches.

The first (temporal) approach [2, 10]. In this approach, the speed of object (or camera)
moving is assumed to be known as a function v(t) of time t €[0,t], where T is the exposure

time. This approach was considered in detail in [15], and we will consider
The second (spatial) approach [11]. Let the dependence A = A(X) of the smear A on the X

coordinate, directed along the smearing, be determined from the smeared image by some way,
for example, by the method of the “blind” deconvolution [9] or by the spectral method [7].
The direct problem. In this case, the PSF h is not differential, or spatially invariant, and the
direct problem is written in the form (cf. (1)):
X+A(X)

000 =555 [y, ©)

To calculate g according to (9), we developed the m-function smear n.m [11].

The inverse problem. The inverse problem in the case of the second approach is written in
the form of a set of 1-dimensional Fredholm integral equations of the first kind of general type
(not convolutional type) for each value y [6, c. 125]:

b
Awy = [h(x,&)wy(£)de=gy(x), c<x<d, (10)
a

where A is integral operator; [a,b] and [c,d] are limits for & and x. PSF h is written as

h(x,g):{l/A(X)’ X <E<X+A(X), an

0, otherwise.

To solve the IE (10), one cannot apply the FT, since the IE (10) is not a convolutional type
equation, but the quadrature method can be applied, which reduces the IE (10) to a system of
linear algebraic equations (SLAE) for each y [6, p. 126]:

Awy =gy, (12)
where A is a matrix, associated with h (the same for all y-rows), wy is the desired vector, gy is
the right-hand side of the SLAE. A stable solution of SLAE (12) is provided by the Tikhonov
regularization method [6, p. 126]:

(al +ATA)wy, =ATgy, (13)

where o > 0 is the regularization parameter, | is the identity matrix, AT is the transposed matrix,
and wyq 1s the regularized solution in the y-row, equal to
wyg = (ol + ATA)"TATg, . (14)
For the computer realization of the formulas (10)—-(14), we developed the m-function
desmearq_n.m [11]. Note that the quadrature method with Tikhonov’s regularization (12)—(14)
can be used also to solve IE of convolution type (2) with PSF (3), i.e. for uniform smearing. For
this, the m-function desmearq.m has been developed.

The inverse problem in the framework of the second approach can be written also in the form
of a 2-dimensional Fredholm IE of the first kind of general type [14] (cf. (6), (12)):
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Aw=[[h(x.&ymwEn)dedn=g(x,y), a<x<h, c<y<d. (15)
ac

Equation (15) can be solved by the quadrature method (more precisely, cubature) (cf. [14, p.
167]). According to this method, each of the integrals in (15) is replaced by a finite sum on dis-
crete grids of nodes in X, &, y, n and we obtain a SLAE with a 4-dimensional matrix A and a 2-di-
mensional right-hand side g. To solve such a SLAE, it is necessary to transform the 4-dimensi-
onal matrix A into a 2-dimensional one, 2-dimensional right-hand side g to transform into a 1-di-
mensional one, and to transform the resulting 1-dimensional solution w into 2-dimensional one.
Although solving a 2-dimensional IE by the cubature method took place [14, p. 167-169], never-
theless, this is a cumbersome method and its application to restore a non-uniform smeared image
is difficult.

As a result, it should be recognized that the most effective methodology in the case of non-
uniform smearing is the methodology (10)—(14), based on line-by-line image processing by solv-
ing for each y 1-dimensional IE (10) and SLAE (12) with 2-dimensional matrix.

Illustrative example. The following numerical example was solved. Fig. 1 shows color
(RGB) and grayscale (gray) initial image I of three cars, file Autos.png. For further processing,
we selected image I (143 x1307 pixels).

Fig. 1. Initial (undistorted) images of stationary cars

Direct and inverse problems of uniform smearing with diffusing the image edges. Con-
sider the case when cars move, and move with the same speeds and therefore give the same
smears on the image: A =const =20 pixels (Fig. 2a).

(a) smeared image S with diffusion, 143x1327, A=20

Fig. 2. Direct and inverse problems of uniform smearing of the image with diffusing the edges
(option 'diffusion'). a — smeared image 143 x 1327 (A = 20 pixels);
b — image 143 x 1124 restored by the TR method (o = 10"%), oe1 = 0.0023.

When solving the inverse problem, false waves often appear on the reconstructed image — the
Gibbs effect (distortions of the “ringing” type) [11]. It is caused by a sharp difference of intensi-
ties on the image and can be edge and inner one.

To suppress the Gibbs edge effect, we proposed [16] an artificial diffusing the image edges in
a direct problem. Fig. 2a shows a smeared image according to (1) with diffuse edges by the m-
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function smear.m, and Fig. 2b shows the result of restorating a car image by the quadrature
method with Tikhonov regularization according to (12)—(14) by the m-function desmearq.m.

To numerically estimate the restoration quality, we propose the following formula for the
quantitative calculation of the relative error in the form of the standard deviation of the calculat-
ed image @ from the exact image @ [7]:

Orel = — = 5 ( 1 6)

where M is the number of rows and N is the number of columns in the image. Such an expression
for the image error can be used only in the case of model image processing when w is known
(image on Fig. 1b). Image error in Fig. 2b found equal o] =0.0023, i.e. the image was restored
well and this was facilitated by diffusing the image edges for suppressing the Gibbs edge effect.

Direct and inverse problems of non-uniform image smearing. The next step is non-
uniform image smearing. We believe that cars move with different speeds and therefore they
have different smears on the image, namely, A =15 pixels for the left car, A =20 pixels for the
middle car and A =25 pixels for the right car.

As a result, smear A(X) is a piecewise constant function:

if (1I<=360) A=15; elseif (1<=820) A=20; else A=25; (17)

where 1 =1 ... 1307 is the number of the discrete reference along X.

Fig. 3a shows a non-uniformly smeared image according to (9) and (17) with diffusing the
edges for suppressing the Gibbs edge effect using m-function smear n.

(a) smeared image Sn with diffusion, 143x1322

(b) restored image Wn, 143x1296, a=1e-3, 5 _=0.167
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Fig. 3. Direct and inverse problems of non-uniform image smearing with
diffused edges ('diffusion'). a — smeared image 143 x 1322 (A # const);
b — restored image 143 x 1296 by the TR method (o = 10_3), Orel =0167.

Fig. 3b shows the result of image restoration by the Tikhonov regularization method accord-
ing to (14) using developed m-function desmearq n.m. The image is restored well, but with a
small inner Gibbs effect between the cars on Fig. 2b. It is difficult to eliminate the inner Gibbs
effect as well as the edge effect, but the image smearing itself, which reduces the intensity dif-
ference, plays the role of diffusing and suppresses the Gibbs effect.

Conclusion. The technique is described for restorating smeared images in the case when the
smearing is non-uniform rectilinear, namely piecewise uniform one (the example: cars on a
road). In this case, it is necessary to solve a set of one-dimensional integral equations (the first
approach) or one two-dimensional IE (the second approach). In both approaches, the equations
are not convolution type IEs, so they are solved by the quadrature/cubature method with
Tikhonov’s regularization. It is shown that the first approach is more preferable than the second
approach. Numerical examples have confirmed this.
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It was also shown that to improve the image restoration quality, the diffusing of image edges
should be used to suppress the edge Gibbs effect (false-wave effect). The Gibbs effect can also
be inner. In this case, it is suppressed by image smearing, which reduces the intensity difference.

The technique can be used in practice to restore group images of several objects (people,
planes, cars) moving with different speeds and therefore receiving different smears A on the im-
age during the exposure by a fixed camera.
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