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Abstract: In the work, the problem is considered for eliminating mathematically a non-
uniform rectilinear smearing of an image, for example, a picture obtained by a fixed camera of 
several cars moving at different speeds. The problem is described by a set of 1-dimensional inte-
gral equations (IEs) of a general type (not a convolution type) with a 2-dimensional point spread 
function (PSF) or one 2-dimensional IE with 4-dimensional PSF. IEs are solved by the quadra-
ture/cubature method with the Tikhonov regularization. It is shown that in the case of non-
uniform smearing, the use of a set of 1-dimensional IEs is preferably of one 2-dimensional IE. In 
the inverse problem (image restoration), the Gibbs effect (the effect of false waves) in the image 
can take place. It can be the edge and inner. The edge effect is well suppressed by the technique 
“diffusing the edges” (option 'diffusion'). In the case of an inner effect, it is difficult to eliminate 
it, but image smearing itself plays the role of diffusing and suppresses the Gibbs effect. Illustra-
tive results are given.   

Keywords: smeared image, non-uniform rectilinear smear, integral equations, edge and inner 
Gibbs effects, MatLab 
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Introduction. Consider one of the actual tasks of distorted images processing: the elimination 
of image smearing by mathematical methods [1–6]. Smearing may be due to the shift of the im-
age registration device (photo camera, video camera, tracking device, etc.) or due to the move-
ment of the subject (person, car, airplane) during the exposure. The problem of mathematical 
elimination of smearing consists of two tasks: a direct problem (modeling of smearing) and an 
inverse problem (elimination of smearing). 

In this paper, we focus on the rarely considered image smearing, which is rectilinear, but it is 
non-uniform in speed when the camera or object moves during the exposure. Also, we focus on 
various types of integral equations used in the inverse problem. We pay special attention to the 
Gibbs effect (the effect of false waves), which often occurs in reconstructed images. 

In many publications, a variant is considered for a uniform rectilinear image smearing [1, 4, 6, 
7], as well as a variant of an arbitrary (non-uniform curvilinear) smearing by the method of 
“blind” deconvolution [8, p. 192], [9], but the intermediate version of an non-uniform rectilinear 
smearing is considered in less detail [2, 10, 11]. 

The purpose of this work is a comparative consideration of two variants for straight-line im-
age smearing (uniform and non-uniform) and clarification of influence of the Gibbs effect on the 
quality of the reconstructed image. 

Example: a smeared image of objects moving at different speeds, obtained by a fixed camera. 
Note that in [2], [10, p. 160–164], the case is considered when the camera (or object) moved rec-
tilinearly at a certain speed )(tv  during the exposure, where t is time. In this paper and in [11], 

the case of smear )(x  is considered, where x is the spatial coordinate. 
First, let us recall the well-known case of uniform smearing [4, 6, 7, 10].  
Mathematical description of uniform rectilinear smearing of the image. Consider the di-

rect and inverse problems. 
The direct problem [6, 7, 11] of uniform rectilinear smearing is described by the integral 
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where const  is the length of smear; the x and ξ axes are directed along the smearing, and the 
y axis is perpendicular to the smearing (acts as a parameter); yw  is original unsmeared image, 
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and yg  is calculated (modeled) smeared image in each y-row. To calculate g according to (1), 

we developed: the main program Autos.m, m-functions smearing.m [6] (for an arbitrary smear 
angle θ) and smear.m [11] (for 0 ). In the MatLab system there are m-functions fspecial.m 
and imfilter.m for modeling g [8]. 

The inverse problem. The inverse (more important and complex) problem can be solved by 
two approaches. 

In the first approach, to eliminate the smearing, a set of 1-dimensional Fredholm integral 
equations of the first kind of convolutional type (for each value of y) is solved [6, 7]: 
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IE (2) is obtained from relation (1); the x and ξ axes are directed along the smearing; h is the 
mathematical kernel of the IE, and physically and technically it is the point spread function 
(PSF) [3, 4, 6, 9]. The function h usually is differential function, or spatially invariant function, 
which means that the smearing is uniform and the length of smear Δ is the same at all points of 
the image ( const ). 

The problem of solving IE (2) is incorrect [12, 13]. We use the stable method of Tikhonov’s 
regularization (TR) with the Fourier transform (FT) [4, 6, 7, 14]: 
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is the regularized Fourier spectrum, or FT of solution; ))(()( xhFH   and ))(()( xgFG yy   

are Fourier spectra of functions )(xh  and )(xgy , where F is the sign of FT; 0  is regulariza-

tion parameter; 0p  is regularization order (usually 1p  or 2). Several ways have been de-

veloped for choosing the regularization parameter : the discrepancy principle, the method of 
training examples, the selection method, etc. [6, 10, 12, 14]. To calculate the reconstructed image 
using formulas (4)–(5), we developed the m-function desmearingf.m [6]. 

In the second approach, to eliminate the smearing (as well as defocusing), a 2-dimensional 
Fredholm integral equations of the first kind of convolution type is used (cf. (2)) [6, 7, 10, 11]: 

  







 yxyxgddyxh ,),,(),(),( w ,  (6) 

moreover, the x and ξ axes are directed horizontally, and y and η are directed vertically down-
ward. PSF h is displayed on the plane ),( yx  as a narrow strip [6, p. 112]. 

In this approach, the direct problem is calculated using the m-functions fspecial.m and 
imfilter.m [8]. And the solution of the 2-dimensional IE (6) (the inverse problem) by the TR 
method and the 2-dimensional FT is equal to  ),(),( 21

1   WFyxw , where 1F  is the 
inverse Fourier transform (IFT), or  
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 In (7) ),( 21 W  is the regularized spectrum (2-dimensional FT) of the solution, equal to 
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where )( ),(),( 21 yxhFH  , )( ),(),( 21 yxgFG  . The MatLab contains the m-function 

deconvreg.m [8] for solving IE (6) by the TR and FT methods according to (7)–(8).  
We give the well-known formulas (1)–(8) in order to compare the various approaches below. 
Mathematical description of non-uniform rectilinear smearing of the image. Taking into 

account the formulas (1)–(8), consider non-uniform rectilinear smearing of the image along the 
direction of the smearing. Let us consider two approaches. 

The first (temporal) approach [2, 10]. In this approach, the speed of object (or camera) 
moving is assumed to be known as a function )(tv  of time ],0[ t , where  is the exposure 
time. This approach was considered in detail in [15], and we will consider 

The second (spatial) approach [11]. Let the dependence )(x  of the smear Δ on the x 
coordinate, directed along the smearing, be determined from the smeared image by some way, 
for example, by the method of the “blind” deconvolution [9] or by the spectral method [7]. 

The direct problem. In this case, the PSF h is not differential, or spatially invariant, and the 
direct problem is written in the form (cf. (1)): 
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To calculate g according to (9), we developed the m-function smear_n.m [11].  
The inverse problem. The inverse problem in the case of the second approach is written in 

the form of a set of 1-dimensional Fredholm integral equations of the first kind of general type 
(not convolutional type) for each value y [6, с. 125]: 
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where A is integral operator; ],[ ba  and ],[ dc  are limits for ξ and x. PSF h is written as  
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To solve the IE (10), one cannot apply the FT, since the IE (10) is not a convolutional type 
equation, but the quadrature method can be applied, which reduces the IE (10) to a system of 
linear algebraic equations (SLAE) for each y [6, p. 126]:  
 yy gA w , (12) 

where A is a matrix, associated with h (the same for all y-rows), yw  is the desired vector, yg  is 

the right-hand side of the SLAE. A stable solution of SLAE (12) is provided by the Tikhonov 
regularization method [6, p. 126]:  
 y

T
y
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where 0  is the regularization parameter, I is the identity matrix, TA is the transposed matrix, 
and yw  is the regularized solution in the y-row, equal to  

 y
TT
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For the computer realization of the formulas (10)–(14), we developed the m-function 
desmearq_n.m [11]. Note that the quadrature method with Tikhonov’s regularization (12)–(14) 
can be used also to solve IE of convolution type (2) with PSF (3), i.e. for uniform smearing. For 
this, the m-function desmearq.m has been developed. 

The inverse problem in the framework of the second approach can be written also in the form 
of a 2-dimensional Fredholm IE of the first kind of general type [14] (cf. (6), (12)):   
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Equation (15) can be solved by the quadrature method (more precisely, cubature) (cf. [14, p. 
167]). According to this method, each of the integrals in (15) is replaced by a finite sum on dis-
crete grids of nodes in x, ξ, y, η and we obtain a SLAE with a 4-dimensional matrix A and a 2-di-
mensional right-hand side g. To solve such a SLAE, it is necessary to transform the 4-dimensi-
onal matrix A into a 2-dimensional one, 2-dimensional right-hand side g to transform into a 1-di-
mensional one, and to transform the resulting 1-dimensional solution w into 2-dimensional one. 
Although solving a 2-dimensional IE by the cubature method took place [14, p. 167–169], never-
theless, this is a cumbersome method and its application to restore a non-uniform smeared image 
is difficult.  

As a result, it should be recognized that the most effective methodology in the case of non-
uniform smearing is the methodology (10)–(14), based on line-by-line image processing by solv-
ing for each y 1-dimensional IE (10) and SLAE (12) with 2-dimensional matrix. 

Illustrative example. The following numerical example was solved. Fig. 1 shows color 
(RGB) and grayscale (gray) initial image I of three cars, file Autos.png. For further processing, 
we selected image I ( 1307143  pixels).  

 
Fig. 1. Initial (undistorted) images of stationary cars 

Direct and inverse problems of uniform smearing with diffusing the image edges. Con-
sider the case when cars move, and move with the same speeds and therefore give the same 
smears on the image: 20const   pixels (Fig. 2a). 

 
Fig. 2. Direct and inverse problems of uniform smearing of the image with diffusing the edges 

(option 'diffusion'). a – smeared image 143 × 1327 (Δ = 20 pixels);  
b – image 143 × 1124 restored by the TR method (α = 10–6),  00230rel . . 

When solving the inverse problem, false waves often appear on the reconstructed image – the 
Gibbs effect (distortions of the “ringing” type) [11]. It is caused by a sharp difference of intensi-
ties on the image and can be edge and inner one.  

To suppress the Gibbs edge effect, we proposed [16] an artificial diffusing the image edges in 
a direct problem. Fig. 2a shows a smeared image according to (1) with diffuse edges by the m-
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function smear.m, and Fig. 2b shows the result of restorating a car image by the quadrature 
method with Tikhonov regularization according to (12)–(14) by the m-function desmearq.m.  

To numerically estimate the restoration quality, we propose the following formula for the 
quantitative calculation of the relative error in the form of the standard deviation of the calculat-
ed image w~ from the exact image w  [7]: 
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where M is the number of rows and N is the number of columns in the image. Such an expression 
for the image error can be used only in the case of model image processing when w  is known 
(image on Fig. 1b). Image error in Fig. 2b found equal 00230rel . , i.e. the image was restored 
well and this was facilitated by diffusing the image edges for suppressing the Gibbs edge effect. 

Direct and inverse problems of non-uniform image smearing. The next step is non-
uniform image smearing. We believe that cars move with different speeds and therefore they 
have different smears on the image, namely, 15  pixels for the left car, 20  pixels for the 
middle car and 25  pixels for the right car. 

As a result, smear )(x  is a piecewise constant function: 
 if (i<=360) Δ=15; elseif (i<=820) Δ=20; else Δ=25;  (17) 
where i = 1 ... 1307 is the number of the discrete reference along x.  

Fig. 3a shows a non-uniformly smeared image according to (9) and (17) with diffusing the 
edges for suppressing the Gibbs edge effect using m-function smear_n. 

 
Fig. 3. Direct and inverse problems of non-uniform image smearing with  
diffused edges ('diffusion'). a – smeared image 143 × 1322 (Δ ≠ const);  

b – restored image 143 × 1296 by the TR method ( = 10–3), 1670rel . . 

Fig. 3b shows the result of image restoration by the Tikhonov regularization method accord-
ing to (14) using developed m-function desmearq_n.m. The image is restored well, but with a 
small inner Gibbs effect between the cars on Fig. 2b. It is difficult to eliminate the inner Gibbs 
effect as well as the edge effect, but the image smearing itself, which reduces the intensity dif-
ference, plays the role of diffusing and suppresses the Gibbs effect. 

Conclusion. The technique is described for restorating smeared images in the case when the 
smearing is non-uniform rectilinear, namely piecewise uniform one (the example: cars on a 
road). In this case, it is necessary to solve a set of one-dimensional integral equations (the first 
approach) or one two-dimensional IE (the second approach). In both approaches, the equations 
are not convolution type IEs, so they are solved by the quadrature/cubature method with 
Tikhonov’s regularization. It is shown that the first approach is more preferable than the second 
approach. Numerical examples have confirmed this. 
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It was also shown that to improve the image restoration quality, the diffusing of image edges 
should be used to suppress the edge Gibbs effect (false-wave effect). The Gibbs effect can also 
be inner. In this case, it is suppressed by image smearing, which reduces the intensity difference. 

The technique can be used in practice to restore group images of several objects (people, 
planes, cars) moving with different speeds and therefore receiving different smears Δ on the im-
age during the exposure by a fixed camera.   
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