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Abstract

The conjecture attributed to Norman L. Gilbreath, but formulated
by Francois Proth in the second half of the 1800s, concerns an interest-
ing property of the ordered sequence of prime numbers P . Gilbreath’s
conjecture stated that, computing the absolute value of differences of
consecutive primes on ordered sequence of prime numbers, and if this
calculation is done for the terms in the new sequence and so on, every
sequence will starts with 1. In this paper is defined the concept of
Gilbreath’s sequence, Gilbreath’s triangle and Gilbreath’s equation.
On the basis of the results obtained from the proof of properties, an
inductive proof is produced thanks to which it is possible to estab-
lish the necessary condition to state that the Gilbreath’s conjecture is
true.

1 Introduction to Gilbreath’s conjecture

Let the ordered sequence P = {2, 3, 5, 7, 11, 13, 17, ...} = {p1, ..., pn, ...} formed
by prime numbers, and set pba = |pb−1a+1 − pb−1a | where b > 1. Gilbreath con-
jectured that every term pb1 = 1. In this notation, the elements of P should
be indicated with {p01, ..., p0n, ...}. For brevity, the superscript with b = 0 is
omitted. It is likely that this conjecture is satisfied by many other sequences
of integers, so it is necessary to define the general properties of all sequences
that satisfy this conjecture.
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2 Gilbreath’s sequence

Definition 1. Let a sequence S = {s1, s2, s3, . . . , sn} a sequence formed by
integer number and sba = |sb−1a+1 − sb−1a |. S is defined a Gilbreath’s sequence if
sb1 = 1∀b > 1. If S is a Gilbreath’s sequence hence S ∈ Gn where Gn is the
set of all the Gilbreath’s sequences of length n.

Let, for example, S = {2, 3, 5, 7, 11, 13, 17} a sequence of length n = 7,
the Gilbreath’s triangle of S is defined by sba = |sb−1a+1 − sb−1a |. Hence:

s1 s2 s3 s4 ... sn−3 sn−2 sn−1 sn
s11 s12 s13 s14 ... s1n−3 s1n−2 s1n−1
...
sn−21 sn−22

sn−11

or
1 2 2 4 2 4
1 0 2 2 2
1 2 0 0
1 2 0
1 2
1

The first term of every sequence is equal to 1, hence S ∈ G7.

Theorem 1. Let a sequence S = {s1, ..., sn} ∈ Gn and a sequence S ′ =
{s1, ..., sn−1}, then S ′ ∈ Gn−1.

Proof. The Gilbreath’s triangle associated with S:
s1 s2 s3 s4 ... sn−3 sn−2 sn−1 sn
s11 s12 s13 s14 ... s1n−3 s1n−2 s1n−1
...
sn−21 sn−22

sn−11

where s11 = ... = sn−21 = sn−11 = 1 as a consequence of S ∈ Gn. Removing the
last element of each sequence gives:

s1 s2 s3 s4 ... sn−3 sn−2 sn−1
s11 s12 s13 s14 ... s1n−3 s1n−2
...
sn−21

which is the Gilbreath’s triangle of S ′, s11 = ... = sn−21 = 1 as a consequence
of S ∈ Gn, hence S ′ ∈ Gn−1.
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Theorem 2. Let a sequence S = {s1, ..., sn} ∈ Gn and a sequence S ′ =
{s1, ..., sn, k}, than S ′ ∈ Gn+1 ⇔ k ∈ KS.

Proof. The Gilbreath’s triangle associated with S:
s1 s2 s3 s4 ... sn−3 sn−2 sn−1 sn
s11 s12 s13 s14 ... s1n−3 s1n−2 s1n−1
...
sn−21 sn−22

sn−11

where s11 = ... = sn−21 = sn−11 = 1 as a consequence of S ∈ Gn. The
Gilbreath’s triangle of S ′:

s1 s2 s3 s4 ... sn−3 sn−2 sn−1 sn k
s11 s12 s13 s14 ... s1n−3 s1n−2 s1n−1 |sn − k|
...
sn−21 sn−22 |sn−33 − |sn−44 − |...− |s1n−1 − |sn − k||...|||
sn−11 |sn−22 − |sn−33 − |sn−44 − |...− |s1n−1 − |sn − k||...||||
|sn−11 − |sn−22 − |sn−33 − |sn−44 − |...− |s1n−1 − |sn − k||...|||||

where s11 = ... = sn−21 = sn−11 = 1 as a consequence of S ∈ Gn and if also
sn1 = |sn−11 − |sn−22 − |sn−33 − |sn−44 − |... − |s1n−1 − |sn − k||...||||| = 1, then
S ′ ∈ Gn+1.

|sn−11 − |sn−22 − |sn−33 − |sn−44 − |...− |s1n−1 − |sn − k||...||||| = 1 (1)

is defined as the Gilbreath’s equation of S and KS = {k1, ..., k2n} is defined
as the set of all solutions for k.

Corollary 1. Let a sequence S = {s1, ..., sn} ∈ Gn and a sequence S ′ =
{s1, ..., sn, k}, then there are 2n values of k that satisfy S ′ ∈ Gn+1.

Proof. The Gilbreath’s equation is a 2n degree equation, then there are 2n

value of k that satisfy the equation (1). The solutions are:

k1,. . . ,2n = ±sn−11 ± sn−22 ± sn−33 ± sn−44 ± ...± s1n−1 + sn ± 1 (2)

With respect to KS, the largest value that solves the equation is maxKS =
sn−11 +sn−22 +sn−33 +sn−44 + ...+s1n−1+sn+1 and the smallest value that solves
the equation is minKS = −sn−11 − sn−22 − sn−33 − sn−44 − ...− s1n−1 + sn − 1 =
2sn −maxKS. A remarkable relation is:

maxKS + minKS = 2sn (3)
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Corollary 2. Let a sequence S = {s1, ..., sn} ∈ Gn and a sequence S ′ =
{s1, ..., sn, sn}, than S ′ ∈ Gn+1.

Proof. The Gilbreath’s equations of S ′ with k = sn is:
|sn−11 − |sn−22 − |sn−33 − |sn−44 − |... − |s1n−1|...||||| = 1 which is true because
S ∈ Gn, hence S ′ ∈ Gn+1.

It is useful, for the following proofs to introduce the definition of two
important Gilbreath’s sequences. Let a sequence S = {s1, ..., sn}, from re-
lation (2), any value of k cannot be greater than maxKS, so the sequence
{s1, ..., sn,maxKS} is the upper bound sequence for the sequence {s1, ..., sn}.
The new sequence S ′ = {s1, ..., sn,maxKS, k} will have the upper limit
for k = maxK{s1,...,sn,maxKS}. Equally, let a sequence S = {s1, ..., sn},
from relation (2), any value of k cannot be smaller than minKS and the
new sequence S ′ = {s1, ..., sn,minKS, k} will have the lower limit for k =
minK{s1,...,sn,minKS}. From this example, it is now possible to introduce the
definition of upper bound sequence and lower bound sequence.

Definition 2. Let the sequence S = {s1, ..., sn} ∈ Gn

US := {s1, ..., sn,maxK{s1,...,sn},maxK{s1,...,sn,maxK{s1,...,sn}}, ...} = {uS1 , ..., uSm , ...}
(4)

is the upper bounds sequence for any S.

Definition 3. Let the sequence S = {s1, ..., sn} ∈ Gn

LS := {s1, ..., sn,minK{s1,...,sn},minK{s1,...,sn,minK{s1,...,sn}}, ...} = {lS1 , ..., lSm , ...}
(5)

is the lower bounds sequence for any S.

From definition 2, definition 3, corollary 2 and (3)

S = {s1, ..., sn} ∈ Gn =⇒ l{s1,...,sm} 6 sm+1 6 u{s1,...,sm}, where m 6 n− 1
(6)

Lemma 1. Let a sequence S = {s1, ..., sn} ∈ Gn where s1 ∈ 2Z, then
{s2, ..., sn} ⊂ (2Z + 1)n−1

Proof. Let S1 = {s1}, where s1 ∈ 2Z. From theorem 2, corollary 1: S2 =
{s1, k} ∈ G2 if k = s1±1 ∈ 2Z+1. Now let the sequence S3 = {s1, s1±1, k},
from theorem 2, corollary 1, S3 ∈ G3 if k = |±1|+(s1 ± 1)±1 = 1+s1±1±1.

4

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2020                   doi:10.20944/preprints202003.0145.v1

https://doi.org/10.20944/preprints202003.0145.v1


From the previous step, s1±1 ∈ 2Z+1, hence 1+s1±1 ∈ 2Z and 1+s1±1±1 ∈
2Z+1. Iteratively, this can be proved for every element of S. Hence if S ∈ Gn

and the first element of S is an even number, then all the other numbers of
the sequence must be odd.

Lemma 2. Let a sequence S = {s1, ..., sn} ∈ Gn where s1 ∈ 2Z + 1, then
{s2, ..., sn} ⊂ (2Z)n−1

Proof. Let S1 = {s1}, where s1 ∈ 2Z+ 1. From theorem 2, corollary 1: S2 =
{s1, k} ∈ G2 if k = s1±1 ∈ 2Z. Now let the sequence S3 = {s1, s1±1, k}, from
theorem 2, corollary 1, S3 ∈ G3 if k = |±1|+(s1 ± 1)±1 = 1+s1±1±1. From
the previous step, s1±1 ∈ 2Z, hence 1+s1±1 ∈ 2Z+1 and 1+s1±1±1 ∈ 2Z.
Iteratively, this can be proved for every element of S. Hence if S ∈ Gn and
the first element of S is an odd number, then all the other numbers of the
sequence must be even.

Definition 4. Let A1 = 2Z and A2 = 2Z + 1, both sets are represented as
A1,2 = 2Z +

(
1
2
± 1

2

)
.

Lemma 3. Let S = {s1, ..., sn} ∈ Gn where s1 ∈ 2Z +
(
1
2
± 1

2

)
, then

{s2, ..., sn} ⊂
[
2Z +

(
1
2
∓ 1

2

)]n−1
Proof. Is a direct conseguence of lemma 1 and lemma 2.

Lemma 4. Let a sequence S = {s1, ..., sn, k} ∈ Gn+1 where s1 ∈ 2Z +(
1
2
± 1

2

)
, then KS =

{
x ∈] minKS; maxKS[∧x ∈ 2Z +

(
1
2
∓ 1

2

) }
Proof. From theorem 2, corollary 1, there are 2n values of k that satisfy
S ∈ Gn+1 and from definition 2 and definition 3, minKS 6 k 6 maxKS. KS

is defined as the set of all solutions of k, hence it contais elements between
minKS and maxKS. From lemma 3 it has already been shown that if s1 ∈ 2Z,
than sa ∈ 2Z+1,∀a > 1 and if s1 ∈ 2Z+1, than sa ∈ 2Z, ∀a > 1, the theorem
is proved from theorem 2, definition 2, definition 3 and lemma 3.

From lemma 4 is proved an important result regarding (2). (2) generates
2n solutions for a sequence S = {s1, ..., sn, k}, but from lemma 43 it has been
proved that these solutions are only even or only odd according to the nature
of the sequence. Therefore, the number of distinct solutions generated by (2)
is 2n−1 since half solutions between minKS and maxKS are equally divided
between even and odd: dimKS = 2n−1.
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Theorem 3. Let a sequence S = {s1, ..., sn} ∈ Gn and S ′ = {s1, ..., sn, k},
where s1 ∈ 2Z +

(
1
2
± 1

2

)
, then k ∈] minKS; maxKS[∧k ∈ 2Z +

(
1
2
∓ 1

2

)
⇔

S ′ ∈ Gn+1

Proof. From definition 2 and definition 3, k ∈] minKS; maxKS[ and from
lemma 4, k ∈ 2Z +

(
1
2
∓ 1

2

)
. Hence it is true k ∈] minKS; maxKS[∧k ∈

2Z +
(
1
2
∓ 1

2

)
⇒ S ′ = {s1, ..., sn, k} ∈ Gn+1.

Suppose that S ′ ∈ Gn+1 but k ∈] minKS; maxKS[∧k ∈ 2Z +
(
1
2
∓ 1

2

)
is

false, so it is true k /∈] minKS; maxKS[∨k /∈ 2Z +
(
1
2
∓ 1

2

)
. From defi-

nition 2, definition 3 and lemma 4 it is not possible to have S ′ ∈ Gn+1

if k > maxKS ∨ k 6 minKS ∨ k /∈ 2Z +
(
1
2
∓ 1

2

)
. Hence it is also true

k ∈] minKS; maxKS[∧k ∈ 2Z +
(
1
2
∓ 1

2

)
⇐ S ′ = {s1, ..., sn, k} ∈ Gn+1.

2.1 Notable upper and lower bound sequence

Definition 5. Let the sequence S = {s1, ..., sn} ∈ Gn,

U ′S := {maxK{s1,...,sn},maxK{s1,...,sn,maxK{s1,...,sn}}, ...} = {u′S1
, ..., u′Sm , ...}

(7)

Definition 6. Let the sequence S = {s1, ..., sn} ∈ Gn,

L′S := {minK{s1,...,sn},minK{s1,...,sn,minK{s1,...,sn}}, ...} = {l′S1
, ..., l′Sm , ...} (8)

From definition 5 and definition 6 US = {S, U ′S} and LS = {S, L′S}. Let
S = {s1}, U ′S = {s1 + 1, s1 + 3, ..., s1 + 2n−1 − 1} and L′S = {s1 − 1, s1 −
3, ..., s1 − 2n−1 + 1}.

No remarkable expression was found to be to analytically define the trend
of U ′S and L′S for a generic sequence S but it was observed that the exponential
trend is preserved. However, this trend varies with the number of terms of
U ′S and L′S so it does not seem possible to establish what will be the n+ 1-th
term of U ′S and L′S given the previus n terms through an analytical formula.
However, it is always possible use the recursive espression (2).

Let the sequence S = {s1, ..., sn} ∈ Gn, using definition 2, definition 3,
definition 5, definition 6, the (3) can be rewritten as:

uSn+m + lSn+m = u′Sm + l′Sm = 2sn (9)

equivalent to (6).
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If it is true that exponential trend is preserved, elements of U ′S can be
written in the form u′Sn = αeβn or log u′Sn = logα + βn.

The best fit for a dataset D = {d1, ..., dn} in a linear regression model is

β =
n
∑n

i=1 i log di −
∑n

i=1 i
∑n

i=1 log di

n
∑n

i=1 i
2 − (

∑n
i=1 i)

2 =
12

n(n2 − 1)

(
n∑
i=1

i log di −
n+ 1

2

n∑
i=1

log di

)
(10)

logα =
1

n

n∑
i=1

log di −
β(n+ 1)

2
(11)

hence

α = e−
β(n+1)

2

(
n∏
i=1

di

) 1
n

(12)

and the coefficient of determination is

R2 = 1−
∑n

i=1

(
di − αeβi

)2∑n
i=1

(
di − d

)2 (13)

Note that in D if |da| < |da+1| and da < 0, it is not possible to calculate log db,

where b > a. To avoid this problem the transformation di → di+
d1
2

(
d1
|d1| − 1

)
is performed. In this way, if d1 > 0, di → di and if d1 < 0, di → di − d1.
After that, the fitting curve will be dn = αeβn − d1

2

(
d1
|d1| − 1

)
.

Example 1. Let the sequence S = {2, 3, 5, 7, 11, 13} of length 6, the first 18
terms of the upper bound sequence are U ′S = {21, 47, 119, 297, 705, 1595, 3475,
7365, 15309, 31399, 63823, 128961, 259577, 521203, 1044907, 2092829, 4189253,
8382751} and the first 18 terms of the lower bound sequence are L′S =
{5,−21,−93,−271,−679,−1569,−3449,−7339,−15283,−31373,−63797,
− 128935,−259551,−521177,−1044881,−2092803,−4189227,−8382725}.

According to (6) and to (9), 21 + 5 = 47− 21 = 119− 93 = 297− 271 =

... = 8382751− 8382725 = 26 = 2s6. Let begin fitting U ′S to αU ′Se
βU′
S
n
. From

(10), βU ′S = 6
2907

(∑18
i=1 i log u′Si −

19
2

∑18
i=1 log u′Si

)
≈ 0.75,

from (12) αU ′S = e−
β(19)

2

(∏18
i=1 u

′
Si

) 1
18 ≈ 14.42. The model fits the trend of u′Sn

with R2 ≈ 0.92 from (13). As regards L′S, from (6), l′Sn = 2s6 − αU ′Se
βU′
S
n ≈

26− 14.42e0.75n ≈ −7.97e0.80n with R2 ≈ 0.99.
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As explained above, the addition of a term to U ′S leads to new values of
α and β, therefore this analysis can be carried out without pretending to
evaluate the n+ 1-th element of a given U ′S of length n.

The numerical analysis of the values of the upper limit sequence was
added only to show that no analytical formula has been found for the gener-
ations of the values of this sequence, with exception of (2).

3 Proof of conditions for P = {p1, ..., pn}
Let S = {s1, ..., sn} = {f (n)}, from theorem 1 and 2, is true the following.
The relationship s2 = s1 ± 1 must be true, otherwise it would not be true
that s11 = 1, hence f (2) = f (1)± 1. As a consequence of theorem 3, for all
elements subsequent to s1, the absolute difference of two successive elements
must be an integer multiple of 2 so as to maintain the absolute difference
of two successive elements as an even value. So, if the first element in the
sequence is even, the subsequent elements must be odd and if the first element
is odd, the subsequent elements must be even.

As a consequence of theorem 2, solution of the Gilbreath’s equation (2)
and definition 2 and definition 3: each n-th element of a sequence S must
be within the range between the upper and the lower sequences calculated
on all the elements prior to the n-th ones. Hence, from theorem 2 and
according to the solution of the Gilbreath’s equation at (2), cannot exists a
Gilbreath’s sequence in which the n-th is larger than maxK{s1,...,sn−1}, since
maxK{s1,...,sn−1} is the maximum value that the n-th value can take according
to (2). The same goes for minK{s1,...,sn−1}, since it is the smallest value that
the n-th value can take, according to (2). Hence:

l{s1,...,sn−1}n 6 f(n) 6 u{s1,...,sn−1}n (14)

Following the results obtained in the previous paragraphs about Gilbreath’s
sequence and Gilbreath’s equation, let proceed discussing the Gilbreath’s
conjecture. The results obtained so far will be used to establish if theorem
(4) is true for an ordered sequence of prime numbers P .

Theorem 4. For every n-th prime number, n > 1 it is true that l{p1,...,pn−1}n 6
pn 6 u{p1,...,pn−1}n.

8
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Proof. By definition of L and U , l{p1,...,pn−1}n = minK{p1,...,pn−1} and u{p1,...,pn−1}n =
maxK{p1,...,pn−1}, hence the statement becomes:

minK{p1,...,pn−1} 6 pn 6 maxK{p1,...,pn−1} (15)

Let S = {p1, p2} = {2, 3} ∈ G2 a Gilbreath’s sequence formed by the first
two prime numbers. As S ∈ G2, from (3), it is true that minK{p1,p2} 6 p2 6
maxK{p1,p2}, it is also true, for theorem 2 corollary 3, that {p1, p2, p2} ∈ G3

and for every prime number is true that pn > pn−1. Since minK{p1,p2} 6 p2,
it is certainly true that minK{p1,p2} 6 p3. The left inequality of (15) is proved
for n = 3.
If p3 6 maxK{p1,p2}, then, subtracting the quantity 2p2 from both sides,
p3− 2p2 6 maxK{p1,p2}− 2p2. From Bertrand’s postulate, pn < 2pn−1, hence
p3 − 2p2 < 0. Replacing (3) in the previous inequation: minK{p1,p2} 6 α,
where α > 0. Hence, exist a value α > 0 such that minK{p1,p2} 6 α. The
value of minK{p1,p2} can be replaced using (2): minK{p1,p2} = −p11 + p2 − 1
where −p11−1 < 0 and p2 > 0. If α = p2, the relation minK{p1,p2} 6 α, where
α > 0 is true, hence it is true that p3 6 maxK{p1,p2}. The right inequality of
(15) is proved for n = 3.

At this point the proof can process showing that (15) is true for n = 4.
Since, p4 > p3 and minK{p1,p2,p3} 6 p3 6 maxK{p1,p2,p3}, it is true that
minK{p1,p2,p3} 6 p4. Again, the statement p4 6 maxK{p1,p2,p3} is equivalent
to the statement minK{p1,p2,p3} 6 α, where α > 0. From the equation (2),
minK{p1,p2,p3} = −p21 − p12 + p3 − 1 where −p21 − p12 − 1 < 0 and p3 > 0. If
α = p3, the relation minK{p1,p2,p3} 6 α, where α > 0. Iteratively, this can be
proved to verify (15) for every prime.

Lemma 3 is already proved since p1 = 2 is even and all other elements are
odd: by definition of prime number, there are no even prime numbers except
for 2. From theorem 4 and lemma 3 is proved theorem 3 for P .
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