
A NEW GENERALIZATION OF FIBONACCI AND LUCAS TYPE
SEDENIONS
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Abstract. In this paper, by using the q−integer, we introduce a new generalization of Fi-
bonacci and Lucas sedenions called q−Fibonacci and q−Lucas sedenions. We present some
fundamental properties of these type of sedenions such as Binet formulas, exponential gen-
erating fuctions, summation formulas, Catalan’s identity, Cassini’s identity and d’Ocagne’s
identity.

1. Introduction

The set of Sedenions, denoted by S, are 16−dimensional algebra. Sedenions are noncom-
mutative and nonassociative algebra over the set of real numbers, obtained by applying the
Cayley—Dickson construction to the octonions. Like octonions, multiplication of sedenions are
not neither commutative and associative. Sedenions appear in many areas of science, such as
electromagnetic theory, linear gravity and the field of quantum mechanics [1—6].
A sedenion is defined by

p =

15∑
i=0

qiei,

where q0, q1, ..., q15 ∈ R and e0, e1, ..., e15 are called unit sedenion such that e0 is the unit
element and e1, e2, ..., e15 are imaginaries satisfying, for i, j, k = 1, 2, . . . , 15 the following
multiplication rules:

e0ei = eie0 = ei, (ei)
2 = −e0, (1.1)

eiej = −ejei, i 6= j, (1.2)

ei (ejek) = − (eiej) ek, i 6= j, eiej 6= ±ek. (1.3)

The addition of sedenions is defined as componentwise and for p1, p2 ∈ S, the multiplication
is defined as follows:

p1p2 =

(
15∑
i=0

aiei

) 15∑
j=0

bjej


=

15∑
i,j=0

aibj (eiej) ,

where eiej satisfies the identities (1.1), (1.2) and (1.3). Interestingly, in [4] the authors defined
and studied an effi cient algorithm for the multiplication of sedenions.
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2 CAN KIZILATEŞ AND SELIHAN KIRLAK

For a, b, p, q ∈ R, the Horadam numbers hn = hn(a, b; p, q) are defined by the following
recurrence relations

hn = phn−1 + qhn−2, h0 = a, h1 = b.

Some special cases of the Horadam sequence hn(a, b; p, q) are as following table:

a b p q Sequence
0 1 1 1 Fibonacci sequence; Fn
2 1 1 1 Lucas sequence; Ln
0 1 2 1 Pell sequence; Pn
2 2 2 1 Pell-Lucas sequence; PLn
0 1 k 1 k−Fibonacci sequence; Fk,n
2 1 k 1 k−Lucas sequence; Lk,n
0 1 1 2 Jacobsthal sequence; Jn
2 1 1 2 Jacobsthal-Lucas sequence; jn
0 1 2 k k−Pell sequence; Pk,n
2 2 2 k k−Pell-Lucas sequence; PLk,n

Table 1: Special cases of the Horadam sequence
The Binet formula of the Horadam number is given by, for n ≥ 0,

hn =
Aαn −Bβn

α− β ,

where A = b− aβ, B = b− aα, α and β are the roots of the x2− px− q = 0. We note that the
above numbers have been studied in the literature widely and extensively (see, for example,
[7—10]). Now, we talk about some notations related to q−calculus. For x ∈ N0, we give the
q−integer [x]q

[x]q =
1− qx
1− q = 1 + q + q2 + ...+ qx−1. (1.4)

From (1.4), for all x, y ∈ Z, we can easily find that
[x+ y]q = [x]q + qx[y]q.

Many of the papers on quantum (q−) calculus which has been provided by the mathematicians
in the past for the purpose of application to the branches of mathematics such as combinatorics,
differential equations as well as in other areas in physics, probability theory and so on. For
further information, we specially refer to books in [11, 12].
Several generalizations of the well-known sedenions such as Fibonacci sedenions, Lucas

sedenions, k−Pell and k−Pell-Lucas sedenions, Jacobshtal and Jacobshtal-Lucas sedenions,
and so on have been studied by several researchers. For example, in [13], the authors defined
the Fibonaccci and Lucas sedenions

F̂n =

15∑
s=0

Fn+ses,

and

L̂n =
15∑
s=0

Ln+ses.

Then they also obtained the generating functions, Binet-Like formulas and some interesting
identities related to Fibonacci and Lucas sedenions. For more detailed information, please
refer to the closely related to the paper [13—16].
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SEDENIONS 3

Akkus and Kizilaslan [17], defined a more general quaternion sequence by receiving com-
ponents from complex sequences. Then, they gave some properties and identities related to
these quaternions. In [18] Kızılateş defined the another generalization of hybrid numbers which
called the q−Fibonacci hybrid numbers and q−Lucas hybrid numbers. Moreover, the author
gave some important algebraic properties of these numbers.
Motivated by some of the above-cited recent papers, by the help of the q−integers, we define

here a new family of sedenions called q−Fibonacci sedenions and q−Lucas sedenions. We ob-
tain some special cases of the q−Fibonacci sedenions and q−Lucas sedenions studied by many
researchers before. We get a number of results for q−Fibonacci sedenions and q−Lucas sede-
nions included Binet-Like formulas, exponential generating functions, summation formulas,
Catalan’s identities, Cassini’s identities and d’Ocagne’s identities.

2. q−Fibonacci Sedenions and q−Lucas Sedenions

In this part of the our paper, we will introduce the q−Fibonacci sedenions and the q−Lucas
sedenions. Then we also give some algebraic properties of these sedenions. Throughout the
paper, we take n ∈ N and 1− q 6= 0.

Definition 2.1. The q−Fibonacci sedenions and the q−Lucas sedenions are defined by the
following:

SFn(α; q) =
15∑
s=0

αn+s−1 [n+ s]q es, (2.1)

and

SLn(α; q) =
15∑
s=0

αn+s
[2(n+ s)]q

[n+ s]q
es. (2.2)

Some special cases of q−Fibonacci sedenions SFn(α; q) or shortly SFn and q−Lucas sede-
nions SLn(α; q) or shortly SLn are as following table:

α q q−Fibonacci Sedenions q−Lucas sedenions
1+
√
5

2
−1
α2

Fibonacci sedenion; SFn Lucas sedenion; SLn
1 +
√

2 −1
α2

Pell sedenion; SPn Pell-Lucas sedenion; SPLn
k+
√
k2+4
2

−1
α2

k−Fibonacci sedenion; SFk,n k−Lucas sedenion; SLk,n
2 −1

2 Jacobsthal sedenion; SJn Jacobsthal-Lucas sedenion; Sjn
1 +
√

1 + k −k
α2

k−Pell sedenion; SPk,n k−Pell-Lucas sedenion; SPLk,n

Table 2: Special cases for q−Fibonacci Sedenions and q−Fibonacci sedenions

Theorem 2.2. The Binet formulas for the q−Fibonacci sedenions SFn and the q−Lucas sede-
nions SLn are

SFn =
αnα̃− (αq)nβ̃

α(1− q) , (2.3)

and

SLn = αnα̃+ (αq)nβ̃, (2.4)

where α̃ =
∑15

s=0 α
ses and β̃ =

∑15
s=0 β

ses.
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4 CAN KIZILATEŞ AND SELIHAN KIRLAK

Proof. Owing to (2.1) and (1.4), we find that

SFn =
15∑
s=0

αn+s−1(n+ s)qes

= αn−1(n)qe0 + αn(n+ 1)qe1 + ...+ αn+14(n+ 15)qe15

= αn−1
(

1− qn
1− q

)
e0 + αn

(
1− qn+1

1− q

)
e1 + ...+ αn+14

(
1− qn+15

1− q

)
e15

=
1

α(1− q)
(
(αn − (αq)n)e0 + (αn+1 − (αq)n+1)e1 + ...+ (αn+15 − (αq)n+15)e15

)
=

1

α(1− q)
(
αn(e0 + αe1 + ...+ α15e15)− (αq)n(e0 + (αq)e1 + ...+ (αq)15e15

)
=
αnα̃− (αq)nβ̃

α(1− q) .

Similarly, equality (2.4) can be obtained. �

Corollary 2.3. The Binet formulas for the Fibonacci sedenions SFn and the Lucas sedenions
SLn are

SFn =
α∗αn − β∗βn

α− β , (2.5)

SLn = α∗αn + β∗βn, (2.6)

where α∗ =
∑15

s=0 α
ses and β∗ =

∑15
s=0 β

ses, respectively.

Proof. This follows from substituting α = 1+
√
5

2 , β = −1
α and q = −1

α2
in the Equation (2.3)

and (2.4), respectively. �

Corollary 2.4. The Binet formulas for the Pell sedenions SPn and the Pell—Lucas sedenions
SPLn, are

SPn =
r∗1r

n
1 − r∗2rn2
r1 − r2

, (2.7)

SPLn = r∗1r
n
1 + r∗2r

n
2 , (2.8)

where r∗1 =
∑15

s=0 r
s
1es and r

∗
2 =

∑15
s=0 r

s
2es, respectively.

Proof. This follows from substituting α = r1 = 1 +
√

2, r2 = −1
r1
and q = −1

α2
in the Equation

(2.3) and (2.4), respectively. �

Corollary 2.5. The Binet formulas for the Jacobsthal sedenions SJn and the Jacobsthal—
Lucas sedenions Sjn, are

SJn =
α∗2n − β∗(−1)n

3
, (2.9)

Sjn = α∗2n + β∗(−1)n, (2.10)

where α∗ =
∑15

s=0 α
ses and β∗ =

∑15
s=0 β

ses, respectively.

Proof. This follows from substituting α = 2, β = −1 and q = −1
2 in the Equation (2.3) and

(2.4), respectively. �

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2020                   
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Theorem 2.6. The exponential generating functions for the q−Fibonacci sedenions and q−Lucas
sedenions are

∞∑
n=0

SFn
xn

n!
=
α̃eαx − β̃eαqx
α(1− q) , (2.11)

and
∞∑
n=0

SLn
xn

n!
= α̃eαx + β̃eαqx. (2.12)

Proof. From the Binet formula for the q−Fibonacci sedenions, we obtain
∞∑
n=0

SFn
xn

n!
=

∞∑
n=0

(
αnα̃− (αq)nβ̃

α(1− q)

)
xn

n!

=
α̃

α(1− q)

∞∑
n=0

(αx)n

n!
− β̃

α(1− q)

∞∑
n=0

(αqx)n

n!

=
α̃eαx − β̃eαqx
α(1− q) .

Equality (2.12) can be similarly derived. �

Corollary 2.7. The exponential generating functions for the Fibonacci sedenions and the
Lucas sedenions are

∞∑
n=0

SFn
xn

n!
=
α∗eαx − β∗eβx

α− β , (2.13)

and
∞∑
n=0

SLn
xn

n!
= α∗eαx + β∗eβx. (2.14)

Proof. This follows from substituting α = 1+
√
5

2 , β = −1
α and q = −1

α2
in the Equation (2.11)

and (2.12), respectively. �

Corollary 2.8. The exponential generating functions for the Pell sedenions and the Pell—
Lucas sedenions are

∞∑
n=0

SPn
xn

n!
=
r∗1e

r1x − r∗2er2x
r1 − r2

, (2.15)

and
∞∑
n=0

SPn
xn

n!
= r∗1e

r1x + r∗2e
r2x. (2.16)

Proof. This follows from substituting α = r1 = 1 +
√

2, r2 = −1
r1
and q = −1

α2
in the Equation

(2.11) and (2.12), respectively. �

Corollary 2.9. The exponential generating functions for the Jacobsthal sedenions and the
Jacobsthal—Lucas sedenions are

∞∑
n=0

SJn
xn

n!
=
α∗e2x − β∗e−x

3
, (2.17)
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6 CAN KIZILATEŞ AND SELIHAN KIRLAK

and ∞∑
n=0

Sjn
xn

n!
= α∗e2x + β∗e−x. (2.18)

Proof. This follows from substituting α = 2, β = −1 and q = −1
2 in the Equation (2.11) and

(2.12), respectively. �
Theorem 2.10. For n, k ≥ 0, we have

n∑
i=0

(
n

i

)(
−α2q

)n−i SF2i+k =

{
∆

n
2 SFn+k if n is even,

∆
n−1
2 SLn+k if n is odd,

(2.19)

n∑
i=0

(
n

i

)(
−α2q

)n−i SL2i+k =

{
∆

n
2 SLn+k if n is even,

∆
n+1
2 SFn+k if n is odd,

(2.20)

n∑
i=0

(
n

i

)
(−1)i

(
−α2q

)n−i SF2i+k =
(
−α [2]q

)n
SFn+k, (2.21)

n∑
i=0

(
n

i

)
(−1)i

(
−α2q

)n−i SL2i+k =
(
−α [2]q

)n
SLn+k. (2.22)

where ∆ = (α− αq)2 .
Proof. Let’s first prove the equality (2.19). Similarly (2.20), (2.21) and (2.22) can be obtained.
From Binet formula (2.11), we find that

n∑
i=0

(
n

i

)(
−α2q

)n−i SF2i+k =

n∑
i=0

(
n

i

)(
−α2q

)n−i α2i+kα̃− (αq)2i+kβ̃

α(1− q)

=
1

α− αq
(
α2 − α2q

)n
αkα̃−

(
α2q2 − α2q

)n
(αq)kβ̃

=

(
α
√

∆
)n
αkα̃− (−αq

√
∆)n(αq)kβ̃

α− αq . (2.23)

If n is even in (2.23), we have

n∑
i=0

(
n

i

)(
−α2q

)n−i SF2i+k =

(
α
√

∆
)n
αkα̃− (αq

√
∆)n(αq)kβ̃

α− αq

=
√

∆
nαn+kα̃− (αq)n+kβ̃

α(1− q)
= ∆

n
2 SFn+k.

If n is odd in (2.23), we obtain

n∑
i=0

(
n

i

)(
−α2q

)n−i SF2i+k =

(
α
√

∆
)n
αkα̃+ (αq

√
∆)n(αq)kβ̃

α− αq

=
√

∆
n−1

(αn+kα̃+ (αq)n+kβ̃)

= ∆
n−1
2 SLn+k.

Thus the proof is finished. �
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Corollary 2.11. For n ≥ 0, we have
m∑
n=0

(
m

n

)
SF2n+k =

{
5
m
2 SFm+k if m is even,

5
m−1
2 SLm+k if m is odd,

,

m∑
n=0

(
m

n

)
SL2n+k =

{
5
m
2 SLm+k if m is even,

5
m+1
2 SFm+k if m is odd,

,

m∑
n=0

(
m

n

)
(−1)nSF2n+k = (−1)mSFm+k,

and
m∑
n=0

(
m

n

)
(−1)nSL2n+k = (−1)mSLm+k.

Proof. This follows from substituting α = 1+
√
5

2 and q = −1
α2
in the Equation (2.19), (2.20),

(2.21) and (2.22), respectively. �
Corollary 2.12. For n ≥ 0, we find that

m∑
n=0

(
m

n

)
SP2n+k =

{
8
m
2 SPm+k if m is even,

8
m−1
2 SPLm+k if m is odd,

,

m∑
n=0

(
m

n

)
SPL2n+k =

{
8
m
2 SPLm+k if m is even,

8
m+1
2 SPm+k if m is odd,

,

m∑
n=0

(
m

n

)
(−1)nSP2n+k = (−1)mSPm+k,

and
m∑
n=0

(
m

n

)
(−1)nSPL2n+k = (−1)mSPLm+k.

Proof. This follows from substituting α = r1 = 1 +
√

2 and q = −1
α2
in the Equation (2.19),

(2.20), (2.21) and (2.22), respectively. �
Corollary 2.13. For n ≥ 0, we obtain

m∑
n=0

(
m

n

)
SJ2n+k =

{
9
m
2 SJm+k if m is even,

9
m−1
2 Sjm+k if m is odd,

,

m∑
n=0

(
m

n

)
Sj2n+k =

{
9
m
2 Sjm+k if m is even,

9
m+1
2 SJm+k if m is odd,

,

m∑
n=0

(
m

n

)
(−1)n2m−nSJ2n+k = (−1)mSJm+k,

and
m∑
n=0

(
m

n

)
(−1)n2m−nSj2n+k = (−1)mSjm+k.

Proof. This follows from substituting α = 2 and q = −1
2 in the Equation (2.19), (2.20), (2.21)

and (2.22), respectively. �
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Theorem 2.14. For n ≥ 0, we get
n∑
i=0

(
n

i

)
(α+ αq)i

(
−α2q

)n−i SFi = SF2n, (2.24)

n∑
i=0

(
n

i

)
(α+ αq)i

(
−α2q

)n−i SLi = SL2n. (2.25)

Proof. Using the Binet formula for the the q−Fibonacci sedenions (2.3), we have
n∑
i=0

(
n

i

)
(α+ αq)i

(
−α2q

)n−i SFi
=

n∑
i=0

(
n

i

)
(α+ αq)i

(
−α2q

)n−i αiα̃− (αq)iβ̃

α(1− q)

=

n∑
i=0

(
n

i

)
(α+ αq)i

(
−α2q

)n−i
αiα̃

α(1− q)

−
n∑
i=0

(
n

i

)
(α+ αq)i

(
−α2q

)n−i
(αq)iβ̃

α(1− q)

=
(α2(1 + q)− α2q)nα̃

α(1− q)

−(α2q(1 + q)− α2q)nβ̃
α(1− q)

= SF2n.
Equality (2.25) can be similarly derived. �
Theorem 2.15. For n ≥ 0, we get

m∑
n=0

(
m

n

)
SFn = SF2m,

and
m∑
n=0

(
m

n

)
SLn = SL2m.

Proof. This follows from substituting α = 1+
√
5

2 and q = −1
α2
in the Equation (2.24), (2.25). �

Corollary 2.16. For n ≥ 0, we obtain
m∑
n=0

(
m

n

)
SPn = SP2m,

and
m∑
n=0

(
m

n

)
SPLn = SPL2m.

Proof. This follows from substituting α = r1 = 1 +
√

2 and q = −1
α2
in the Equation (2.24),

(2.25). �
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Corollary 2.17. For n ≥ 0, we have
m∑
n=0

(
m

n

)
2m−nSJn = SJ2n,

ve
m∑
n=0

(
m

n

)
2m−nSjn = Sj2n.

Proof. This follows from substituting α = 2 and q = −1
2 in the Equation (2.24), (2.25). �

Theorem 2.18. (Catalan’s Identity). For positive integers n and r, with n ≥ r, then the
following identity is true:

SFn+rSFn−r − SF2n =
α2n−2qn(1− qr)(β̃α̃− q−rα̃β̃)

(1− q)2 , (2.26)

SLn+rSLn−r − SL2n = α2nqn−r(1− qr)
(
α̃β̃ − qrβ̃α̃

)
. (2.27)

Proof. From the Binet formula of the q−Fibonacci sedenions, we have the LHS of the equality
(2.26),

SFn+rSFn−r − SF2n

=

(
αn+rα̃− (αq)n+rβ̃

α(1− q)

)(
αn−rα̃− (αq)n−rβ̃

α(1− q)

)

−
(
αnα̃− (αq)nβ̃

α(1− q)

)2
.

After some calculations, we get

SFn+rSFn−r − SF2n =
α2n−2qn(1− qr)(β̃α̃− q−rα̃β̃)

(1− q)2 .

The result (2.27) can be similarly obtained. �

Theorem 2.19. (Cassini’s Identity). For n ≥ 1, the following equality holds:

SFn+1SFn−1 − SF2n =
α2n−2qn(β̃α̃− q−1α̃β̃)

(1− q) , (2.28)

SLn+1SLn−1 − SL2n = α2nqn−1(1− q)
(
α̃β̃ − qβ̃α̃

)
(2.29)

Proof. If we take r = 1, in (2.26) and (2.27), we obtain the assertions of the theorem. �

Theorem 2.20. (d’Ocagne’s Identity). Suppose that n is a non-negative integer number and
m natural number. If m > n+ 1, then the expression of the d’Ocagne’s identities are given by
the following:

SFmSFn+1 − SFm+1SFn =
αm+n−1(qnα̃β̃ − qmβ̃α̃)

(1− q) , (2.30)

SLmSLn+1 − SLm+1SLn = αm+n+1(q − 1)(qnα̃β̃ − qmβ̃α̃). (2.31)
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Proof. Using the Binet formula of the q−Fibonacci sedenions, we obtain

SFmSFn+1 − SFm+1SFn

=
αmα̃− (αq)mβ̃

α(1− q)
αn+1α̃− (αq)n+1β̃

α(1− q)

−α
m+1α̃− (αq)m+1β̃

α(1− q)
αnα̃− (αq)nβ̃

α(1− q) .

Thus

SFmSFn+1 − SFm+1SFn =
αm+n−1(qnα̃β̃ − qmβ̃α̃)

(1− q) .

Equality (2.31) can be similarly derived. �

3. Conclusion and Discussion

In our present research, we have defined and examined systematically q−Fibonacci sedenions
and q−Lucas sedenions which are defined by means of the q−integer. We have obtained
several quirky properties of q−Fibonacci sedenions and q−Lucas sedenions such as Binet-Like
formulas, exponential generating functions, summation formulas, Cassini’s identities, Catalan’s
identities and d’Ocagne’s identities. According to the special cases of α and q, all the results
given in Section 2 are applicable to all Fibonacci-type sedenions and Lucas-type sedenions
mentioned in Table 2. On the other hand, a trigintaduonion is defined by

t = a0 +
31∑
i=0

aiei,

where {ai} , i = 0, 1, . . . , 31 are real numbers and {ei} , i = 0, 1, . . . , 31 are imaginary units.
Detailed information about the trigintaduonion have been presented in the literature. (for
example, see [19]). Indeed, for the interested readers of this work, results presented here have
the potential to motivate further researches of the subject of the q−Fibonacci Trigintaduonions
and q−Lucas Trigintaduonions.
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[18] Kızılateş C., A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos

Solitons Fractals, 130, (2020).
[19] Cawagas, R. E., Carrascal, A. S., Bautista, L. A., Maria, J. P. Sta., Urrutia J. D., Nobles,

B., The Basic Subalgebra Structure Of The Cayley-Dickson Algebra Of Dimension 32
(Trigintaduonions), arXiv:0907.2047v3, (2009).

BULENT ECEVIT UNIVERSITY, DEPARTMENT OF MATHEMATICS, ZONGULDAK, 67100,
TURKEY
E-mail address : cankizilates@gmail.com and selihankirlak@gmail.com

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2020                   


