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Abstract. According the JKR theory of adhesive contact, changes of the contact configuration after 
formation of the adhesive neck and before detaching are completely reversible. This means, that 
after formation of the initial contact, the force-distance dependencies should coincide, independently 
on the direction of the process (indentation or pull-off). In the majority of real systems, this invari-
ance is not observed. The reasons for this may be either plastic deformation in the contacting bodies 
or surface roughness. One further mechanism of irreversibility (and corresponding energy dissipa-
tion) may be chemical heterogeneity of the contact interface leading to the spatial dependence of the 
specific work of adhesion. In the present paper, this "chemical" mechanism is analyzed on a simple 
example of an axisymmetric contact (with axisymmetric heterogeneity). It is shown that in the as-
ymptotic case of a "microscopic heterogeneity", the system follows, during both indentation and 
pull-off, JKR curves, however, corresponding to different specific surface energies. After the turning 
point of the movement, the contact area first does not change and the transition from one JKR curve 
to the other occurs via a linear dependency of the force on indentation depth. The macroscopic be-
havior is not sensitive to the absolute and relative widths of the regions with different surface energy 
but depends mainly on the values of the specific surface energy.  
 
Keywords: Adhesion, hysteresis, energy dissipation, JKR theory, MDR, specific surface energy, 
heterogeneity 

 

1. Introduction 
Johnson, Kendall and Roberts published 1971 their famous work on adhesive contact of elastic 
parabolic bodies [1]. Contrary to the non-adhesive contact, an adhesive contact shows a hysteresis: 
the dependencies of force on approach depend on whether the bodies are brought into contact or 
pulled off. The area enclosed in the hysteresis loop is the energy, which is irreversible dissipated 
during one complete "cycle" of an adhesive contact. According to the JKR theory, after the first 
contact, an adhesive neck of finite radius appears. If we now would try to pull off the bodies, they 
remain in contact even for negative values of the indentation depth up to the point of instability 
where the contact is lost at ones. The mechanical energy is irreversibly lost only in such points of 
instabilities [2]. Both before and after the instability, the processes of approach and detachment are 
reversible, which is obvious if we remember that the JKR theory is based on the principle of virtual 
work, which assumes absence of static frictional forces [3]. However, experiments show that adhe-
sive contacts show often pronounced hysteresis even after the formation of initial contact [4], [5], 
[6]. Some authors attribute this to plastic deformation [5]. However, it was shown in [6] and [7] that 
such hysteresis could be seen also in pure elastic contacts between rough bodies. The mechanism 
of this hysteresis is very simple: The energy dissipation occurs in each act of instable movement of 
the contact boundary. If the contact area has a complicated shape, the movement of the boundary 
can proceed in a series of jumps [8] leading to energy dissipation, which means that the boundary 
feels a dissipative force (see also the supplementary video [9].) Another mechanism of the adhesive 
hysteresis in the already formed contact state could be the chemical heterogeneity of the contact 
interface. In the present paper, we analyze this mechanics on a simple example when both the shape 
of contacting bodies and the chemical heterogeneity have axial symmetry. 
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2. Problem statement and model description 
Consider an adhesive contact between an axis symmetrical rigid body ( )=z f r , where z  is the 

coordinate in the normal to interface direction and r  polar radius in the contact plane, and an elastic 
half space. It is assumed that the specific work of adhesion assumes two constant values 1γ  and 2γ  
in the alternating rings having the widths 1h  and 2h  (Fig. 1). In the framework of the Method of 
Dimensionality Reduction (MDR) [10],[11], it is possible to map a three-dimensional axisymmetric 
contact problem to a contact of the modified plane shape  

 
2 2

0

( )( ) d .
′

=
−

∫
x f rg x x r

x r
  (1) 

and a one-dimensional elastic foundations consisting of independent springs (Fig. 2) having the 
stiffness  

 *∆ = ∆k E x . (2) 

Here ∆x  is the space between two adjacent springs, and  

 * 2/ (1 )ν= −E E , (3) 

with E  the Young modulus and ν  the Poisson number of the elastic half-space. 

   
Fig. 1 Schematic representation of the chemical heterogeneity in the considered system. The specific work of adhesion take 
two constant values 1γ  and 2γ  in the alternating rings having the widths 1h  and 2h . 

      
 
Fig. 2  Scheme of the MDR-representation of an adhesive contact. The equivalent profile ( )g x  given by (1) is brought into 
contact with elastic foundation defined by Eq. (2). The contact radius is defined by the condition that the elongation of the 
springs at the boundary of the contact is given by the rule of Heß, Eq. (5). The normal force, contact radius and the indenta-
tion depth in this MDR-model are the same as in the initial three-dimensional contact problem. 

 
In the MDR, it can be shown ([10],[11]) that the indentation depth, the contact radius and the 

normal force calculated as a sum of forces of all springs in contact: 
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a

F a E d g a a  (4) 

coincide with their values in the original three-dimensional problem. The radius of the adhesive 
contact is determined from the requirement of the minimum of the total energy of the system. This 
means that if detachment of two springs on both sides of the contact is leading to a decrease of the 
total energy (elastic energy plus surface energy) then it will detach. On the other hand, if the for-
mation of contact for the springs adjacent to those at the edge of the contact, leads to a decrease of 
energy, the contact will spread further. Detachment of two springs leads to a decrease of elastic 
energy by * 2⋅∆ ⋅∆E x l , where  ∆l  is the elongation which a spring has in the attached state (Fig. 2). 
When it detaches, a free surface having the area 2π ∆a x  is formed, which increases the energy by 
the work of separation 2π γ∆a x . The boundary is in equilibrium if these two energies are equal and 
thus 

 *

2π γ
∆ =

al
E

.  (5) 

This equation was first found by Heß [13] and is known as rule of Heß [14]. Using the relation 
( ) ( )= −u x d g x , where ( )u x  is the vertical displacement at the position x , we can rewrite (5) in 

the form 

 *

2( ) π γ
= −

ad g a
E

. (6) 

This equation connects the indentation depth with the equilibrium contact radius, a . In the follow-
ing, for simplicity, we will assume that the contact is realized by a very stiff system, which means 
that the indentation d  can be considered as controlling parameter. 

 

3. Attachment and detachment of a chemically heterogeneous body 
Consider the system with specific surface energy depending on the position as shown in Fig. 1. 

Assume 1 2γ γ< . During the indentation, there are three repeating stages in the movement (Fig. 3): 
(1) If at some moment of time the contact radius 1a  coincides with the inner edge of the ring 

having the surface energy 1γ , then at this moment  

 1 1
1 1 *

2( ) π γ
= −

ad g a
E

. (7) 

If the indentation depth increases, the contact radius will also increase (exactly accordingly to the 
corresponding JKR curve with surface energy 1γ , Fig. 3, Stage 1) unless it reaches the outer edge 
of the ring having the surface energy 1γ . At this moment 

 2 1
2 2 2 1 1*

2( ) ,    π γ
= − = +

ad g a a a h
E

. (8) 

(2) Further increasing of indentation depth leads to a jump-like increase of the surface energy. 
Therefore, the contact boundary will jump over the whole width of the ring with higher surface 
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energy (at the given indentation depth (8)) and stop at the edge of the ring having lower surface 
energy. At this point, the configuration is given by the pair  

 2 2 2( ,  )+d a h . (9) 

This jump in the contact area will lead to a (negative) jump in the force (see Fig. 3, Stage (2)).  
(3) During further indentation, the contact radius will remain constant and the force will there-

fore increase linearly with indentation depth until it reaches again the JKR curve.  
After that, we are again in the repetition of the stage (1), and the movement occurs along the 

JKR curve to the next jump, and so on. 
We see that in the phase of indentation the system follows the JKR curve corresponding to the 

lower surface energy, with periodic negative jumps and linear returns to the JKR curve. The maxi-
mum amplitude of a jump corresponds to the "distance" between the JKR curves for 1γ  and 2γ . In 
the following, we assume that the amplitude of jumps is small compared to this "distance". Under 
this assumption, the indentation occurs practically along the JKR curve for smaller surface energy 
with small variations.  

 
Fig. 3  Processes of approach, formation of contact and pull-off for a heterogeneous contact. During the Stage (1), the bound-
ary moves reversibly along the ring with lower specific surface energy. During the Stage (2) it jumps over the ring with higher 
specific surface energy. During the Stage (3) it "sticks" in this position until the force reaches the JKR curve. This movement 
occurs at a constant contact radius and is thus linear. After that, this quasi-periodic process is repeated (the repetitions are 
not shown in the Figure). If the direction of movement is changed to the opposite ("turning point"), the contact radius first 
remains constant causing a linear dependency of the normal force on approach. After the force have reached the JKR curve 
corresponding to the higher specific surface energy, the process consisting of reversible propagation inside the rings with 
high specific surface energy, jumps over the rings with low specific surface energy and linear returns to the JKR curve. 

If at some point the indentation stops and reversed movement starts, then the system first re-
mains stuck in this point. This is because in spreading, the contact area is pinned by the areas with 
lower specific surface energy while in detaching, it is pinned by the areas with higher specific sur-
face energy. Therefore, the transition from indentation to pulling off first leads to the "switching of 
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the criterion for propagation" which leads to pinning the boundary to the position at the beginning 
of reverse motion. As the contact area remains constant, the force-distance dependency is in this 
stage linear until the force reaches the JKR curve corresponding to the higher specific surface en-
ergy. In the following, it moves along the JKR curve corresponding to the higher specific surface 
energy until the boundary reaches the ring with lower energy. At this point, the whole ring with low 
surface energy detaches at once causing a (positive) jump in the normal fore. After that, the contact 
area remains constant and the normal force depends linearly on the indentation depth until this linear 
dependency reaches the JKR-curve (Fig. 3). Thus, the back movement is very similar to the inden-
tation with the only difference that now the systems moves along the JKR curve corresponding to 
the higher specific surface energy. The hysteresis and the corresponding energy dissipation is solely 
due to instable stages (jumps). This mechanism of energy dissipation is very similar to that de-
scribed by Prandtl [15],[16]. 

4. Complete cycle of attachment and detachment 
The attachment-detachment process becomes especially simple if we assume that the thickness 

of the rings with different values of specific surface energy are so small that they are not "seen" 
from the macroscopic point of view. It is easy to give mathematical form to this condition. 

In the state (8), the normal force is given by  

 ( )( )
1 1

*
2 2

0

2 d
+

= −∫  

a h

F E d g a a   (10) 

and in the state (9) by   

 ( )( )
1 1 2

*
3 2

0

2 d
+ +

= −∫  

a h h

F E d g a a .  (11) 

The jump of the force is estimated as 
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  (12) 

For a rough estimation let us introduce a "characteristic value" of the specific surface energy, 
γ  (e.g. the average of 1γ  and 2γ ), the "characteristic value" of the ring width as h  and the "char-
acteristic value" of contact radius, a , e.g. the critical value at the neck formation, 

 
1/32

*

9
8
π γ 

=  
 

Ra
E

. (13) 

Then the characteristic value of a jump in the force will be *
Jump 8π γ∆ ≈F h E a  and that of the 

"distance" between the two JKR curves 0 (3 / 2)π γ∆ ≈F R , [11]. The condition that the jumps are 
small compared with 0∆F  can now be written as 

 
*

Jump

0

32 1
9πγ

∆
≈ <<

∆

F h E a
F R

  (14) 
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or 

 3 2
*

γ
<<h R

E
. (15) 

This form is applicable only for indenters with parabolic shape. Written in the form 

 <<h a ,  (16) 

it can be applied to any shapes. The criterion just means that the characteristic size of heterogeneity 
should be much smaller than the contact area. 

If this condition is fulfilled, we will only see the averaged macroscopic behavior. As was shown 
in the Section 3, the contact configurations and the force-indentation dependencies will follow the 
JKR solution corresponding to the lower surface energy, 1γ . On the return, the system follows the 
JKR curve with higher surface energy, 2γ . The transition from one curve to the other at the turning 
point occurs via a linear force-displacement dependency at a constant contact radius (Fig. 4). 

 

 
Fig. 4 A complete cycle of the force-indentation dependence for indentation and detachment for the case that the thickness 
of rings is "microscopic" so that the jumps are not seen on the macroscopic level. In this case, approach occurs along the 
JKR-curve corresponding to lower specific surface energy and pull-off along the JKR curve for higher surface energy. The 
are connected by a linear part following the turning point. 

Adhesion cycles of the shape qualitatively very similar to that presented in Fig. 4 are often 
observed in experiment. As an example, in Fig. 5 results are shown, which have been obtained 
experimentally in the papers [17][17], [18]. Experiments were carried out by indenting a glass ball 
against a plane PDMS substrate and subsequent pulling it off. The main features of the behavior are 
the same as predicted theoretically:  Both during loading and during unloading, the system moves 
along the JKR curves, however, corresponding to different specific surface energies. By turning, a 
transition from one curve to the other occurs.  

Another example of loading-unloading curves showing very clearly the linear transition region 
after turning from loading to unloading is shown in Fig. 6. The contact area was observed and 
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recorded by a video camera placed beneath the rubber sheet. In the videos (which are not part of 
this publication), it is clearly seen that after changing the direction of loading the contact area first 
remained unchanged. During this "sticking phase", the dependency of the normal force on approach 
follows a linear dependency, which can be easily identified in Fig. 6. 

 
Fig. 5  Experimental loading-unloading curves (adapted from the paper [17]). According to [17], curves were measured using 
AFM for contacts between a glass sphere and a PDMS substrate. The glass sphere was of diameter ≈50 μm. The gray dashed 
curves are the fit of the loading and unloading branches of the measured P–h data to the JKR theory. Comparison with 
theoretical curves in Fig. 4 shows that the contact behavior in experiment is, at least qualitatively very similar to that pre-
dicted theoretically: In the loading phase the system moves along a JKR curve corresponding to a lower specific energy. 
During unloading the transition from one JKR curve to the other one can be clearly identified.    

 

 
Fig. 6 (a) Loading-unloading curve for an adhesive contact between a spherical steel indenter (radius of curvature R = 33 
mm)  and a layer of soft transparent rubber TARNAC CRG N3005 (thickness 5 mm). Part of experimental setup is shown 
in subplot (b). In the subplot (a), it is clearly seen that after changing the direction of motion, a long linear part of the force-
distance dependency is observed. Observation of the contact area via a video camera from beneath the layer shows that 
during the linear part of this curve the contact area remains constant.  
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5. Conclusions 
We considered a simple adhesive contact with axially symmetric chemical heterogeneity of the 

interface. In this case, the system follows the JKR curves both during the indentation and detach-
ment phases. However, there exist two different specific surface energies – one for forming the 
contact (during indentation) and the other one for its destruction (pull off). During the indentation, 
the system follows the JKR curve corresponding the lower specific surface energy, and during re-
traction the JKR curve corresponding to the higher value. If the chemical heterogeneity can be con-
sidered as "microscopic" (that means that the characteristic wavelength of heterogeneity fulfils the 
criterion (15) or (16)) this result does not depend on the absolute and relative thicknesses of the 
regions with different specific surface energies, but depends solely on the values of surface energy 
itself.  

The main conclusions of this paper seem to be very generic. The predicted features are often 
observed in experimental systems not fulfilling the simple assumptions of the present model. The 
reason for such generality maybe just that the chemical heterogeneity leads to appearance of a force 
of friction for the moving contact boundary. From the macroscopic, phenomenological point of 
view, it is not important what is the physical mechanism leading to microscopic instabilities and 
thus friction in the boarder line. This can be regular heterogeneity as in the present paper or irregular 
heterogeneity (which also leads to local instabilities in movement of the contact boundary) or rough-
ness. Macroscopically, the appearance of the force of friction of boundary line is equivalent to ex-
istence of two surface energies – for closing and for opening the contact. Thus, the phenomenolog-
ical appearance may be the same independently of particular mechanism leading to the boundary 
line friction. 

It would be interesting to prove whether this main conclusion will remain valid for non-axially 
symmetric cases and what are then the governing parameters determining the effective surface en-
ergies. 
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