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Abstract. According the JKR theory of adhesive contact, changes of the contact configuration after
formation of the adhesive neck and before detaching are completely reversible. This means, that
after formation of the initial contact, the force-distance dependencies should coincide, independently
on the direction of the process (indentation or pull-off). In the majority of real systems, this invari-
ance is not observed. The reasons for this may be either plastic deformation in the contacting bodies
or surface roughness. One further mechanism of irreversibility (and corresponding energy dissipa-
tion) may be chemical heterogeneity of the contact interface leading to the spatial dependence of the
specific work of adhesion. In the present paper, this "chemical™ mechanism is analyzed on a simple
example of an axisymmetric contact (with axisymmetric heterogeneity). It is shown that in the as-
ymptotic case of a "microscopic heterogeneity", the system follows, during both indentation and
pull-off, JKR curves, however, corresponding to different specific surface energies. After the turning
point of the movement, the contact area first does not change and the transition from one JKR curve
to the other occurs via a linear dependency of the force on indentation depth. The macroscopic be-
havior is not sensitive to the absolute and relative widths of the regions with different surface energy
but depends mainly on the values of the specific surface energy.
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1. Introduction

Johnson, Kendall and Roberts published 1971 their famous work on adhesive contact of elastic
parabolic bodies [1]. Contrary to the non-adhesive contact, an adhesive contact shows a hysteresis:
the dependencies of force on approach depend on whether the bodies are brought into contact or
pulled off. The area enclosed in the hysteresis loop is the energy, which is irreversible dissipated
during one complete "cycle" of an adhesive contact. According to the JKR theory, after the first
contact, an adhesive neck of finite radius appears. If we now would try to pull off the bodies, they
remain in contact even for negative values of the indentation depth up to the point of instability
where the contact is lost at ones. The mechanical energy is irreversibly lost only in such points of
instabilities [2]. Both before and after the instability, the processes of approach and detachment are
reversible, which is obvious if we remember that the JKR theory is based on the principle of virtual
work, which assumes absence of static frictional forces [3]. However, experiments show that adhe-
sive contacts show often pronounced hysteresis even after the formation of initial contact [4], [5],
[6]. Some authors attribute this to plastic deformation [5]. However, it was shown in [6] and [7] that
such hysteresis could be seen also in pure elastic contacts between rough bodies. The mechanism
of this hysteresis is very simple: The energy dissipation occurs in each act of instable movement of
the contact boundary. If the contact area has a complicated shape, the movement of the boundary
can proceed in a series of jumps [8] leading to energy dissipation, which means that the boundary
feels a dissipative force (see also the supplementary video [9].) Another mechanism of the adhesive
hysteresis in the already formed contact state could be the chemical heterogeneity of the contact
interface. In the present paper, we analyze this mechanics on a simple example when both the shape
of contacting bodies and the chemical heterogeneity have axial symmetry.
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2. Problem statement and model description

Consider an adhesive contact between an axis symmetrical rigid body z = f (r), where z is the
coordinate in the normal to interface direction and r polar radius in the contact plane, and an elastic
half space. It is assumed that the specific work of adhesion assumes two constant values , and y,
in the alternating rings having the widths h, and h, (Fig. 1). In the framework of the Method of

Dimensionality Reduction (MDR) [10],[11], it is possible to map a three-dimensional axisymmetric
contact problem to a contact of the modified plane shape

o
9(x) :|x|I%dr. 0

and a one-dimensional elastic foundations consisting of independent springs (Fig. 2) having the
stiffness

Ak = E"AX. (2)
Here AXx is the space between two adjacent springs, and
E'=E/(1-v%), (3)

with E the Young modulus and v the Poisson number of the elastic half-space.
h, h,
y'y
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Fig. 1 Schematic representation of the chemical heterogeneity in the considered system. The specific work of adhesion take
two constant values ¥, and y, in the alternating rings having the widths h, and h,.
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Fig. 2 Scheme of the MDR-representation of an adhesive contact. The equivalent profile g(x) given by (1) is brought into

contact with elastic foundation defined by Eq. (2). The contact radius is defined by the condition that the elongation of the
springs at the boundary of the contact is given by the rule of HeR, Eq. (5). The normal force, contact radius and the indenta-
tion depth in this MDR-model are the same as in the initial three-dimensional contact problem.

In the MDR, it can be shown ([10],[11]) that the indentation depth, the contact radius and the
normal force calculated as a sum of forces of all springs in contact:
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F(a)=2E"[(d-g(a))da 4)
0

coincide with their values in the original three-dimensional problem. The radius of the adhesive
contact is determined from the requirement of the minimum of the total energy of the system. This
means that if detachment of two springs on both sides of the contact is leading to a decrease of the
total energy (elastic energy plus surface energy) then it will detach. On the other hand, if the for-
mation of contact for the springs adjacent to those at the edge of the contact, leads to a decrease of
energy, the contact will spread further. Detachment of two springs leads to a decrease of elastic
energy by E”-Ax-Al?, where Al is the elongation which a spring has in the attached state (Fig. 2).
When it detaches, a free surface having the area 2zaAx is formed, which increases the energy by
the work of separation 2zaAxy . The boundary is in equilibrium if these two energies are equal and

thus
2ray
Al = — . 5
x/ = (5)

This equation was first found by HeR [13] and is known as rule of HeR [14]. Using the relation
u(x)=d —g(x), where u(x) is the vertical displacement at the position x, we can rewrite (5) in
the form

2ray

d=9()- =

(6)

This equation connects the indentation depth with the equilibrium contact radius, a. In the follow-
ing, for simplicity, we will assume that the contact is realized by a very stiff system, which means
that the indentation d can be considered as controlling parameter.

3. Attachment and detachment of a chemically heterogeneous body

Consider the system with specific surface energy depending on the position as shown in Fig. 1.
Assume y, <y, . During the indentation, there are three repeating stages in the movement (Fig. 3):
(1) If at some moment of time the contact radius a, coincides with the inner edge of the ring

having the surface energy y,, then at this moment

2zay; @)

d1:g(a'1)_ E

If the indentation depth increases, the contact radius will also increase (exactly accordingly to the
corresponding JKR curve with surface energy y,, Fig. 3, Stage 1) unless it reaches the outer edge

of the ring having the surface energy y,. At this moment

2wy,
E*

d2=g(a2)— ' a2:a1+h1- (8)

(2) Further increasing of indentation depth leads to a jump-like increase of the surface energy.
Therefore, the contact boundary will jump over the whole width of the ring with higher surface
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energy (at the given indentation depth (8)) and stop at the edge of the ring having lower surface
energy. At this point, the configuration is given by the pair

(d,, a,+h,). ©)

This jump in the contact area will lead to a (negative) jump in the force (see Fig. 3, Stage (2)).

(3) During further indentation, the contact radius will remain constant and the force will there-
fore increase linearly with indentation depth until it reaches again the JKR curve.

After that, we are again in the repetition of the stage (1), and the movement occurs along the
JKR curve to the next jump, and so on.

We see that in the phase of indentation the system follows the JKR curve corresponding to the
lower surface energy, with periodic negative jumps and linear returns to the JKR curve. The maxi-
mum amplitude of a jump corresponds to the "distance" between the JKR curves for y, and y,. In

the following, we assume that the amplitude of jumps is small compared to this "distance”. Under

this assumption, the indentation occurs practically along the JKR curve for smaller surface energy
with small variations.

Turning point
T

JKR curve for
lower specific
surface energy

Normal force, F

N JKR curve for
Stage (1) —— higher specific
surface energy

g;/ Indentation depth, d

Forming of
a "neck"

Detachment

Fig. 3 Processes of approach, formation of contact and pull-off for a heterogeneous contact. During the Stage (1), the bound-
ary moves reversibly along the ring with lower specific surface energy. During the Stage (2) it jumps over the ring with higher
specific surface energy. During the Stage (3) it "*sticks™ in this position until the force reaches the JKR curve. This movement
occurs at a constant contact radius and is thus linear. After that, this quasi-periodic process is repeated (the repetitions are
not shown in the Figure). If the direction of movement is changed to the opposite (*'turning point™), the contact radius first
remains constant causing a linear dependency of the normal force on approach. After the force have reached the JKR curve
corresponding to the higher specific surface energy, the process consisting of reversible propagation inside the rings with
high specific surface energy, jumps over the rings with low specific surface energy and linear returns to the JKR curve.

If at some point the indentation stops and reversed movement starts, then the system first re-
mains stuck in this point. This is because in spreading, the contact area is pinned by the areas with
lower specific surface energy while in detaching, it is pinned by the areas with higher specific sur-
face energy. Therefore, the transition from indentation to pulling off first leads to the "switching of
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the criterion for propagation” which leads to pinning the boundary to the position at the beginning
of reverse motion. As the contact area remains constant, the force-distance dependency is in this
stage linear until the force reaches the JKR curve corresponding to the higher specific surface en-
ergy. In the following, it moves along the JKR curve corresponding to the higher specific surface
energy until the boundary reaches the ring with lower energy. At this point, the whole ring with low
surface energy detaches at once causing a (positive) jump in the normal fore. After that, the contact
area remains constant and the normal force depends linearly on the indentation depth until this linear
dependency reaches the JKR-curve (Fig. 3). Thus, the back movement is very similar to the inden-
tation with the only difference that now the systems moves along the JKR curve corresponding to
the higher specific surface energy. The hysteresis and the corresponding energy dissipation is solely
due to instable stages (jumps). This mechanism of energy dissipation is very similar to that de-
scribed by Prandtl [15],[16].

4. Complete cycle of attachment and detachment

The attachment-detachment process becomes especially simple if we assume that the thickness
of the rings with different values of specific surface energy are so small that they are not "seen”
from the macroscopic point of view. It is easy to give mathematical form to this condition.

In the state (8), the normal force is given by

F,= 2E*T(o|2 -g(a))da (10)
and in the state (9) by
R, = 2E*al+z+h2 (d,—g(a))da. (11)
The jump of the force is estimated as
F,-F,= ZE{I(dz -g(a))da —Tz (d,—g(a))da

(12)

a,+h,
- —ZE{ [ (d,—g(a))da ] ~2E"h,Al(a,) = h,/87E"a,y,

For a rough estimation let us introduce a "characteristic value" of the specific surface energy,
y (e.g. the average of », and y,), the "characteristic value" of the ring width as h and the "char-
acteristic value™ of contact radius, a, e.g. the critical value at the neck formation,

97[R2 1/3
a=[ 4 j . (13)
8E

~h\8zE"ay and that of the
"distance" between the two JKR curves AF, =~ (3/2)zRy, [11]. The condition that the jumps are

Then the characteristic value of a jump in the force will be AF

Jump

small compared with AF, can now be written as

AF

wp N JS2E @ g (14)
AF,  RY 97y
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or

h® << RZ%. (15)

This form is applicable only for indenters with parabolic shape. Written in the form

h<<a, (16)

it can be applied to any shapes. The criterion just means that the characteristic size of heterogeneity
should be much smaller than the contact area.

If this condition is fulfilled, we will only see the averaged macroscopic behavior. As was shown
in the Section 3, the contact configurations and the force-indentation dependencies will follow the
JKR solution corresponding to the lower surface energy, y,. On the return, the system follows the

JKR curve with higher surface energy, y,. The transition from one curve to the other at the turning
point occurs via a linear force-displacement dependency at a constant contact radius (Fig. 4).

Normal force, F

Linear

JKR curve for dependency

lower specific
surface energy

N

Indentation depth, d

AN

JKR curve for
higher specific
surface energy

Fig. 4 A complete cycle of the force-indentation dependence for indentation and detachment for the case that the thickness
of rings is ""microscopic™ so that the jumps are not seen on the macroscopic level. In this case, approach occurs along the
JKR-curve corresponding to lower specific surface energy and pull-off along the JKR curve for higher surface energy. The
are connected by a linear part following the turning point.

Adhesion cycles of the shape qualitatively very similar to that presented in Fig. 4 are often
observed in experiment. As an example, in Fig. 5 results are shown, which have been obtained
experimentally in the papers [17][17], [18]. Experiments were carried out by indenting a glass ball
against a plane PDMS substrate and subsequent pulling it off. The main features of the behavior are
the same as predicted theoretically: Both during loading and during unloading, the system moves
along the JKR curves, however, corresponding to different specific surface energies. By turning, a
transition from one curve to the other occurs.

Another example of loading-unloading curves showing very clearly the linear transition region
after turning from loading to unloading is shown in Fig. 6. The contact area was observed and
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recorded by a video camera placed beneath the rubber sheet. In the videos (which are not part of
this publication), it is clearly seen that after changing the direction of loading the contact area first
remained unchanged. During this "sticking phase", the dependency of the normal force on approach
follows a linear dependency, which can be easily identified in Fig. 6.

AFM base AEM cantilever

tip (glass bead)

1F
ol \
~~ - 410 nm
< al JKR theory |
a'_' Y =20 mJ/m? |\ 145 nm
)//
2 unloading
'°»,\ “:‘f“;-"‘ y /
3 '
JKR theory
-4 [ Y=380mJ/m?

500 250 0 -250 -500
h (nm)

Fig. 5 Experimental loading-unloading curves (adapted from the paper [17]). According to [17], curves were measured using
AFM for contacts between a glass sphere and a PDMS substrate. The glass sphere was of diameter ~50 pm. The gray dashed
curves are the fit of the loading and unloading branches of the measured P-h data to the JKR theory. Comparison with
theoretical curves in Fig. 4 shows that the contact behavior in experiment is, at least qualitatively very similar to that pre-
dicted theoretically: In the loading phase the system moves along a JKR curve corresponding to a lower specific energy.
During unloading the transition from one JKR curve to the other one can be clearly identified.

-0.04

-0.08

b

Fig. 6 (a) Loading-unloading curve for an adhesive contact between a spherical steel indenter (radius of curvature R = 33
mm) and a layer of soft transparent rubber TARNAC CRG N3005 (thickness 5 mm). Part of experimental setup is shown
in subplot (b). In the subplot (a), it is clearly seen that after changing the direction of motion, a long linear part of the force-
distance dependency is observed. Observation of the contact area via a video camera from beneath the layer shows that
during the linear part of this curve the contact area remains constant.
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5. Conclusions

We considered a simple adhesive contact with axially symmetric chemical heterogeneity of the
interface. In this case, the system follows the JKR curves both during the indentation and detach-
ment phases. However, there exist two different specific surface energies — one for forming the
contact (during indentation) and the other one for its destruction (pull off). During the indentation,
the system follows the JKR curve corresponding the lower specific surface energy, and during re-
traction the JKR curve corresponding to the higher value. If the chemical heterogeneity can be con-
sidered as "microscopic” (that means that the characteristic wavelength of heterogeneity fulfils the
criterion (15) or (16)) this result does not depend on the absolute and relative thicknesses of the
regions with different specific surface energies, but depends solely on the values of surface energy
itself,

The main conclusions of this paper seem to be very generic. The predicted features are often
observed in experimental systems not fulfilling the simple assumptions of the present model. The
reason for such generality maybe just that the chemical heterogeneity leads to appearance of a force
of friction for the moving contact boundary. From the macroscopic, phenomenological point of
view, it is not important what is the physical mechanism leading to microscopic instabilities and
thus friction in the boarder line. This can be regular heterogeneity as in the present paper or irregular
heterogeneity (which also leads to local instabilities in movement of the contact boundary) or rough-
ness. Macroscopically, the appearance of the force of friction of boundary line is equivalent to ex-
istence of two surface energies — for closing and for opening the contact. Thus, the phenomenolog-
ical appearance may be the same independently of particular mechanism leading to the boundary
line friction.

It would be interesting to prove whether this main conclusion will remain valid for non-axially
symmetric cases and what are then the governing parameters determining the effective surface en-
ergies.
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