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Abstract: Finding an optimal combination of features and classifier is still an open problem in
the development of automatic heartbeat classification systems, especially when applications that
involve resource-constrained devices are considered. In this paper, a novel study of the selection of
informative features and the use of a random forest classifier while following the recommendations
of the Association for the Advancement of Medical Instrumentation (AAMI) and an inter-patient
division of datasets is presented. Features were selected using a filter method based on the mutual
information ranking criterion on the training set. Results showed that normalized R-R intervals and
features relative to the width of the QRS complex are the most discriminative among those considered.
The best results achieved on the MIT-BIH Arrhythmia Database were an overall accuracy of 96.14%
and F1-scores of 97.97%, 73.06%, and 90.85% in the classification of normal beats, supraventricular
ectopic beats, and ventricular ectopic beats respectively. In comparison with other state of the art
approaches tested under similar constraints, this work represents one of the highest performances
reported to date while relying on a very small feature vector.

Keywords: ECG feature selection; heartbeat classification; arrhythmia detection; random forest
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1. Introduction

The electrocardiogram (ECG) is the register of electrical potentials, variable over time, produced
by the myocardium during the cardiac cycle. Since its invention at the beginning of the 20th century,
the ECG has played a central role in the diagnosis of cardiac arrhythmias and other heart diseases
thanks to its simplicity and non-invasive nature. In recent years, thanks to the availability of pocket
or wearable devices for single lead ECG recording it has become possible to perform the acquisition
of the ECG signal even in ambulatory contexts for applications of prevention and risk management.
The successful application and dissemination of such approaches require the development not only
of reliable but also lightweight algorithms for the automatic detection and classification of signal
anomalies in order to reduce the amount of data and the number of events needed to be sent to the
physician for making a proper risk assessment and giving advice [1].

In this work, we focus our attention on the problem of classifying single heartbeats and separating
the normal electrical activity originated in the sinus node from the ectopic activity originated
elsewhere. According to the standard ANSI/AAMI EC57:1998/(R)2008 the methods that perform
heartbeat classification should at most distinguish between the following classes: normal beats
(NB), supraventricular ectopic beats (SVEB), ventricular ectopic beats (VEB), fusion beats (FB), and
unclassifiable or paced beats (UB). Though ectopic beats are generally benign and do not represent any
immediate health problem, in prevention and risk management contexts becomes relevant to detect
and quantify their frequency. VEB frequency is especially relevant since it can be used as a predictor of
the risk of heart failure and death [2]. The risk indication of SVEB is less clear though some researchers
have found that their frequency is associated with a greater risk of atrial fibrillation [3].

During the last decades, the problem of heartbeat classification has been addressed with a plethora
of techniques with mixed results. A recent extensive review of heartbeat classification methods is
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presented by Luz et al. [4]. In the continuous search of better solutions, the exploration in recent years
has focused on the implementation of machine learning methods, of which Random Forests (RF) [5]
has been one of the most popular approaches. In RF a group of classifiers is generated in the form of
an ensemble ("forest") of decision trees. The classification of an input sample is determined by the
majority classification by the ensemble. RF classifiers can be highly effective [6] and have already been
proposed for resource constrained-devices in real-time biomedical applications [7-10].

One of the first uses of RF for heartbeat classification was reported by Emanet [11] which used the
coefficients given by the Discrete Wavelet Transform (DWT) over the ECG signal as features to train the
REF classifier. More recently, Alickovic and Subasi [12] also proposed the use of RF with the DWT of the
ECG signal but taking a set of different statistical features extracted from the distribution of wavelet
coefficients instead of the coefficient themselves. A similar approach that proposes an extensive use of
the DWT was also recently proposed by Pan et al. [13]. RF were similarly explored by Ganesh Kumar
and Kumaraswamy [14] but with the use of features obtained from the Discrete Cosine Transform
(DCT) over the interbeat interval signal. Mahesh et al. [15] used a mix of time-domain features related
to the Heart Rate Variability (HRV) and frequency-domain features from the DWT to feed RE. An
approach for using RF with a series of time-domain features that includes amplitude differences was
proposed by Park et al. [16]. This approach was recently extended to include features resulted from a
resampled version of the ECG signal in a cascade configuration of RF classifiers [17].

All the mentioned approaches have reported accuracies superior to 98% when tested with the
MIT-BIH Arrhythmia Database but few of them follow the recommendations of the AAMI in terms
of the type of heartbeat to detect (in particular the classification of SVEB and VEB) and the use of
quality measures in addition to overall accuracy (like sensitivity and positive predictivity) which can
be distorted by the results of the majority class [4]. Even more importantly, none of the works that have
reported the use of RF for heartbeat classification have followed an inter-patient paradigm where the
signals used for the training phase are obtained from different patients respect to those used during
the test phase. As noted elsewhere [4,18], those limitations make difficult to make fair comparisons
between the different approaches reported in the literature.

In this investigation, we explore the use of RF for performing heartbeat classification while
following the AAMI guidelines and the inter-patient paradigm. The study is also focused on the
selection of a reduced set of features that allows optimizing the classification performance without
implying a high computational complexity. For this, we consider a feature space composed of several
characteristics already found to be relevant in other studies [16-28] and also introduced some novel
considerations for calculating normalized features. An optimal set of features is identified by using
a selection approach based on the mutual information (MI) ranking criterion [28]. Results confirm
that RF are an excellent tool for heartbeat classification and that few selected features of the ECG are
enough to obtain state-of-the-art performance.

2. Materials and Method

2.1. Datasets

The ECG signals used in this work were obtained from the online repository of the MIT-BIH
Arrhythmia Database (http://www.physionet.org/physiobank/database/mitdb). The database
included forty-eight 30 minute ECG recordings sampled at 360Hz and collected from two leads.
Here only signals from the modified limb lead II (MLII) are used. Signals were extracted from the
original files using the native Python waveform-database (WFDB) package (https://github.com/MIT-
LCP/wfdb-python) and resampled at 150 Hz which is a sampling frequency commonly found in
wearables and screening devices. The 109,494 heartbeats present in the MIT-BIH Arrhythmia Database
were relabeled from the original 15 heartbeat types into the five types defined by the AAMI (NB, SVEB,
VEB, FB, and UB) as described by Luz et al. [4].
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Training and testing sets are constructed by following a clinically realistic inter-patient paradigm,
where the data used to develop and evaluate the classifier comes from different patients. The
inter-patient approach implemented here corresponds to the division proposed by de Chazal et
al. [29] and adopted by others [4] where the four recordings with paced beats are excluded and the
remaining 44 recordings are divided into two datasets each containing 22 recordings. The first set,
called DS1, is used for training and is composed of all heartbeats of records: 101, 106, 108, 109, 112, 114,
115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223 and 230. The second set, called
DS2, is used for test and is composed of all heartbeats of records: 100, 103, 105, 11, 113, 117, 121, 123,
200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233 and 234. The total number of beats on each
class using this division is reported in Table 1. Due to the low number of FB present in the database as
well as the very few UB that remain after excluding paced heartbeats, both types of heartbeats are not
considered for classification but are nevertheless included in the evaluation.

Table 1. Heartbeat distribution by classes of the different divisions used for constructing the train and
test sets. FB and UB classes were not considered in the classification presented in this work but are
nevertheless included in the evaluation.

Dataset NB SVEB VEB FB UB Total

Train (DS1) 45866 944 3788 415 8 51021
Test (DS2) 44259 1837 3221 388 7 49712

2.2. Feature Extraction

A total of 85 features are considered in this study. Most of them have already found to be
relevant in other studies including: R-R intervals (used in almost all previous works), discrete wavelet
transform (DWT) coefficients [19,20,25], Hermite basis function (HBF) expansion coefficients [21-25],
higher order statistics (HOS) [25-27], amplitude differences [16,17], euclidean distances [25][16,17]
and temporal characteristics of the QRS complex [19,28]. We also include features resulting from the
normalization of R-R intervals, amplitude differences, and QRS temporal characteristics [16,19,28].
Features can be divided into the following groups:

1. Heart rate related features (3 features): the current R-R interval (RR¢) defined by the heartbeat
being classified, the previous R-R interval (RR_1), and the next R-R interval (RR.1). R-R intervals
are calculated from the location of R spikes provided with the database.

2. HBF coefficients (15 features): each beat segment, here defined by the samples located 250 ms
before and after each R spike, is decomposed using 3, 4, and 5 Hermite functions as described
in [21]. The coefficients obtained from fitting Hermite polynomials of degree 3, 4, and 5 are
calculated using the function hermfit provided by the Scikit-Learn package for Python [30].

3. HOS (10 features): the third-, and fourth-order cumulant functions (kurtosis and skewness
respectively) for each beat segment are computed. The parameters as defined in [25] are used:
the lag parameters range from —250 ms to 250 ms centered on the R spike and 5 equally spaced
sample points.

4. DWT coefficients (23 features): the DWT of each beat segment is computed using the same
parameters defined in [25]: the Daubechies wavelet function (db1) is used with 3 levels of
decomposition.

5. QRS temporal characteristics (4 features): the following temporal characteristics of the QRS
complex are calculated: the total duration of the QRS complex (QRSw), the width of the QRS
complex at half of the peak value (QRSw?2), the width of the QRS complex at a quarter of the peak
value (QRSw4), the distance between the peak of the Q wave and the peak of the S wave (QS5d).
Figure 1 shows an illustration of the features previously listed in relation to the ECG signal of a
normal heartbeat. A detailed description of the extraction procedure is provided in Appendix A.

6. Amplitude differences (8 features): the following amplitude difference features as defined in
[16] are extracted: the amplitude difference between the P and the Q waves (PQa), the amplitude
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difference between the Q and the R waves (QRa), the amplitude difference between the R and
the S waves (RSa), the distance between the peak of the P wave and the beginning of the QRS
complex (PRd), and the peak value of each of the considered waves (Ppeak, Qpeak, Rpeak, and
Speak). Figure 1 shows an illustration of the features previously listed in relation to the ECG
signal of a normal heartbeat. A detailed description of the extraction procedure is provided in
Appendix A.

7. Euclidean distances (4 features): the Euclidean distance (sample, amplitude) between the R
spike peak and four points of the beat segment are obtained as described in [25]. These points
correspond to the maximum amplitude value between 250 ms and 139 ms before the R spike, the
minimum value between 42 ms and 14 ms before the R spike, the minimum value between 14 ms
and 42 ms after the R spike, and maximum value between 139 ms and 250 ms after the R spike.

8. Normalized heart rate features (6 features): RR; divided by the average of the last 32 beats
(RRop/avgRR), RR_; divided by the average of the last 32 R-R intervals (RR_1/avgRR), RR14
divided by the average of the last 32 R-R intervals (RRy;/4vgRR), RR_; divided by RRy
(RR-1/RRp), RR 1 divided by RR¢ (RR1/RRp), and the t-statistic of RRq ({RR) defined by the
difference between RR( and avgRR divided by the standard deviation of the last 32 R-R intervals.

9. Normalized QRS temporal characteristics and amplitude differences (12 features): the same

QRS temporal characteristics and amplitude differences previously specified, except that they are
divided by their average value in the last 32 heartbeats.

QRa RSa

QRSw2

, I QRSw4

PQa

|

Qsd

—

PRd QRSw

Figure 1. Illustration of the QRS temporal characteristics and amplitude differences extracted from a
normal heartbeat and the fiducial points identified in order to obtain them.

For the extraction of features all the records of the datasets are evaluated sequentially one heartbeat
after another simulating a real-time scenario. For this reason, normalized features use statistics
calculated only from precedent heartbeats instead of statistics over an entire record (patient-wise) as is
performed in related works [24,31]. Since only the features related to RR 1 needs a future value, the
classification of each heartbeat can be done once the following beat is detected.

2.3. Feature Selection

In order to limit the computational complexity of the solution without compromising the
classification performance, the maximum number of features actually considered for the training
phase of this study is arbitrarily set to ten. This is in line with expert opinions and previous works
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which have shown that the number of discriminative features can be very small [19,24,28,32]. For
filtering and using only the most informative features relative to the heartbeat type classes, the mutual
information (MI) ranking criterion as described by Doquire et al. [28] is followed. The function
mutual_info_classif provided by the Scikit-Learn package for Python [30] is used for estimating the MI
between each feature and the class labels using the training set DS1. Table 2 shows the top ten MI
ranked features.

Table 2. The ten most informative features ranked according to the mutual information criterion [28]
relative to the NB, SVEB, and VEB classes.

Rank Feature

QRSw?2 (normalized)
QRSw4 (normalized)
RRy/avgRR
RR11/RRy
QRSw2
Fitting coefficient 1 of HBF with degree 4 (HBFd4cl)
HBFd4c2
QRSw4
HBFd4c0
RR_1/RRy

O OO U WN -

—_
o

2.4. Classification Performance Measures

In order to assess the performance of our heartbeat classification approach and allow the
comparison with other methods found in the literature, the sensitivity (Se), positive predictivity
(+P), Fl-score (F;), and overall accuracy (Acc) of the classification outcome were calculated. The
sensitivity, also found in the literature as recall, refers to the relative number of correct detections of a
particular class of heartbeats. The positive predictive value, also called precision, refers to the relative
number of true positive heartbeats in all detected heartbeats of that class. The F1-score is the harmonic
average of the precision and recall, and here is used to assess the classification performance on each
class and compare it with state-of-the-art methods using a single value. The overall accuracy refers to
the relative number of correctly classified heartbeats considering all classes. Here the Acc is used to
guide feature selection and model development and as a general indicator of performance. All these
performance indicators are calculated from the classification confusion matrix. Performance measures
from the training set are calculated with “leave-one-patient-out” cross-validation.

2.5. Classification Performance Measures

The Random Forest (RF) algorithm is the method used in this work for the classification of
heartbeats. Briefly, an RF is an ensemble of C trees T1(X), T2(X), ..., TC(X), where X = x1,x2, ..., xm
is an m-dimension vector of inputs. The resulting ensemble produces C outputs Y1 = T1(X), Y2 =
T2(X),...,Yc = Tc(X). Yc is the prediction value by decision tree number c. The output of all these
randomly generated trees is aggregated to obtain one final prediction Y, which is the average value
of all the trees in the forest. An RF generates C number of decision trees from N number of training
samples. For each tree in the forest, bootstrap sampling (i.e. randomly selecting the number of
samples with replacement) is performed to create a new training set which is then used to fully grow a
decision tree without pruning [33]. In each split of a node of a decision tree, only a small number of m
features (input variables) are randomly selected instead of all of them (this is known as random feature
selection). This process is repeated to create M decision trees in order to form a randomly generated
forest.

The training procedure for a randomly generated forest can be summarised as follows:

1.  Select a random sample from the training dataset.
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2. Grow a tree for each random sample with the following modification: at each node, select the
best split among a randomly selected subset of input variables, which is the tuning parameter of
the random forest algorithm. The tree is fully grown until no further splits are possible and not
pruned.

3. Repeat steps 1 and 2 until C such trees are grown.

Here the RF implementation given by the class RandomForestClassifier of the Scikit-learn package for
Python [30] is used. The number of trees is the only parameter explored and all other parameters
are left with their default values. In order to find an optimum number of trees, classifiers are trained
with an increasing number of trees using the top ten features found in the previous section and
the performances in terms of Acc are observed. The results obtained from “leave-one-patient-out
cross-validation on the training set DS1 are shown in Figure 2. It can be observed that after 40 trees the
performance of classifiers do not increase and may actually diminish.

7
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Figure 2. Accuracy obtained from “leave-one-patient-out” cross-validation on the training set DS1
with RF classifiers with varying number of trees.

3. Results

Figure 3 shows the classification performance in terms of Acc on the test set DS2 of RF classifiers
that use up to ten Ml-ranked features. It can be observed that the highest performance is actually
achieved with just six features (Acc = 96.14%) after which the classification performance reaches a
plateau.
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Figure 3. Overall accuracy of RF classifiers on test set DS2 with varying number of MI-ranked features.

Table 3 shows the confusion matrix obtained with the RF classifier trained with the six most
informative features in the test set DS2 and Table 4 shows the relative performance details.

Table 3. Confusion matrix of obtained on the test set DS2

Prediction
NB SVEB VEB

NB 43494 655 67
SVEB 369 1443 25

Label VEB 383 13 2814
FB 277 0 65
(0):] 4 2 3

Table 4. Performance details obtained on the test set DS2

+P Se F Acc

NB 97.68%  98.27%  97.97%
SVEB 68.29% 78.55% 73.06% 96.14%
VEB  94.62% 87.36%  90.85%

4. Discussion

In this work, the application of RF for recognizing heartbeats using selected time-domain features
extracted from the single-lead ECG signal was investigated following the AAMI guidelines and the
inter-patient paradigm. This probably represents the first known attempt to study the performance of
RF for heartbeat classification following the AAMI guidelines and the inter-patient paradigm.

In the present investigation, a total of 85 features were explored. We implemented all the features
used by Mondéjar-Guerra et al. [25] which is one of the most recent relevant works, and additional
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morphological features proposed or based on the works of Mar et al. [19] and Doquire et al. [28].
Unlike the feature normalization done by Doquire et al. [28] where normalization is done by dividing
values by the patient average (whole record average), in this work normalization was performed
mainly by dividing values by the average of the most recent beats which is an approach that can be
more realistically implemented in real-time wearable monitors and screening devices. In order to
consider more information about the instantaneous heart rate variation, additional normalizations
for R-R intervals were included. In the case of the previous and next R-R interval (RR_; and RR41),
the additional normalization consisted in dividing them by the current R-R interval (RRp). This
was introduced in an attempt to include the timing relationship between successive R waves as
considered in the rules proposed by Tsipouras et al. [34]. In the case of the current R-R interval, the
additional normalization was the t-statistic (tRRg) which was introduced in order to include a measure
of the number of standard deviations a given interval is from the average. Since most of these new
normalizations appeared in the top ten most informative features (see Table 2), our results suggest
that those newly introduced normalizations for R-R intervals give more information and are more
discriminative for heartbeat classification than values of the R-R intervals alone.

Features were selected using the filter approach with mutual information ranking proposed by
Doquire et al. [28] and only the top ten most informative ones were considered in the experiments.
Results showed that as few as six features were enough to obtain the best performance (see Figure 3).
This agrees with the findings of Doquire et al. [28] and de Lannoy et al. [24] which has shown that the
number of discriminative features in a set is usually small and that removing the less informative ones
can significantly improve the performance of a classifier. In addition to the features based normalized
R-R intervals, most of the features among the top ten most informative are relative to the width of the
QRS complex peak wave measured at fixed proportions of the peak amplitude. This suggests that
those features are probably a more reliable descriptor of QRS morphology than other features based on
fiducial points defined by low amplitude changes which can be easily masked by the baseline noise.

Table 5 shows a comparison between the results obtained with the test set DS2 in this work
and some of the approaches with the best heartbeat classification performances following the AAMI
guidelines and the inter-patient paradigm reported in the literature. It can be observed that the overall
accuracy reported in the present study is one of the highest ever obtained with the same evaluation
methodology (Acc = 96.14%), almost the same performance reported by Afkhami et al. [35] (Acc
= 96.15%) which is the highest in the literature to the best of our knowledge. Interestingly, though
Afkhami et al. propose the use of a different set of features, basically by introducing the use of a
Gaussian mixture model (GMM) based on the Expectation Maximization (EM) algorithm, they propose
a classification method very similar to RF called Bagging Trees (BT) which is also based on an ensemble
of decision trees. RF and BT basically differs in the way the problem of high variance and instability
of single decision trees is approached. While BT improves variance by averaging /majority selection
of outcome from multiple fully grown trees on variants of training set, RF does the same by random
selection of feature-subset for split at each node. Since the RF approach produce a lower correlation
between trees it can potentially produce better results as observed by some studies [36]. The results
reported by Afkhami et al. were obtained with an ensemble of 100 trees whereas the results presented
here were obtained with an ensemble of only 40 trees.
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Table 5. Comparison of the best results obtained in this work with state of the art approaches.
Work Classifier ~ Type of fetures Number F{ of F of F of Acc
of class class class
features NB SVEB VEB
used
Llamedo and LD R-R-intervals, WT, 8 96.48% 17.16%  83.89%  93%
Martinez [32] and time domain
morphology
Huang et al. Ensemble R-R-intervals, 101 97.59% 57.68% 92.37%  93.8%
[31] of SVM + Random
Threshold  projections
Afkhami et al. Ensemble  R-R-intervals, 33 97.89% 88.64% 85.82%  96.15%
[35] of BDT DCT Random
projections
Chen et al. SVM R-R-intervals, 33 96.88% 33.37% 77.29%  93.1%
[37] DCT Random
projections
Marinho et al. Naive HOS 4 (65.6%)* (0.4%)*  (84.7%)* 94.0%
[38] Bayes
Mondéjar- Ensemble  R-R-intervals, 45 97.04%  60.74%  94.29%  94.5%
Guerra et al. of SVM HOS, WT, and
[25] time domain
morphology
This work RF R-R-intervals, 6 97.97% 73.06% 90.85% 96.14%
HBF and
time domain
morphology

WT: wavelet transform, LD: linear discriminant, HOS: high order statistics, HBF: Hermite basis
functions, GMM: gaussian mixture model, BDT: bootstrap aggregated decision trees, DCT: discrete
cosine transform, SVM: support vector machine.

* In [38] 4P values nor the confusion matrix are disclosed,therefore, the harmonic mean of the
sensitivity and specificity is reported here instead of F;.

Since the highest performance detecting SVEB was reported by Afkhami et al. [35], a possible
route for improvement can be to include in our feature selection procedure the GMM-based features
proposed by Afkhami et al. However, given the limitations of the MIT-BIH Arrhythmia Database and
the inter-patient protocol proposed by de Chazal et al. [29], the performance in the detection of SVEB
of the proposed approach as well as many others should not be taken as definitive. For this, more
research considering additional databases is needed.

5. Conclusions

In this study, time-domain features extracted from the single-lead ECG were objectively selected by
their information content and the heartbeat classification performance using RF was fairly evaluated
by following the AAMI guidelines and the inter-patient paradigm. Normalized features relative
to R-R intervals and to the width of the main wave of the QRS complex were found as the most
discriminative characteristics for the classification task. The best results were obtained with the top
six most informative features and a 40-trees RF classifier. The evaluation on the MIT-BIH Arrhythmia
Database resulted in an overall accuracy was 96.14% with specific F1-scores of 97.97%, 73.06%, and
90.85% for the NB, SVEB and VEB classes respectively. In comparison with state-of-the-art approaches
evaluated on similar conditions, our results represent one of the highest performances obtained to
date. Results not only confirm that RF are an excellent tool for heartbeat classification but also that
relatively few characteristics are enough to obtain state-of-the-art performance.
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Supplementary Materials: The following are available online at https://github.com/crs4/rf-ecg-heartbeat-
classification: computer code used for dataset preparation, feature extraction and selection, and model training
and validation.
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Appendix. Extraction of QRS temporal characteristics and amplitude differences

The extraction of features is implemented as follows. The R spike annotations provided with the
MIT-BIH Arrhythmia Database are used as a marker to separate and identify the beats. At each beat
location, a segment of 640 ms of signal (96 samples) is considered, 373 ms before the annotation (56
samples) and 267 ms (40 samples) after it. The mean of the signal segment is subtracted from each
sample in order to remove the baseline. The absolute maximum value of the signal 100 ms before
and after the annotation (QRSmax) is considered as a reference point. Though such value usually
corresponds to the database R spike annotation and the peak of the R wave in typical normal heartbeats,
this is not always the case because the QRS may have a complex morphology and fall into one of
the broad categories of the standard nomenclature where the R wave is not the one with the highest
amplitude [39]. Therefore, only if QRSmax is positive it's immediately marked as the peak of the R
wave (Rpeak). Starting from QRSmax, ten fiducial points are identified: the two locations where the
signal reaches half the value of QRSmax (QRSmax/2a,b), the two locations where the signal reaches
a quarter of the value of QRSmax (QRSmax/4a,b), the peak value of the R wave (Rpeak), the peak
value of the Q wave (Qpeak), the peak value of the S wave (Speak), the beginning of the QRS complex
(QRSstart), the end of the QRS complex (QRSend), and the peak value of the P wave (Ppeak). Many
of the mentioned fiducial points are individuated by looking for the inflection points in the signal
and identifying the locations where the signal first derivative change direction. For this, a two-point
numerical differentiation is applied to the signal. The procedure for identifying the fiducial points can
be described with the following steps:

1.  Assume that Qpeak, Rpeak, Speak, and Ppeak equal zero and that the corresponding waves are
not present.

2. If QRSmax is positive then make Rpeak equal to QRSmax.

3. Look backward from QRSmax and evaluate the signal and it’s inflection points in this way:

(@) Make QRSmax/2a equal to the first location where the signal goes below half of QRSmax.
(b) Make QRSmax/4a equal to the first location where the signal goes below a quarter of

QRSmax.
(c) If the first inflection point is negative and Rpeak is not zero then Qpeak equals the value at

such point.
(d) If the first inflection point is positive or zero and Rpeak is not zero then it's marked as

QRSstart, and Qpeak is considered zero.
(e) If the first inflection point is positive and Rpeak is zero then make Rpeak equal to the value

at such point and make Speak equals to QRS max.
(f)  If the second inflection point is negative, Qpeak is zero, and QRSmax is positive then make

Qpeak equals to the value at such point.
(g) If Qpeak is not zero and the signal cross zero then the first non-negative point is marked as

QRSstart.
(h)  If the second inflection point is positive or zero and QRSstart has not been found yet then

it’s marked as QRSstart.

4. Look forward from QRSmax and evaluate the signal and it’s inflection points in this way:

(a) Make QRSmax/2b equal to the first location where the signal goes below half of QRSmax.
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(b) Make QRSmax/4b equal to the first location where the signal goes below a quarter of

QRSmax.
(c)  If the first inflection point is negative and Rpeak is not zero then make Speak equal to the

value at such point.
(d)  If Speak is not zero and the signal cross zero then the first non-negative point is marked as

QRSend.
(e) If the second inflection point is positive or zero and QRSend has not been found yet then it’s

marked as QRSend.

5. Find the maximum value of the signal in the segment that goes between 233 ms (35 samples)
and 67 ms (10 samples) before QRSstart. If such value is greater than three times the standard
deviation of the signal during the 67 ms preceding the segment in consideration, and it’s position
correspond to an inflection point in the signal, then make Ppeak equal to such value.

Once the fiducial points are identified all the features can be easily computed from the differences
between the values or locations of the relative fiducial points (see Figure 1).
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