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Abstract 

Demographic processes directly affect patterns of genetic variation within contemporary 

populations as well as future generations, allowing for demographic inference from patterns of 

both present day and past genetic variation. Advances in laboratory procedures and sequencing 

and genotyping technologies in the last decades have resulted in massive increases in high 

quality genome-wide genetic data from present day populations and allowed retrieving genetic 

data from archaeological material, also known as ancient DNA. This has resulted in an 

explosion of work exploring past changes in population size, structure, continuity and 

movement. However, as genetic processes are highly stochastic, patterns of genetic variation 

only indirectly reflect demographic histories. As a result, past demographic processes need to 

be reconstructed using an inferential approach. This usually involves comparing observed 

patterns of variation with model expectations from theoretical population genetics. A large 

number of approaches have been developed based on different population genetic models that 

each come with assumptions about the data and underlying demography. In this article I review 

some of the key models and assumptions underlying the most commonly used approaches for 

past demographic inference and their consequences for our ability to link the inferred 

demographic processes to the archaeological and climate records. 
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Introduction 

Genetic information from present day individuals has been used for past demographic and 

evolutionary inference for decades. However, recent advances in sequencing and genotyping 

technologies have reduced the cost of generating genetic data substantially, allowing for large 

high-quality population-wide datasets to be produced and used for addressing questions about 

demography ranging from the timing of recent human “Out-of-Africa” event [1] to mate choice 

patterns and structure of genetic variation within present day populations [2].  

This reduction of cost per base pair sequenced combined with advances in specialised 

laboratory protocols for degraded genetic material [3–5] has also allowed large scale 

sequencing of genetic data from archaeological material, also known as ancient DNA, and 

resulted in an explosion of work exploring changes in population size, structure, continuity and 

movement in last few thousand years. 

While some aspects of past demography have simple predictions for genetic patterns of 

variation, such as the biological sex [6] of a past individual or familiar genetic relationships 

between individuals [7], most demographic processes leave behind a more convoluted 

signature. In fact, the patterns of genetic variation across individual genomes are a result of 

accumulated effects of different past demographic processes combined with the stochasticity 

of inheritance.  

As a result, demographic processes need to be inferred by comparing patterns of observed 

genetic variation to theoretical or (in case of more complicated demographic scenarios) 

simulated model predictions, both relying on the population genetics theory with its roots in 

the work by R. Fisher, S. Wright, J. B. S. Haldane and others in the 1920s and 1930s.  

Different inferential approaches require assumptions about the data and the underlying 

demographic processes, that in some methods need to be made explicitly whereas in others 

they are implicit. These assumptions, and the level to which they are met, can heavily affect 

the suitability different frameworks for testing competing demographic hypotheses as well as 

the interpretation of such demographic modelling. In this article I will review the assumptions 

underlying the most common approaches for past demographic inference as well as their 

consequences, especially in relation to our ability to link the inferred demographic processes 

to the archaeological and climate records. 
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Pattern-based approaches to demographic inference  

Phylogeographic inference is an approach to reconstruct population histories that was 

especially popular in the early days of past demographic inference using genetic data (e.g. [8,9] 

but also [10]02/03/2020 15:16:00). Here, a phylogenetic tree is constructed based on the 

substitutions (mutations) in a single locus (usually a non-recombining part of the genome like 

the mitochondrial DNA or the Y chromosome). All sampled individuals are assigned to 

haplogroups and haplotypes, which are the branches and sub-branches, or lineages, on the 

inferred tree. The root of the tree corresponds to the most recent common ancestor of all the 

samples. When the mutation rate is known (or can be estimated), it is possible to estimate the 

dates of each branching point of the tree, using the accumulation of mutations along branches 

in the tree as a "molecular clock". Inferences about the past are based on the phylogenetic 

relationship between different haplotypes or haplogroups, their estimated splitting times, and 

their distribution in space and time. 

The key challenge with inferring the past from these trees lies in that events in the single locus 

phylogenetic trees do not generally correspond directly to population-level events as they are 

stochastic outcomes of given population histories. As a result, very different demographic 

scenarios can give rise to qualitatively similar gene trees and distribution of haplotypes [11]. 

Although studies relying on data from single loci often lack the statistical power to test complex 

population histories, especially when exclusively from modern populations [12–14], robust 

inference can in principle be achieved when using sufficient data (e.g. samples from before, 

during and after the demographic event of interest) and explicit statistical modelling that 

accounts for the randomness of individual loci and allows to formally consider the likelihood 

of different alternative demographic scenarios (e.g. [15,16]). Although ancient DNA alone 

already provides additional resolution that often enable researchers to exclude less likely 

scenarios (e.g.[17–19]), without explicit demographic modelling the conclusions can be easily 

steered by the subjective biases of a particular researcher [14]. 

The latter also applies to neighbour joining trees based on many more loci or even whole 

genomes: Such algorithms are designed to join samples based on genetic similarity without 

explicit consideration to demographic processes such as gene flow, genetic drift, isolation and 

identity by descent, let alone more complex scenarios combining these processes, that may 

have caused the observed similarities and differences between populations. Therefore, the 

resulting tree does not in itself provide sufficient evidence to conclude that the studied 

populations have split like the tree suggests. Nevertheless, these approaches are extremely 
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useful for identifying issues with data quality, such as sequencing batch effects and other 

artefacts resulting from data generation, as well as for generating alternative hypotheses or 

demographic scenarios, to be formally tested within a hypothesis testing framework.  

 

Descriptive methods for inferring population structure 

Principal Component Analysis (PCA) is a commonly used technique for assessing the genetic 

similarity between individuals and the extent to which populations form distinct clusters. In a 

PCA of genetic data, each locus is treated as an independent variable (dimension) and genetic 

variation among samples is reduced into main axis of variation - principal components (PCs), 

using the covariance matrix. PCA analysis of modern human populations has been shown to 

reflect geographic relationships between populations on different scales: on a global scale, 

populations from the same sub-continent tend to group together [20], and across Europe the 

genetic locations of samples in the PCA show striking similarity to their geographic locations 

[21]. 

In ancient DNA literature, modern populations are typically used to define the PCs and ancient 

individuals are projected onto them. As a general rule, only the first few axes of variation (PCs) 

are presented, representing a small proportion (typically only few percentages) of total 

variation present in modern populations. However, the older the sample, or otherwise more 

distantly related to the modern populations used in the analysis, the more likely it is that more 

of its variation ends up in an orthogonal axis to the ones presented/used for inference. This 

problem can be exacerbated by the projection method as individuals with more missing data 

are more likely to end up closer to the average of the modern data points. In principle, it would 

be possible to overcome this problem by turning the analysis around: Using ancient samples to 

define PCs and projecting modern samples onto this variation, in order to investigate the 

genetic similarity between modern and ancient populations. However, this would require a 

representative high-quality ancient DNA sample from each time slice and geographic region 

of interest.  

The main problem with inferring population history from PCA is that it lacks an underlying 

population genetic model, and several different scenarios can result in similar distribution of 

samples on PCs [22]. For example, a population can appear different in a PCA because it has 

been separate from other populations for a long time, or because a recent population bottleneck 

has caused extensive drift in allele frequencies within that population [23]. Therefore, it is not 
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possible to directly relate the inferred distances between samples on PCs to demographic 

processes behind the observed variation. 

Similar criticism applies to tools commonly used in demographic inference using modern and 

ancient DNA such as STRUCTURE [24], ADMIXTURE [25], Finestructure, and 

Chromopainter [26]. These tools vary in their technical implementations but are all designed 

to identify major genetic clusters and express each sample as a mixture of these clusters. For 

example, people living in central America today can be modelled as admixture between 

present-day Native American, European and African populations [27]. The underlying model 

of such approaches assumes that (present day) individuals are a product of admixture of distinct 

“source” groups that existed in the past. Problems with such approaches may arise when this 

cannot be assumed a priori and the inferred statistical clusters are misleadingly taken as 

evidence of existence of “ancestral” or “source” populations, when in reality, the existence of 

such clusters could be explained by multiple distinct demographic histories [28]. Unless more 

complex demographic scenarios are explicitly considered, it is inherently not possible to 

identify which demographic scenarios have resulted in such clusters using clustering 

approaches alone. However, sometimes it is possible to use such tools to test competing 

demographic scenarios, provided that it is clear that the tested scenarios are expected to produce 

distinct clustering patterns (e.g. [29]).  

In summary, statistical approaches such as the Principal Component Analyses and neighbour 

joining trees (regardless whether based on a single locus or whole genomes) as well as 

clustering tools such as tools such as ADMIXTURE can be very useful for summarising and 

visualizing complex population genetic data (e.g. for generating alternative hypotheses or 

identifying problems with data quality). However, the translation of such patterns into explicit 

demographic scenarios is less than straightforward as such tools lack a formal demographic 

model as well as a hypothesis testing component. This results in inference that can be easily 

steered by subjective interpretation of individual researchers, unless the demographic scenarios 

of interest can be expected to produce vastly different patterns of variation. 

 

Methods for inferring spatial barriers to past mobility 

From theoretical population genetics and ecology it is known that reduced mobility, for 

example caused by geographic or cultural barriers, can increase differences in allele 

frequencies between populations. For pairs of populations, this has traditionally been captured 

by FST, the ratio of the variance of allele frequencies between sub-populations to the variance 
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in the whole population [30]. In an ideal setting, such as Wright's infinite island model [31] 

where populations are located on an infinite square lattice, FST is directly related to the number 

M of migrants per generation between neighbouring populations in the lattice [FST = 1/(1+2M)], 

such that no migrants yield FST =1 and "infinite" migration rate (i.e. a panmictic population) 

yields FST =0. 

Several tools have been developed to extend this principle. CircuitScape [32,33] is commonly 

used in landscape population genetics to test the effect of geographic features on population 

connectivity. It approximates the effect of gene flow as current through an electric circuit, 

where FST values between pairs of populations correspond to pairwise voltage measurements 

in the circuit. By solving the corresponding electrostatic equations, the program estimates gene 

flow along all paths. Recently, this tool was used to estimate different routes during the initial 

colonisation of Australia [34].  

Pagani et al. [1] developed an analytical technique, based on Gaussian kernel interpolation, to 

study past barriers to gene flow by quantifying spatial gradients in allele frequencies. They 

applied it to human whole genome data across Eurasia and found evidence of major mountain 

ranges and deserts acting as barriers to gene flow. Petkova et al. [35] introduced EEMS 

(Estimated Effective Migration Surfaces), a tool based on computational geometry designed to 

deal with spatially irregular patterns of data. In this framework space is represented as a 

polygon subdivided into triangles. Each of the triangles is associated with a local movement 

rate that is constant within the triangle. Finally, the method uses classical population genetics 

theory to find movement rates that corresponds to observed pairwise differences in allele 

frequencies among samples.  

Mathieson et al. [36] applied the EEMS approach to 116 samples dated to be older than 7000 

BP in order to investigate population structure in European hunter-gatherers. These methods 

rely on the assumption that observed genetic similarities and differences between samples are 

a function of physical isolation between them, so that genetic differences between samples of 

different age (resulting from genetic drift and mutations) can cause spurious geographic 

barriers to be inferred in temporally heterogenous datasets. However, this issue can be 

mitigated by making sure that the temporal genetic differences are small enough compared to 

the geographic differences considered. 
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Sampling bias 

Bias in sampling is an issue that can potentially affect all population genetic inference from 

pattern-based qualitative descriptions of data to explicit demographic modelling. As a general 

rule, approaches for past demographic inference from genetic data rest on the assumption that 

individuals are sampled randomly from a population so that the observed differences between 

samples is representative of the whole population. This can pose a significant problem for 

demographic analyses based on individuals from museum collections or archaeological 

specimens where sampling is largely influenced by a number of non-random factors such as 

preservation, as well as excavation and sampling locations and periods that are not always 

spatially or temporally randomly distributed. 

The issue of non-uniform sampling can be dealt with using approaches that explicitly consider 

spatial and temporal location of samples. For example, Loog et al. [37] developed an extension 

to the FST measure that unifies spatial and temporal distances into a single metric. They showed 

that this metric directly informs on past levels of mobility and applied it to genome-wide data 

from a set of spatially and temporally sparsely distributed ancient Europeans. 

However, even such methods can give misleading results if the sampled individuals are closely 

genetically related. For example, consider a situation where related individuals are more likely 

to be subjected to similar funerary practices or be buried in a similar location. If these practices 

or locations were more likely to be excavated or result in better preservation, sampled 

individuals could end up being more related than would be expected by chance, leading also to 

biased downstream demographic analyses. Although familial relatives can be identified and 

removed from subsequent demographic inference, more subtle sampling biases can be very 

difficult to detect and account for in the analyses. 

 

Methods for inferring demographic histories from explicit models 

As discussed above, approaches such as PCA and Admixture are descriptive, and narratives 

based purely on such results do not constitute a formal analysis of population history. In order 

to achieve robust demographic inference, alternative hypotheses need to be formulated as 

different demographic scenarios. The likelihood of different demographic scenarios can then 

be formally compared by calculating the probability of observing the data given each scenario. 

Here the level of detail described in each demographic scenarios is heavily constrained by the 

available data so that more information rich data can be used to test increasingly more nuanced 

demographic scenarios.  
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Tree-like population history models & the history 

In order to understand the properties of modern methods for inference of past population 

dynamics, and some of their weaknesses, it is useful to review the concept of population in 

population genetics: Conceptually, either directly or indirectly, most population genetic models 

treat populations as lineages (or taxa) within a phylogenetic framework. That is populations 

are distinct, homogenous entities; with a history that can be represented as a tree, where branch 

points represent splits between ancient populations, and leaves of the tree are extant or 

archaeological populations for which samples are available.  

Several methods of varying degree of complexity exist for constructing the phylogenetic tree 

representing the joint history of populations. Here, I will review the approaches most 

commonly used in the inferences about past demography, as an exhaustive enumeration of all 

population genetic modelling methods would be beyond the scope of this paper. 

Several computationally intensive methods have been developed to estimate past population 

sizes, gene flow between different branches in the population tree and, if the mutation rate is 

known, date of divergence between populations from sequence data (e.g. IMa [38], 

fastSIMCOAL2 [39] and G-PhoCS [40]) or allele frequency data (e.g. ai [41]). For example, 

Freedman et al. [42] used the G-PhoCS tool and seven high quality genomes from present day 

wolves and dogs to formally compare demographic models involving different divergence 

times, ancestral population sizes, and rates of post-divergence gene flow between the different 

branches of the Canid phylogenetic tree (each sample representing a different branch). 

The approaches based on the phylogenetic framework rely on the assumption that the 

relationship between populations can be represented as, essentially, a phylogenetic tree, i.e. as 

abrupt splits between different branches of the tree, followed by independent evolution with 

potential for subsequent episodes of gene flow between them. As a result, such approaches are 

not well suited to testing past demographic scenarios where the relationship between 

populations has historically been more complex than can be represented in a splitting tree 

model (i.e. groups in close geographic proximity). 

A different but related issue is that such approaches do not scale well to large histories, with 

complex historical interactions as they require all potential demographic events and 

interactions to be explicitly defined. As a result, a potentially large number of a priori modelling 

decisions about a demographic process which is, as a general rule, unknown are required for 

the inference, making them challenging to apply to many archaeological and anthropological 

questions.  
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This has created a need for inference methods that require fewer a priori assumptions, and as a 

result, are sometimes informally referred to as “data driven” or “model free” approaches. 

Although these approaches do not require a predefined demographic model, they make a 

number of assumptions about the possible genetic histories of samples within and between 

populations. As I will illustrate with examples below, such approaches are far from model free.  

 

Population genetic inference for estimating past population sizes  

One such approach has been developed for estimating changes in past population sizes. 

Coalescent theory predicts that gene linages coalesce with a rate dependent on the effective 

population size (the size of the population contributing offspring to the next generation). This 

provides a unique relationship between the size of a population through time and the 

distribution of time to the most recent common ancestor for pairs of sequences. Li and Durbin 

[43] developed PSMC (Pairwise Sequentially Markovian Coalescent) approach to implement 

this principle and reconstruct a detailed history of population size from a single high quality 

(i.e. with sufficient sequencing depth to resolve heterozygotes) genome sequence. Extensions 

of this method have been subsequently developed to additionally handle multiple samples from 

a single population for an increased resolution [44,45] and to infer the history of gene flow 

between pairs of populations [45]. 

Li and Durbin [43] used PSMC to infer population size change curves through time from high-

quality genomes from Africa, East Asia, Europe. They inferred a severe reduction in population 

size for non-African individuals around 10-60 thousand years ago) and attributed this to out of 

Africa population bottleneck.  

In these approaches the inference of effective population size changes through time rest on two 

main assumptions: a) that mutation and recombination rates are known and b) that the 

population from which the sample was drawn has been panmictic throughout history, i.e. that 

all contemporary pairs of individuals within that population are equally likely to mate, 

regardless of geographic separation or other factors. Uncertainty of both mutation and 

recombination rate estimates results in large confidence intervals for estimated population sizes 

and time scales of inferred changes (when this is taken into account, frequently on single 

mutation and recombination rate values are considered in the analyses).  

Deviations from the assumption of panmictic populations can have more obscure consequences 

for the inferred histories. For example, Mazet et al. [46] showed that when PSMC is applied to 

samples from spatially structured populations, it tends to infer changes in the effective 
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population size with time also when the true population size has been stable. This can be 

understood by considering the case of a local sub-populations, where each sub-population is 

panmictic and is connected to its closest neighbours by migration (gene flow). For short time 

scales, the ancestors of an individual sampled from one of the sub-populations will tend to 

belong to the same sub-population, and the inferred effective population size will reflect the 

size of this sub-population. On longer time scales migration will cause the ancestors to be 

spread out over a larger geographic area, with increasingly rare contacts (and, as a consequence, 

lower coalescent rates). From this reduced coalescence rate the PSMC will infer an increasing 

effective population size, even when there has been no change in it. In this case, the detailed 

shape of the inferred population size history will depend on the size and number of sub-

populations as well as the migration rate between sub-populations [46]. Although magnitude 

of this effect will largely depend on the level of historic structure present in populations, Mazet 

et al. [46] suggested that estimates of population size that ignore population structure should 

be interpreted as estimates of past population size and population structure as it is not clear 

which aspect is being captured for any given demographic history. 

 

F-statistics and admixture graphs  

Another class of methods that do not require a detailed relationship between populations to be 

explicitly modelled are built on so-called f -statistics [47]; reviewed in [48] in further detail) 

and have been used extensively in the ancient DNA literature to test hypotheses of the 

relationship between ancient and modern populations. These statistics also use classical 

phylogenetic view of a population (described above) and rely on the assumption that genetic 

drift occurs independently in each population, i.e. on each branch of the tree. Pare inferred to 

share more genetic drift are expected to share more of their demographic history. The f 2 

statistic measures the amount of drift along both lineages since the divergence from a shared 

ancestral population in the tree. The f 3 statistic measures the amount of shared drift between 

two pairs of samples relative to an out-group population. As a result, the f 3 statistic is often 

used to quantify the level of shared drift between modern-day populations and archaeological 

(ancient DNA) samples, and to identify the closest present-day relatives to an archaeological 

sample. 

For example, Rasmussen et al. [49] used the f3 statistic and a sample from an ancient North 

American individual directly associated with the Clovis tools to test the two competing 

hypotheses about the origins of the Clovis culture. They found that present day Native 
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Americans from Central and South America share the greatest amount of genetic drift (highest 

f3) with the ancient Clovis individual, followed by individuals from Central Eurasia and only 

then individuals from Europe, suggesting that the demographic history of people associated 

with Clovis culture involved a more recent split from East-Eurasian populations than European 

populations and subsequently supporting the hypothesis where people practicing Clovis culture 

arrived to the Americas from Asia (via Beringia) over the European origins (Solutrean) 

hypothesis.  

The f4 statistic estimates the amount of shared genetic drift between pairs of populations, and 

can be used to statistically test hypotheses of gene flow between sub-populations [47], or 

hybridisation between populations of different species [50]: if the shared drift is zero, the two 

pairs of populations must belong to different parts of the tree (i.e. separated by a more ancestral 

node in the tree). Conversely, if the f4 statistic is significantly different from zero, the null 

hypothesis of no separation between populations or species is formally rejected and it is 

concluded that gene flow or hybridisation occurred. The related D statistic (the f4 statistic 

divided by a positive scale factor that makes the D statistic have a range between -1 and 1) is 

often used in these tests, often referred to as ABBA-BABA tests, measuring the proportion of 

two gene-tree configurations across the genome.  

The f4 statistic can also be used to statistically test whether different ancestral tree topologies 

are compatible with the observed data. Frameworks such as TreeMix [24], AdmixtureGraph 

[48] and qpGraph [51] build on this principle to construct taxonomic trees, using genome wide 

data and bootstrap analysis to assess the significance of population splits.  

Because of their conceptual simplicity and ease-of-use the f-statistics have been hugely 

popular. They have been successfully employed in answering many long standing 

archaeological and anthropological questions and have led to a number of important new 

insights, (e.g. Neanderthal admixture to the present day human gene pool [50] or demographic 

origins of modern European populations [52]). 

However, care needs to be taken when interpreting such results as the analysis can be 

confounded by incomplete lineage sorting caused by ancient population structure [53], i.e. the 

genetic drift in the branches of the phylogenetic tree has not been completely independent, but 

instead influenced by geography.  

Population genetic inference for testing population continuity through time  

A common question that can be addressed with ancient DNA is whether a present population 

is directly ancestral to a past population or if the latter has experienced admixture from external 
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populations. Testing this is not straight forward because alleles present in any generation 

represent a randomly drawn sample of alleles in a previous generation and, as a consequence, 

allele frequencies can change considerably even under a scenario of complete population 

continuity (no gene flow from an external source), a phenomenon usually referred to as 

“genetic drift” in the population genetic literature. What is more, the expected level of drift 

greatly depends on the population size: because of the law of large numbers, genetic drift is 

smaller in large populations and larger in small ones. 

Formal tests of continuity are usually (directly or indirectly) based on comparison of observed 

allele frequency differences between ancient and modern populations with a distribution of 

expected differences under a null hypotheses of population continuity at a given size (or sizes)  

(e.g [54,55,49,56,57]  examples). Here the difficulty lies in specifying a meaningful null-

model, as very few population histories involve complete isolation from neighbouring groups. 

As demonstrated by Silva et al. [58], the threshold level above which continuity is rejected 

largely depends on expected level of gene-flow with neighbouring populations. Here a high 

level of continuous gene flow from an external source can leave a genetic signal 

indistinguishable from a more sudden population replacement.  

One way to overcome this problem is to use inference methods that allow explicit modelling 

of gene flow (e.g. in [49,15,58,16]). External lines of evidence, such as archaeological, 

linguistic and geographic information could be used to inform on the expected levels of gene 

flow to build a more realistic null model for testing continuity. Additionally, a dense serial 

sampling of a geographic location can help distinguishing between models with more continues 

gene flow over longer time periods from models that involve instantaneous replacement. 

 

Linking demographic processes to the archaeological and climate records  

Placing demographic events inferred from the genetic data to well-defined geographic areas 

and/or time periods is important for investigating ecological, cultural or climatic drivers of 

demographic processes and for testing spatially and temporally explicit archaeological and 

historical hypotheses. However, different population genetic approaches differ substantially in 

the extent to which they allow doing this. 

Timing of demographic events 

The methods discussed above, including the frameworks that build on the f-statistics, such as 

TreeMix, AdmixtureGraph and qpGraph, use genetic drift to determine branch lengths in the 
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inferred population phylogeny, which depends on both time and population size (genetic drift 

is stronger in small populations than in large ones). This means that there is no absolute time 

scale associated with any node in the tree (or graph), and nodes in different sub-trees have no 

well-defined temporal order. Thus, in these trees (or graphs), only the leaves are populations 

for with known dates, while the internal nodes of the tree (or graph), corresponding to ancestral 

populations and associated demographic events, are abstract in time, making it challenging to 

link them to archaeological or environmental information. 

Approaches such as TreeMix, AdmixtureGraph and qpGraph model admixture by introducing 

directed gene flow between pairs of branches in the inferred population tree. Sometimes this is 

not sufficient to explain the pattern of genetic variation in the data, and it is necessary to 

introduce hypothetical “ghost” populations that contributed to some past admixture events. 

Similarly to the internal nodes of the tree, dates and the geographic locations of these “ghost” 

populations are unknown.  

Dated ancient samples can help anchoring the internal structure of the tree and provide a way 

to infer approximate times of internal nodes in the tree and subsequently add some resolution 

to the inference. However, the extent to which this is effective depends, on the availability of 

samples in close temporal and geographic proximity to the nodes and ancestral populations of 

interest. 

Explicit modelling of past populations offers a way around this problem. Rasmussen et al. [49] 

introduced a maximum likelihood method for testing whether an ancient sample can be 

considered directly ancestral to a given modern sample. This test is based on coalescent theory 

and does not require explicit modelling of population size changes. However, it does assume 

an instantaneous split between the population of ancient sample and the ancestral population 

of the modern sample, with no gene flow between the two groups following the separation. 

Posth et al. [15] created a temporally explicit coalescent model of the history of late Pleistocene 

populations in Europe based on the mitochondrial tree of directly dated individuals. The 

combination of a powerful maximum likelihood framework and samples from both before and 

after the last glacial maximum allowed them to test the hypothesis of population turnover 

during this time period using mitochondrial DNA alone.  

 

Linking demographic processes to space  

Even with temporally explicit modelling, a key obstacle for interpreting the genetic history of 

past populations is that the inferred ancestral populations, as well as the "ghost populations" 
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discussed above, lack well-defined geographic locations. Thus, even though approximate 

temporal boundaries for these populations can sometimes be informally inferred using genetic 

data from closely related dated ancient samples, geographic areas remain largely unknown 

when there is not sufficient geographical coverage of ancient samples to inform about the 

boundaries of these populations. As a result, it is often challenging to compare the inferred 

demographic history to the geographically explicit archaeological record.  

Overcoming this problem calls for demographic models to be spatially as well as temporally 

explicit, with geographically well-defined subpopulations through time. Usually this is done 

by defining demographic processes in terms of local population changes and migrations, where 

past and present populations are typically represented network of sub-populations (demes) with 

explicit locations in space. Thus, such explicit simulation methods allow modelling complex 

population history outside of the phylogenetic framework. In these frameworks, complex 

spatial patterns can emerge from simple local demographic processes, allowing to explicitly 

model the effects of population structure and other more subtle or emergent patterns of genetic 

variation with greater ease. Crucially to archaeological inference, such simulation modelling 

can incorporate information from various sources (e.g. archaeological, anthropological, 

demographic or linguistic data and/or climatic and geographic information). For example, 

estimated population densities from radiocarbon [59,60] or paleoclimate data [61,62] can be 

used to inform on the relative population densities though time, and presence or absence of 

different fossils and material cultures can be used to constrain possible geographical ranges. 

However, such simulation methods require explicit defining of assumptions underlying the 

demographic model e.g. connectivity of different demes. In particular, the explicit nature of 

such models makes them represent very specific demographic scenarios, therefore care must 

be taken that a wide range of plausible scenarios are represented in the analysis. Here it is 

especially important to make sure that the considered models capture the key patterns of 

variation observed in the data, for example using the descriptive statistics and other tools 

described above on simulated data from these models.  

Despite their flexibility and theoretical advantages, only relatively few studies have so far used 

spatially explicit models to reconstruct demographic history due to the fact that such simulation 

approaches can be complicated to set up and computationally demanding to perform. Early 

studies used linear steppingstone models to represent founder effects during the expansion of 

Anatomically Modern Humans out of Africa [63,64] and the levels of shared genetic variation 

between humans and Neanderthals [53]. Warmuth et al. [65] used a spatially explicit model of 
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Eurasia to infer the origin and timing of horse domestication. The SPLATCHE2 framework 

[66] uses a two-dimensional spatially explicit model, which has been used to study 

interbreeding between humans and Neanderthals [67]. Eriksson et al. [61] used a global spatial 

model to link late Pleistocene human demography to climate, and this model was later used to 

test the hypothesis of whether Eskimo-Inuit populations in the Arctic derive from the same 

population as the original founders of Native American populations [68]. Loog et al. [16] used 

a spatiotemporally explicit framework to reconstruct wolf demography in the last 50,000 years 

using mitochondrial genomes. In the past, researchers have relied on inhouse custom 

simulation code, difficult to adapt to different demographic models and/or data but powerful, 

easy to use simulation tools such as msprime [69] (for coalescent demographic modelling) & 

SLiM [70] (forward in time, and can accommodate very complicated demographic scenarios, 

including genetic selection, and ecological interactions) have been recently created and are 

now publicly available for researchers to use. 

The complex relationships between populations in such models typically mean that formal 

likelihoods cannot be calculated analytically but can be estimated by comparing descriptive 

statistics of simulated and observed data using the Approximate Bayesian Computation (ABC) 

[12,71]. Thus, unless parameters can be constrained using independent data (e.g. historical, 

anthropological or archaeological information), it is usually necessary to consider a very large 

number of value combinations for each parameter in order to make reliable inferences about 

past, adding to the computational cost. Another potential disadvantage of an explicit modelling 

approach is that it is often time consuming to set up and calibrate (especially for testing more 

involved demographic scenarios) compared to using a descriptive approaches or summary 

statistics for demographic inference.  

 

Conclusion 

Demographic processes directly affect patterns of genetic variation between and within both 

populations and individuals. The large body of population genetic theory and mathematical 

modelling developed to describe these patterns has allowed researchers to take advantage of 

genetic information form both present and past populations for powerful past demographic 

inference. 

The starting point of this inference is quantification of genetic variation patterns. These patterns 

can provide some insights and be used for formulating hypothesis about the past demographic 

processes. However, care must be taken that samples and their relatedness to each other are 
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well representative of all populations of interest. Patterns of genetic variation, especially when 

ancient DNA data is included, can provide valuable insights. Although it might be tempting to 

weave a compelling story based on striking patterns alone, because different demographic 

scenarios can result in similar spatiotemporal patterns of genetic variation, it is important to 

formally quantify the likelihood of different demographic scenarios.  

Population genetic frameworks that allow formal testing of alternative demographic scenarios 

usually represent demographic history as a phylogenetic tree, where populations are as 

independently evolving branches (linages), sometimes connected by gene flow. Certain 

methods require additional assumptions (such as the relationships between population, timing 

of the changes in population sizes and the direction(s) of gene flow) to be explicitly defined. 

But as these parameters are often unknown, the application of such approaches is limited to 

more tractable demographic histories. A number of non-parametric approaches have been 

developed that, on one hand, allow more flexibility but, on the other, come with a number of 

implicit assumptions that needs taking into consideration when interpreting the results. 

In general, population genetic tools that allow formal testing of competing demographic 

scenarios range from very simple models, with many generalising assumptions, to very 

complex ones that require explicit modelling decisions. As a general rule, the ability of formal 

analyses and hypothesis testing to distinguish between complex scenarios is heavily 

constrained by the amount and type of genetic data available. Very simple models may lack 

key aspects of demography or not provide sufficient resolution, missing out on important 

phenomena or leaving the details to be filled by a post-hoc narrative. Complicated models, on 

the other hand, require much more information (data) to robustly distinguish between different 

demographic scenarios, or external lines of evidence (such as climate or archaeological 

information) to guide parameter ranges in the model. Thus, the right tool for the job is 

determined not only by the questions but also by the available data.  

Ancient DNA can provide valuable snapshot of patterns of past genetic variation and has 

therefore substantially increased the resolution with which different models of past 

demography can be tested. Although ancient DNA data has been extensively used to address 

questions about past demography, it’s full potential has not been harnessed fully: currently very 

few population genetic approaches allow formal inclusion of dates and geographic locations of 

ancient samples at the hypothesis testing phase of the inference, not only missing out on the 

opportunity to gain additional power to detect more subtle demographic changes, but also 

leaving the timing and the locations of the inferred demographic events approximate at best. 
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However, recent developments in simulation (e.g. SLiM [70] and  msprime [69]) and analytical 

tools (e.g.[37,72,73]) will not only make linking past demographic events to the archaeological, 

historical and climate records more straightforward and robust but will also allow direct 

inclusion of data from these lines of evidence.  

 

Acknowledgements 

I am grateful to Mark Thomas (UCL), Andrea Manica (U. Cambridge) and Anders Eriksson 

(U. Tartu) for valuable discussions on population genetic modelling using ancient DNA data 

and Anders Eriksson (U. Tartu) for comments on this manuscript. I am also grateful for the 

Herchel Smith Trust (University of Cambridge) for supporting this work. 

 

References 

 

1. Pagani L et al. 2016 Genomic analyses inform on migration events during the peopling of 

Eurasia. Nature 538, 238–242. (doi:10.1038/nature19792) 

2. Robinson MR et al. 2017 Genetic evidence of assortative mating in humans. Nat. Hum. 

Behav. 1, 1–13. (doi:10.1038/s41562-016-0016) 

3. Yang DY, Eng B, Waye JS, Dudar JC, Saunders SR. 1998 Improved DNA extraction 

from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–

543. (doi:10.1002/(SICI)1096-8644(199804)105:4<539::AID-AJPA10>3.0.CO;2-1) 

4. Rohland N, Hofreiter M. 2007 Ancient DNA extraction from bones and teeth. Nat. 

Protoc. 2, 1756–1762. (doi:10.1038/nprot.2007.247) 

5. Dabney J et al. 2013 Complete mitochondrial genome sequence of a Middle Pleistocene 

cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. 110, 

15758–15763. (doi:10.1073/pnas.1314445110) 

6. Skoglund P, Storå J, Götherström A, Jakobsson M. 2013 Accurate sex identification of 

ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482. 

(doi:10.1016/j.jas.2013.07.004) 

7. Kuhn JMM, Jakobsson M, Günther T. 2018 Estimating genetic kin relationships in 

prehistoric populations. PLOS ONE 13, e0195491. (doi:10.1371/journal.pone.0195491) 

8. Cann RL, Stoneking M, Wilson AC. 1987 Mitochondrial DNA and human evolution. 

Nature 325, 31–36. (doi:10.1038/325031a0) 

9. Underhill PA, Passarino G, Lin AA, Shen P, Lahr MM, Foley RA, Oefner PJ, Cavalli-

Sforza LL. 2001 The phylogeography of Y chromosome binary haplotypes and the 

origins of modern human populations. Ann. Hum. Genet. 65, 43–62. (doi:10.1046/j.1469-

1809.2001.6510043.x) 

10. Chan EKF et al. 2019 Human origins in a southern African palaeo-wetland and first 

migrations. Nature 575, 185–189. (doi:10.1038/s41586-019-1714-1) 

11. Gerbault P et al. 2014 Storytelling and story testing in domestication. Proc. Natl. Acad. 

Sci. 111, 6159–6164. (doi:10.1073/pnas.1400425111) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 March 2020                   doi:10.20944/preprints202003.0027.v1

https://doi.org/10.20944/preprints202003.0027.v1


 18 

12. Rosenberg NA, Nordborg M. 2002 GENEALOGICAL TREES, COALESCENT 

THEORY AND THE ANALYSIS OF GENETIC POLYMORPHISMS. Nat. Rev. Genet. 

3, 380–390. (doi:10.1038/nrg795) 

13. Ballard JWO, Whitlock MC. 2004 The incomplete natural history of mitochondria. Mol. 

Ecol. 13, 729–744. 

14. Nielsen R, Beaumont MA. 2009 Statistical inferences in phylogeography. Mol. Ecol. 18, 

1034–1047. (doi:10.1111/j.1365-294X.2008.04059.x) 

15. Posth C et al. 2016 Pleistocene Mitochondrial Genomes Suggest a Single Major 

Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe. Curr. Biol. 

26, 827–833. (doi:10.1016/j.cub.2016.01.037) 

16. Loog L et al. 2019 Ancient DNA suggests modern wolves trace their origin to a Late 

Pleistocene expansion from Beringia. Mol. Ecol. n/a. (doi:10.1111/mec.15329) 

17. Larson G et al. 2007 Ancient DNA, pig domestication, and the spread of the Neolithic 

into Europe. Proc. Natl. Acad. Sci. 104, 15276–15281. (doi:10.1073/pnas.0703411104) 

18. Valdiosera CE et al. 2007 Staying out in the cold: glacial refugia and mitochondrial DNA 

phylogeography in ancient European brown bears. Mol. Ecol. 16, 5140–5148. 

(doi:10.1111/j.1365-294X.2007.03590.x) 

19. Thalmann O et al. 2013 Complete Mitochondrial Genomes of Ancient Canids Suggest a 

European Origin of Domestic Dogs. Science 342, 871–874. 

(doi:10.1126/science.1243650) 

20. Li JZ et al. 2008 Worldwide Human Relationships Inferred from Genome-Wide Patterns 

of Variation. Science 319, 1100–1104. (doi:10.1126/science.1153717) 

21. Novembre J et al. 2008 Genes mirror geography within Europe. Nature 456, 98–101. 

(doi:10.1038/nature07331) 

22. McVean G. 2009 A Genealogical Interpretation of Principal Components Analysis. PLoS 

Genet. 5, e1000686. (doi:10.1371/journal.pgen.1000686) 

23. Skoglund P, Sjödin P, Skoglund T, Lascoux M, Jakobsson M. 2014 Investigating 

Population History using Temporal Genetic Differentiation. Mol. Biol. Evol. , msu192. 

(doi:10.1093/molbev/msu192) 

24. Pritchard JK, Stephens M, Donnelly P. 2000 Inference of Population Structure Using 

Multilocus Genotype Data. Genetics 155, 945–959. 

25. Alexander DH, Novembre J, Lange K. 2009 Fast model-based estimation of ancestry in 

unrelated individuals. Genome Res. 19, 1655–1664. (doi:10.1101/gr.094052.109) 

26. Lawson DJ, Hellenthal G, Myers S, Falush D. 2012 Inference of Population Structure 

using Dense Haplotype Data. PLOS Genet. 8, e1002453. 

(doi:10.1371/journal.pgen.1002453) 

27. Wang S et al. 2008 Geographic Patterns of Genome Admixture in Latin American 

Mestizos. PLOS Genet. 4, e1000037. (doi:10.1371/journal.pgen.1000037) 

28. Lawson DJ, Dorp L van, Falush D. 2018 A tutorial on how not to over-interpret 

STRUCTURE and ADMIXTURE bar plots. Nat. Commun. 9, 1–11. 

(doi:10.1038/s41467-018-05257-7) 

29. Dorp L van et al. 2015 Evidence for a Common Origin of Blacksmiths and Cultivators in 

the Ethiopian Ari within the Last 4500 Years: Lessons for Clustering-Based Inference. 

PLOS Genet. 11, e1005397. (doi:10.1371/journal.pgen.1005397) 

30. Wright S. 1949 The Genetical Structure of Populations. Ann. Eugen. 15, 323–354. 

(doi:10.1111/j.1469-1809.1949.tb02451.x) 

31. Wright S. 1931 Evolution in Mendelian Populations. Genetics 16, 97–159. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 March 2020                   doi:10.20944/preprints202003.0027.v1

https://doi.org/10.20944/preprints202003.0027.v1


 19 

32. McRae BH, Beier P. 2007 Circuit theory predicts gene flow in plant and animal 

populations. Proc. Natl. Acad. Sci. 104, 19885–19890. (doi:10.1073/pnas.0706568104) 

33. McRae BH, Dickson BG, Keitt TH, Shah VB. 2008 Using Circuit Theory to Model 

Connectivity in Ecology, Evolution, and Conservation. Ecology 89, 2712–2724. 

(doi:10.1890/07-1861.1) 

34. Malaspinas A-S. 2016 Methods to characterize selective sweeps using time serial 

samples: an ancient DNA perspective. Mol. Ecol. 25, 24–41. (doi:10.1111/mec.13492) 

35. Petkova D, Novembre J, Stephens M. 2016 Visualizing spatial population structure with 

estimated effective migration surfaces. Nat. Genet. 48, 94–100. (doi:10.1038/ng.3464) 

36. Mathieson I et al. 2018 The genomic history of southeastern Europe. Nature 555, 197–

203. (doi:10.1038/nature25778) 

37. Loog L, Lahr MM, Kovacevic M, Manica A, Eriksson A, Thomas MG. 2017 Estimating 

mobility using sparse data: Application to human genetic variation. Proc. Natl. Acad. Sci. 

, 201703642. (doi:10.1073/pnas.1703642114) 

38. Hey J, Nielsen R. 2007 Integration within the Felsenstein equation for improved Markov 

chain Monte Carlo methods in population genetics. Proc. Natl. Acad. Sci. 104, 2785–

2790. (doi:10.1073/pnas.0611164104) 

39. Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. 2013 Robust 

Demographic Inference from Genomic and SNP Data. PLOS Genet. 9, e1003905. 

(doi:10.1371/journal.pgen.1003905) 

40. Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A. 2011 Bayesian inference of ancient 

human demography from individual genome sequences. Nat. Genet. 43, 1031–1034. 

(doi:10.1038/ng.937) 

41. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009 Inferring the 

Joint Demographic History of Multiple Populations from Multidimensional SNP 

Frequency Data. PLOS Genet. 5, e1000695. (doi:10.1371/journal.pgen.1000695) 

42. Freedman AH et al. 2014 Genome Sequencing Highlights the Dynamic Early History of 

Dogs. PLOS Genet 10, e1004016. (doi:10.1371/journal.pgen.1004016) 

43. Li H, Durbin R. 2011 Inference of human population history from individual whole-

genome sequences. Nature 475, 493–496. (doi:10.1038/nature10231) 

44. Sheehan S, Harris K, Song YS. 2013 Estimating Variable Effective Population Sizes 

from Multiple Genomes: A Sequentially Markov Conditional Sampling Distribution 

Approach. Genetics 194, 647–662. (doi:10.1534/genetics.112.149096) 

45. Schiffels S, Durbin R. 2014 Inferring human population size and separation history from 

multiple genome sequences. Nat. Genet. 46, 919–925. (doi:10.1038/ng.3015) 

46. Mazet O, Rodríguez W, Grusea S, Boitard S, Chikhi L. 2016 On the importance of being 

structured: instantaneous coalescence rates and human evolution—lessons for ancestral 

population size inference? Heredity 116, 362–371. (doi:10.1038/hdy.2015.104) 

47. Reich D, Thangaraj K, Patterson N, Price AL, Singh L. 2009 Reconstructing Indian 

population history. Nature 461, 489–494. (doi:10.1038/nature08365) 

48. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, 

Webster T, Reich D. 2012 Ancient Admixture in Human History. Genetics 192, 1065–

1093. (doi:10.1534/genetics.112.145037) 

49. Rasmussen M et al. 2014 The genome of a Late Pleistocene human from a Clovis burial 

site in western Montana. Nature 506, 225–229. (doi:10.1038/nature13025) 

50. Green RE et al. 2010 A Draft Sequence of the Neandertal Genome. Science 328, 710–

722. (doi:10.1126/science.1188021) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 March 2020                   doi:10.20944/preprints202003.0027.v1

https://doi.org/10.20944/preprints202003.0027.v1


 20 

51. Castelo R, Roverato A. 2012 Inference of regulatory networks from microarray data with 

R and the bioconductor package qpgraph. Methods Mol. Biol. Clifton NJ 802, 215–233. 

(doi:10.1007/978-1-61779-400-1_14) 

52. Lazaridis I et al. 2014 Ancient human genomes suggest three ancestral populations for 

present-day Europeans. Nature 513, 409–413. (doi:10.1038/nature13673) 

53. Eriksson A, Manica A. 2012 Effect of ancient population structure on the degree of 

polymorphism shared between modern human populations and ancient hominins. Proc. 

Natl. Acad. Sci. 109, 13956–13960. (doi:10.1073/pnas.1200567109) 

54. Malmström H et al. 2009 Ancient DNA Reveals Lack of Continuity between Neolithic 

Hunter-Gatherers and Contemporary Scandinavians. Curr. Biol. 19, 1758–1762. 

(doi:10.1016/j.cub.2009.09.017) 

55. Bramanti B et al. 2009 Genetic Discontinuity Between Local Hunter-Gatherers and 

Central Europe’s First Farmers. Science 326, 137–140. (doi:10.1126/science.1176869) 

56. Hofmanová Z et al. 2016 Early farmers from across Europe directly descended from 

Neolithic Aegeans. Proc. Natl. Acad. Sci. 113, 6886–6891. 

(doi:10.1073/pnas.1523951113) 

57. Saag L et al. 2019 The Arrival of Siberian Ancestry Connecting the Eastern Baltic to 

Uralic Speakers further East. Curr. Biol. 29, 1701-1711.e16. 

(doi:10.1016/j.cub.2019.04.026) 

58. Silva NM, Rio J, Currat M. 2017 Investigating population continuity with ancient DNA 

under a spatially explicit simulation framework. BMC Genet. 18, 114. 

(doi:10.1186/s12863-017-0575-6) 

59. Shennan S, Downey SS, Timpson A, Edinborough K, Colledge S, Kerig T, Manning K, 

Thomas MG. 2013 Regional population collapse followed initial agriculture booms in 

mid-Holocene Europe. Nat. Commun. 4, 2486. (doi:10.1038/ncomms3486) 

60. Bevan A, Colledge S, Fuller D, Fyfe R, Shennan S, Stevens C. 2017 Holocene 

fluctuations in human population demonstrate repeated links to food production and 

climate. Proc. Natl. Acad. Sci. 114, E10524–E10531. (doi:10.1073/pnas.1709190114) 

61. Eriksson A, Betti L, Friend AD, Lycett SJ, Singarayer JS, Cramon-Taubadel N von, 

Valdes PJ, Balloux F, Manica A. 2012 Late Pleistocene climate change and the global 

expansion of anatomically modern humans. Proc. Natl. Acad. Sci. 109, 16089–16094. 

(doi:10.1073/pnas.1209494109) 

62. Timmermann A, Friedrich T. 2016 Late Pleistocene climate drivers of early human 

migration. Nature 538, 92–95. (doi:10.1038/nature19365) 

63. Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-

Sforza LL. 2005 Support from the relationship of genetic and geographic distance in 

human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. 

U. S. A. 102, 15942–15947. (doi:10.1073/pnas.0507611102) 

64. Liu H, Prugnolle F, Manica A, Balloux F. 2006 A Geographically Explicit Genetic 

Model of Worldwide Human-Settlement History. Am. J. Hum. Genet. 79, 230–237. 

65. Warmuth V et al. 2012 Reconstructing the origin and spread of horse domestication in 

the Eurasian steppe. Proc. Natl. Acad. Sci. U. S. A. 109, 8202–8206. 

66. Ray N, Currat M, Foll M, Excoffier L. 2010 SPLATCHE2: a spatially explicit simulation 

framework for complex demography, genetic admixture and recombination. 

Bioinformatics 26, 2993–2994. (doi:10.1093/bioinformatics/btq579) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 March 2020                   doi:10.20944/preprints202003.0027.v1

https://doi.org/10.20944/preprints202003.0027.v1


 21 

67. Currat M, Excoffier L. 2011 Strong reproductive isolation between humans and 

Neanderthals inferred from observed patterns of introgression. Proc. Natl. Acad. Sci. 108, 

15129–15134. (doi:10.1073/pnas.1107450108) 

68. Raghavan M et al. 2015 Genomic evidence for the Pleistocene and recent population 

history of Native Americans. Science , aab3884. (doi:10.1126/science.aab3884) 

69. Kelleher J, Etheridge AM, McVean G. 2016 Efficient Coalescent Simulation and 

Genealogical Analysis for Large Sample Sizes. PLOS Comput. Biol. 12, e1004842. 

(doi:10.1371/journal.pcbi.1004842) 

70. Haller BC, Messer PW. In press. SLiM: An Evolutionary Simulation Framework. , 578. 

71. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. 2013 

Approximate Bayesian Computation. PLoS Comput Biol 9, e1002803. 

(doi:10.1371/journal.pcbi.1002803) 

72. Racimo F, Woodbridge J, Fyfe RM, Sikora M, Sjögren K-G, Kristiansen K, Linden MV. 

2019 A geostatistical approach to modelling human Holocene migrations in Europe using 

ancient DNA. bioRxiv , 826149. (doi:10.1101/826149) 

73. Mathieson I et al. 2015 Genome-wide patterns of selection in 230 ancient Eurasians. 

Nature 528, 499–503. (doi:10.1038/nature16152) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 March 2020                   doi:10.20944/preprints202003.0027.v1

https://doi.org/10.20944/preprints202003.0027.v1

