Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effects of Transverse Groynes on Meso-Habitat Suitability for Native Fish Species on a Regulated By-Passed Large River

Version 1 : Received: 28 February 2020 / Approved: 29 February 2020 / Online: 29 February 2020 (08:48:37 CET)

A peer-reviewed article of this Preprint also exists.

Chardon, V.; Schmitt, L.; Piégay, H.; Beisel, J.-N.; Staentzel, C.; Barillier, A.; Clutier, A. Effects of Transverse Groynes on Meso-Habitat Suitability for Native Fish Species on a Regulated By-Passed Large River: A Case Study along the Rhine River. Water 2020, 12, 987. Chardon, V.; Schmitt, L.; Piégay, H.; Beisel, J.-N.; Staentzel, C.; Barillier, A.; Clutier, A. Effects of Transverse Groynes on Meso-Habitat Suitability for Native Fish Species on a Regulated By-Passed Large River: A Case Study along the Rhine River. Water 2020, 12, 987.

Abstract

River regulations ultimately degrade fluvial forms and morphodynamics and simplify riparian and aquatic habitats. For several decades, river restoration actions have been performed to recover geomorphic processes and diversify these habitats to enhance both river biodiversity and ecosystem services. The objective of this study is to provide quantitative feedback on the experimental restoration of a large regulated and by-passed river (the Upper Rhine downstream of the Kembs Dam, France/Germany). This restoration consisted of the construction of two transverse groynes and the removal of bank protection. A monitoring framework composed of topo-bathymetric surveys as well as flow velocity and grain size measurements was established to assess the channel morphodynamic responses and evaluate their effects on habitat suitability for five native fish species using habitat models. A riverscape approach was used to evaluate the landscape changes in terms of both the configuration and the composition, which cannot be considered with classic approaches (e.g., WUA). Our results show that the two transverse groynes and, to a lesser extent, bank erosion, which was locally enhanced by the two groynes, increased habitat diversity due to the creation of new macroforms (e.g., pools and mid-bars) and fining of the bed grain size. Using a riverscape approach, our findings highlight that the restoration improved lentic fish habitats (eel and juvenile nase species) due to slowing of the local current and the deposition of fine sediments downstream of both groynes. As a consequence, the restoration improved the habitat suitability of the studied reach for more fish species compared with the pre-restoration conditions. This study also demonstrates that the salmon habitats downstream of the restored reach were improved due to fining of the bed grain size. This finding highlights that for restorations aimed at fish habitats, the grain size conditions must be taken into consideration along with the flow conditions. Furthermore, the implementation of groynes, while not a panacea, can be a strategy for improving fish habitats on highly regulated rivers, but only when more functional and natural options are impossible due to major constraints.

Keywords

river restoration; large rivers; transverse groynes; geomorphic monitoring; riverscape approach; fish habitat models

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.