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Abstract

In this study, we first present a time-fractional Lêvy diffusion equation of
the exponential option pricing models of European option pricing and the risk-
neutral parameter. Then, we modify a particular Lêvy-time fractional diffusion
equation of European-style options. Introduce a more general model from the
models based on the Lêvy-time fractional diffusion equation and review some
recent findings regarding of the Europe option pricing of risk-neutral free.
Keywords: Price impact; Option pricing; liquidity, Lêvy process, fractional
differential equations.

1 Introduction

One of the significant problem is finance to derive their value from financially traded
assets that is the pricing of financial instruments, for example, stocks and also very
interesting problem. In [8] were Among the first systematic solution for this problem,
who proposed Black-Scholes (BS) model where the model rests on the assumption that
the natural logarithm of the stock price St follows as:

d(lnSt) = (µ− 1

2
σ2)dt+ σdBt (1)

where µ > 0 is the average compounded growth rate of the stock St, dBt is the incre-
ment of Brownian motion which is assumed to have the Normal or Gaussian distribu-
tion, and σ ≥ 0 is the volatility of the returns from holding St.
It is well-known in the literature that when substituted the Lêvy process by the Brow-
nian motion componential Equation (1) is, the pricing partial differential equation be-
comes a partial integro-differential equation, Ref. [9]. The partial integro-differential
equations PIDEs are mentioned in order to the non-locality points produced by the
jumps in the Lêvy process.
In this article, modify European-style options written on dynamic under a risk-neutral
probability measure for the stock-price assets, that follow perfectly liquid market in
the financial literature.
One of the method to solve PIDEs was The numerical methods (Cont, see.[10]) where
proposed a finite-difference method for option pricing having jump-diffusion as well
as exponential Lêvy models. On the other hand, other methods use the fast Fourier
transform of European-style options (see. [11]). As the other option of these strategies,
(see. [6]) propose methods from fractional calculus. This technique considered the less-
studied issue of barrier options for finite moment having log-stable (FMLS) processes.
The article is based on the following: Section 2 reviews the basic concepts of L ê vy
operations and applications in financial modeling. Section 3 introduces the concepts
of fractional calculus and how to solve fractional differential equations. Reviews the
main concepts of L ê vy process . Section 4 introduce the main result. Finally, section
5 will conclude and discuss some applications.
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2 Fractional Diffusion Model and Option Pricing

In a fully liquid market, regardless of the trading size, the options trader cannot influ-
ence the price of the underlying asset in the trading of the underlying asset to duplicate
the option. In the literature [Chen, at all (2014),[1]] studied this model, where Lα,βt
be a Lêvy α–stable process with skew parameter β. Before viewing the idea of the
research we will define α–stable distribution, the distribution is said to be stable when
location and scale parameters if it has the same distribution of any linear combination
of two independent random variables with this distribution A random variable is said
to be stable if its distribution is stable. The stable dissemination family is at times
alluded to as the Lêvy alpha-stable distribution.

Definition 1 : Any random variable X is s-stable if for each n ∈ N with X1, X2, . . . , Xn

is infinitely divisible copies of X X1 + X2 + . . . + Xn = bX + c or some constants
b = b(n) > 0 and c = c(n) ∈ Rd. It is called strictly stable for any n ∈ N if c(n) = 0 .

For an infinitely divisible random vector X∗t define the alpha-stable as follows.

Definition 2 : A stable X is called alpha-stable, whenever X∗t = t
1
αX + c or some

constants c = c(r) ∈ Rd , t > 0, and 0 < α ≤ 2. When c(t) = 0, for t > 0, then X is
called strictly alpha-stable .

Now, consider the following dynamic under a risk neutral probability measure for the
stock price St

dSt = St
(
(r − q)dt+ σdLα,−1

t

)
(2)

for time 0 < t < T , where index α of stability satisfies 1 < α < 2, and volatility σ > 0.
When σ = 0, we will get original BS model. Moreover where r and q respectively
denote deterministic parameters corresponding to the risk-free rate and dividend yield.
We restrict our selves to the case where β = −1 to obtain finite moments of St and
negative skewness in the return density distribution. In particular for n > 0, then

E
[
exp

(
nσLα,−1

t

)]
= exp

(
−tnασα sec

(πα
2

))
< +∞.

The model in the equation (2) is known as Finite Moment Log Stable (FMLS) for short
model. Under the risk–neutral measure the log price satisfies the following SDE:

d (ln(St)) = (r − q − v)dt+ σdLα,−1
t , (3)

where v = −1
2
σα sec

(
πα
2

)
represents the convexity adjustment.

Let u(t, x) be the price of the European call option with x = xt := ln (St). [Chen et
al. (2014),[1] ] In order to find FPDE let u(t, x) satisfies under FMLS the following
fractional PDEs

∂u

∂t
(t, x) + (r − v)

∂u

∂x
(t, x) + v

∂αu

∂xα
(t, x)− ru(t, x) = 0

u(x, T ) :=

{
max(ex −K; 0) for European call option
max(K − ex; 0) for European put option

where K is the strike price and,

∂αu(t, x)

∂xα
=

1

Γ (1− α)

d

dx

∫ x

−∞

u(t, u)

(x− u)α
du

and Γ(.) is the gamma function and defined by:

Γ(α) =

∫ ∞
0

e−xxα−1dx.
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3 The model

In this research, we incorporate Let Lα,βt be a Lêvy α–stable process with skew param-
eter β. Consider the following dynamic under a risk-neutral probability measure for
the stock price St, the goal is to consider a modified model to equation (2) that consists
on an illiquid market with impact additional term that for 0 ≤ t < T, 0 < γ < 1 and
1 < α ≤ 2,with boundary condition

dγSt = St
(
(r − q)dtγ + σdLα,−1

t

)
+ λ(t, St)Stdβ

γ
t , S(0) = S0 (4)

where λ(t, St) ≥ 0 is the price impact function of the trader and βt denotes the number
of shares that the trader has in the stock at time t. The term λ(t, St)dβt represents the
price impact of the investor’s trading is additional term of Chen model (2). γ = 2H
and H is Hurst number 0 < H ≤ 1. The Hurst number H is a statistical measure
which can be used to classify the time series. If H = 0.5 indicates a random series,
and H > 0.5 indicates a trend reinforcing series. Similarly, the larger the H value
is considered the stronger trend. The Caputo fractional integral of f defined by the
expression

Iγf(t) =
1

Γ (γ)

∫ t

−∞
f(u)(t− u)γ−1du

and the Caputo fractional derivative of u defined by the expression

∂γt u(x, t) =
1

Γ (1− γ)

∫ t

0

dy

(t− y)γ−1

∂u(x, y)

∂y
.

In this work, we consider trading strategies Written in the following form

dβγt = ηtdt
γ + ζtdL

α,−1
t (5)

for some processes (ηt)t≥0 and (ζt)t≥0 to be determined endogenously and β0 is the
initial number of shares in the stock. The wealth process (Vt)t≥0 corresponding to a
self–financing strategy (θt, βt)t≥0 for the trader is given by

Vt = θtS
0
t + βtSt = V0 +

∫ t

0

θudS
0
u +

∫ t

0

βudSu.

To find the fractional partial differential equation satisfy our model in equation (4)
we need method to solve fractional equation as method of literature (Demirci et. al.
2012) as example. In literature (Demirci et. al. 2012), they solved the fractional
partial differential equation of the initial value problem in the sense of Caputo type
FDE given by

Dγx(t) = f(t, x(t)), x(0) = x0

has a solution

x(t) = x∗

(
tγ

Γ(γ + 1)

)
where x∗(v) is a solution having integer order differential equation.
Also we need the method of the from literature ( Jumarie, [7]) of the equation,

dx = f(t)dtα, t ≥ 0, x(0) = x0

where 0 < α ≤ 1, has a solution defined by the equality∫ t

0

f(τ)dτα = α

∫ t

0

(t− τ)α−1f(τ)dτ. (6)

Furthermore, we will use in our model the following formula

dαx = Γ(1 + α)dx. (7)

The general Fourier transform is defined by

f̂(ξ) = F [f(x)] =
1

2π

∫ ∞
−∞

e−iξxf̂(ξ)dξ (8)

and the inverse Fourier transformation is defined by

f(x) =

∫ ∞
−∞

expiξx f(x)dx.
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3.1 Lêvy process

The distribution of Lêvy process is characterized by Lêvy-khintchine formula and con-
sidered characteristic function. Can characterize the Lêvy in a very compact way via
the Lêvy-khintchine of the process. More definitely, a time-dependent random variable
Xt is a Lêvy process if and only if it has independent and stationary increments having
log-characteristic function given by Lêvy-Khintchine theorem:

Theorem 1 (Lêvy-Khintchine presentation theorem) Let (Xt)t≥0 Lêvy process
on R with characteristic triplet (m,σ,w), then E[eizXt ] = etΨ(z), t ∈ R, with character-
istic exponent of the Lêvy process

Ψ(z) = imξ +
σ2

2
(iξ)2 +

∫ ∞
−∞

(eiξx − 1− iξI|x|<1)W (dx) (9)

where,

∫
R

min[1, x2]W (dx) <∞, and W = w(x) Lêvy density, m inR, σ ≥ 0.

To accommodate how the Lêvy processes being incorporated in the derivatives
pricing models, we recall the standard Black-Scholes framework and see how it was built
by Gaussian shocks. To find the fair or arbitrage-free prices of a financial instrument
whose value are deriven from the underlying share price St, it is also necessary to
express the dynamics of St under what is known as a neutral risk measure or the
equivalent martingale scale. In the price, the European option may be expressed as
the neutral condition for a risk as

V (t, S) = e−r(T−t)EQ[max(ST − k, 0)|Ft]. (10)

Fourier transform of European option can be written as (Du, [12])

∂γṼ

∂tγ
= Ṽ (t, S) + Ψ(ξ)Ṽ (t, S)− rṼ (t, S) (11)

where

Ψ(ξ) = imξ +
σ2

2
(iξ)2 +

∫ ∞
−∞

(eiξx − 1− iξI|x|<1)W (dx)

and the indicator function of set A where IA : A ⊂ X → {0, 1} and defined by

IA(x) :=

{
1 if x ∈ A
0 if x /∈ A.

3.2 LS processes

Let w(x) = wLS(x) be Lêvy density function and given by

wLS =

{
Dq

|x|1+α for x < 0
Dq
x1+α for x > 0

(12)

where D > 0, q + p = 1 and α ∈ (0, 2). Then by using the equation (9) we obtain the
characteristic exponent of an LS process in the parameters as follows: σ, α, β and m:

ΨLS(ξ) = iξm− 1

2
σα |ξ|α +

[
1− iβsign(ξ) tan

(απ
2

)]
. (13)

An equivalent form can be written as

ΨLS(ξ) = iξm− 1

4 cos(απ
2

)
σα[(1− β)(iξ)α + (1 + β)(−iξ)α] (14)

where β = p− q. If β = −1, then p = 0 and q = 1, that is (Alvaro Cartea et. al. [6])

ΨLS(ξ) = iξm− 1

4 cos(απ
2

)
σα [(2)(iξ)α] . (15)
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4 Main Results

Consider the Fractional differential lêvy equation is

dγSt = St
(
(r − q)dtγ + σdLα,−1

t

)
+ λ(t, St)St(ηtdt

γ + ζtdL
α,−1
t ). (16)

That can be rewrite as where λt = λ(t, S(t)) and let xt = lnSt

dγxt = (r − q + λtηt)dt
γ + (σ + λtζt)dL

α,−1
t . (17)

Nex, we derive revised and updated FPDEs for options which is written on assets and
follows the L hate vy operations taht was mentioned in the previous section. In order
To find the relation between the fractional price equations and LP process, then we
will make use os Fourier transform, as in the next

f̂(ξ) = F [f(x)] =
1

2π

∫ ∞
−∞

exp−iξx f̂(ξ)dξ (18)

of the value of European style option price Û(ξ, T ), written on St, and satisfies

∂γÛ
∂tγ

= rÛ(ξ, t) + (−q + λuηu) iξÛ(ξ, t)−Ψ(ξ)Û(ξ, t). (19)

Let ζT (v) denote the Fourier transform of the time value, where

ζT (ξ, t)(iξ)γ =
∂γÛ
∂tγ

Let U(ξ, T ) denotes the Fourier transform of a European-style option and then defined
by

ζT (ξ, t)(iξ)γ = rÛ(ξ, t) + (−q + λuηu) iξÛ(ξ, t)−Ψ(ξ)Û(ξ, t). (20)

with boundary condition U(ξ, T ) = Π(ξ, T ).

Now substitute the equation (15) in equation (19) and taking the inverse Fourier trans-
form we reach to

ζT (ξ, t)(iξ)γ = rÛ(ξ, t) + (r − q + λuηu) iξÛ(ξ, t)−
[
−1

4
sec
(απ

2

)
σα(2)(iξ)α

]
Û(ξ, t)

then taking the inverse Fourier transform delivered to

∂γU
∂tγ

(x, t) + (r − q + λuηu)
∂U
∂x

(x, t) +
1

2
sec
(απ

2

)
σα
∂αU
∂xα

(x, t) = rU(x, t). (21)

To prove equation (17) satisfies the equation (19).

First we can find the solution of equation (17). Rewrite the equation (17) in the form,
where xT = ln(ST )

dxT =
1

Γ(1 + γ)

[
(r − q + λtηt)dt

γ + (σ + λtζt)dL
α,−1
t

]
.

Take the integral for the above equation and using method (6) we get

xT =
γ

Γ(1 + γ)

∫ T

t

(t− τ)γ−1[(r − q + λη)dτ + dLα,−1
u ].

So

St = St exp

[
(T − t)γ

Γ(1 + γ)
((r − q + λtηt) +

∫ T

t

dLα,−1
u )

]
. (22)

By the same way and using method of ( Demirci and Ozalp (2012)) the equation (19)
has a solution

Û(ξ, t) = exp

[
r − iξ(r − q + λtηt + ψ(−ξ)) (T − t)γ

Γ(1 + γ)

]
.
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To prove equation (17) satisfies the equation (19), start with

U(x, t) = e

[
−r(T−t)γ

Γ(1+γ)

]
EQ(Π(xT , T ))

using inverse Fourier of Π(xT , T ), thus

U(x, t) =
1

2π
e

[
−r(T−t)γ

Γ(1+γ)

] ∫
iξ+R

EQ(e(iξxT ))Π̂(ξ, T )dξ

from solution 22 we get

U(x, t) =
1

2π
e

[
−r(T−t)γ

Γ(1+γ)

] ∫
iξ+R

e

[
iξ(r−q+λtηt+ψ(−ξ)) (T−t)γ

Γ(1+γ)

]
Π̂(ξ, T )dξ. (23)

That is

Û(ξ, t) = exp

[
−r − iξ(r − q + λtηt + ψ(−ξ)) (T − t)γ

Γ(1 + γ)

]
Π̂(ξ, T )

is a solution of the equation (19).

5 Conclusion

In this paper, we modified the particular Lêvy-time fractional diffusion equation, and
apply to the price of fractional financial derivatives of European-style options such that
we demonstrate as a fractional partial differential equation (FPDE). A more general
class of models based on the fractional diffusion equation L ê vy was also presented
and demonstrated to be a solution to the European option pricing and applied to the
risk-free parameter.
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