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Abstract: In the Lower Yarmouk Gorge the chemical composition of regional, fresh to brackish,
mostly thermal groundwater reveal a zonation in respect to salinization and geochemical evolution,
which is seemingly controlled by the Lower Yarmouk fault (LYF) but does not strictly follow the
morphological Yarmouk Gorge. South of LYF the artesian Mukeihbeh well field produces in its
central segment groundwaters of almost pure basaltic-rock type with low contribution (< 0.3 vol-%)
of Tertiary brine, hosted in deep Cretaceous and Jurassic formations. Further distal, the contribution
of limestone water increases originating from the Ajloun Mts. North of the LYF, the Mezar wells, the
springs of Hammat Gader and Ain Himma produce dominantly limestone water, which contains
0.14-3 vol-% of the Tertiary brine and possess hence variable salinity. The total dissolved equivalents
of solutes gained by water/rock interaction (WRI) and mixing with brine, TDEwR1 brine, amounts
to 10-70 % in the region comprising the Mukheibeh field, Ain Himma and Mezar 3 well, to 55-70 %
in the springs of Hammat Gader, and to 80-90 % in wells Mezar 1 and 2. The type of salinization
indicates that the Lower Yarmouk fault seemingly acts as the divide between the Ajloun and the
Golan Heigths dominated groundwater.

Keywords: Hauran Plateau; Golan Heights; Ajloun Dome; Yarmouk basin; Salinization; Mixing of
water types; Statistical modelling

1. Introduction

The study of the hydrochemical compositions of groundwater and brines reveals the origin
of water and its salinization (e.g. [3,8,14-16,18,20,29,48,50-52]). The inorganic composition of
groundwater depends on weathering of minerals in the catchment rocks, water/rock interaction
(WRI) along the flow paths and the amounts of atmospheric deposition [62]. The processes together
yield typical ionic ratios in groundwater ([26] and references therein).

Contrasting the behaviour of major elements in groundwater, trace elements such as the rare earth
elements (REE) and uranium behave differently [52]. Their extremely low concentrations (<pmol/1)
are controlled by adsorption onto mineral surfaces and co-precipitation with alteration minerals
[4,34,35,55-60]. Among the trace elements the suite of REE and Y (henceforth combined to REY) is a
well-known tool in identification of the origin of groundwaters [14-16,20,29,52,53]. REY immediately
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achieve steady state conditions in the infiltrating water due to their high charge and affinity to
build surface complexes. For instance, more than 99 % of REY released from dissolving calcite in
limestones is immediately adsorbed onto calcite surfaces [26]. During migration of groundwater
REY are continuously subjected to exchange with surface-adsorbed REY. Thus, after some time the
REY patterns of groundwater resemble those gained during weathering of the catchment rocks [26].
Therefore, REY patterns characterise the lithology of the recharge area, whereas major and minor
elements reflect the solubility of minerals of the entire assemblage of catchment and aquifer rocks. The
conjoint application of major and trace elements in the water yield the necessary deep insight into its
salinization and flow paths [43,51-53].

This study aims at the identification of groundwater sources and their salinization in different
geological formations in the productive region of the Lower Yarmouk Gorge (LYG) shared by Israel,
Jordan and Syria. Particularly the issue of potential transboundary flow of water between the Ajloun in
the south [46,47] and the Golan Heights in the north [10,41,44,51] underneath the Yarmouk River was
and still is debated. It has been considered whether or not the Gorge delineates a fault or represents
an anisotropy zone which possibly prevents transboundary flow of groundwater between Jordan
and Israel [12,61]. Seismic lines crossing this border have not been shot up to now but several ones
in the southern Golan Heights [13]. Shallow faults in northwest Jordan are described in [45]. Based
on these surveys and additional evidences [13] suggest a strike-slip-flower-structured fault system
and numerous buried faults crossing the Gorge acute-angled (Fig. 1). The productive water resource
in the LYG is vitally important for Jordan and Israel because of shortness of water in both countries
[40]. Like elsewhere in all semi-arid regions in the world, the ground- and surface water resources
are over-exploited leading to suffering from water shortness due to increasing demand and the
consequences of climate change [51]. In such regions water supply is a serious socio-economic and
political issue, if transboundary flow is involved. For sustainable management and protection of
groundwater resources, water authorities need detailed knowledge of (i) the respective recharge area
of distinct wells or well fields, (ii) the flow characteristics and (iii) possible inter-aquifer flow [7]. In
areas with transboundary water resources also rules of equitability and no-harm have to be obeyed in
order to prevent political interferences [6].
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Figure 1. Overview of the Yarmouk drainage basin and its environment. The basin is outlined in red
in the lower insert. Note the graben structure with the perennial Arram River in the Yarmouk basin.
DSF=Dead Sea Transform fault; SAF=Sheikh Ali fault; MHF=Mevo Hamma fault; LYF=Lower Yarmouk
fault.

2. Hydrogeological setting

The Yarmouk basin comprises the eastern Golan Heights and south-eastern flanks of the Hermon
Massif, shared by Israel and Syria, the northern plunges of the Ajloun Dome (Jordan), and the Hauran
Plateau including the western flank of the Jebel Druz (Syria) (Fig.1). The LYG is the major outlet
of surface and groundwater from the Yarmouk basin. Morphologically, the Gorge separates the
Ajloun Mountains and the Jordanian Ramta Plains from the Golan Heights and the Hauran Plateau,
respectively.

The anticlinal structure of the Ajloun is built of Lower Cretaceous Kurnub sandstones and Upper
Cretaceous, marine, strongly karstified, fractured and silicified lime- and dolostones forming the A7/B2
aquifer in Jordan (Fig.2), which descends northward. For easement and shortness, the Jordanian
nomenclature of formations is preferred in this contribution. Groundwaters in the A7/B2 are confined
by the overlying bituminous Senonian B3 aquiclude, which contains phosphorite, chert and chalk and
separates the A7/B2 from the locally exploited limy B4 aquifer.
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Age Group Formation Hydrogeological properties
Period Epoch/Stage Golan | Ajloun Golan Ajloun Golan Ajloun
Quaternary (Holo-/Pleistocene Yarmouk Basalt basalt
Cover Basalt basalt
Pliocene
Bira/Gesher silicified limest., dolomite
Neogene Kef: N
§ aI Hordos ‘Waqqgas Conglomerate (WC) marl, sand
Miocene Giladi Jordan Valley
Lower Basalt alkali olivine basalt
Oligocene Susita/Fiq marlst., sandy dolomite
Paleogene B5 Wadi Shallalah Chalk (WSC) chalk, bituminous
Eocene
Avedat Maresha/Adulam (B4 Umm Rijam (URC) marl, chalk, limestone |chalky limest., chert beds
Upper Maastricht- . micritic limest., bituminous
Paleocene Tagiye B3 Muwaqqar Chalk (MCM) bituminous, chert, |[(oilshale)
Bel hosphorit i
Masstrichtian e Ghareb B2b Al Hasa Phosphorite (AHP) L C.alcarmus’ phosphorite beds,
Mt. limest., chalk, marl
Campanian copus Mishash B2a Amman silicified limestone limest., chalky dolomite,
Upper (ASL) ey BareRoams phosphate, chert
Cretaceous |Santonian Menuha B1 Wadi Umm Ghudran (WUG) P (?halk, ety
phosphatic sandst., chert
Turonian A7 Wadi Es Sir Limest. (WSL) dolomitic limest., sandst., cherts
. . R R limestone, dolomite,
Ceuon.lanian- Judea Ajloun Bina F/H/S-undifferentiated iy e marl and gypsum
Turonian A5-6 Shueib (S) siltstone, marly limest., dolomite
Period Epoch/Stage Hermon | Ajloun Hermon Ajloun Hermon Ajloun
Tithonian "
Upper  |gimmerideian J6-J7 (Nahal Saar) limestone
3 .
Hrassie Oxfordian J5 (Kidod) marl, shale
Middle Arad Zarqa Azab sandstone, siltstone, limestones
. Aalenian-Callovian J4 (Hermon/Zohar) limestone
Jurassic
Lowe.r Hetlat}glan— J1-13 dolomite, limestone
Jurassic  |Toarcian

Figure 2. Stratigraphic table comparing the Israeli and Jordanian nomenclature. Aquiferous units are
colored in blue after [52].

The Cretaceous and Tertiary sedimentary aquifers, which crop out in the Ajloun anticline descend
northward into the Golan syncline and surface later again at the foothills of the Hermon anticline,
which consists of thick Jurassic lime- and dolostone aquifers with abundant basaltic intrusions [49].
As a consequence, groundwaters south and north of the Gorge migrate through the same aquiferous
formations. Contrasting the Ajloun, the Golan Heights are unconformably covered by up to 700 m
thick Plio-Pleistocene Cover Basalt [33,39]. A marly sequence at its base, the highly fractured basalt
serves as a regional aquifer being annually directly recharged by 500-1,200 mm of precipitation [8].
During the pre-Quaternary the Golan Heights were subjected to tectonic stress documented in a highly
faulted and deformed subsurface [24] with intense and deep karstification of the Upper Cretaceous
and Tertiary lime- and dolostones [11]. A meridional ridge in these formations acts as subsurface water
divide in the covering basalt aquifer [8], leading to groundwater drainage in the latter either W-SW to
the Hula- and the Sea of Galilee basin or E-SE into the Hauran Plateau and the Upper Yarmouk Gorge.
Hydraulic connections between the basaltic cover and the underlying aquiferous Cretaceous carbonate
formations may exist throughout the Golan Heights [25].

The eastward continuation of the Golan Heights is the flat and southward dipping volcanic area
of the Hauran Plateau, which passes in the SE into the enormous accumulation of Neogene-Quaternary
basalts of the Jebel Druze [17,22]. Precipitation infiltrates directly into Upper Quaternary basalts
exposed all over the Plateau and drains towards the LYG, partially feeding perennial springs in the
arcuated Wadi Arram (Fig. 1) which was a major contributor to the Yarmouk River in the past [9].

Along the northern flank of the LYG, hot groundwater emerges at Hammat Gader springs (codes
EM, ER and EB in Table 1; 38-43 °C) from the B3 aquitard (Arad and Bein 1986) and ascend with 41-60
°C in the artesian wells of Mezar from A7 (Mezar 2) and B2 (Mezar 3) aquifers (Fig. 3).
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South of the Yarmouk River the hot water from Ain (Arabic term for spring) Himma (42 °C)
emerges from the B3 aquitard, ascending along faults from the B2 aquifer [3]. In the nearby artesian
Mukheibeh well field the groundwater is exploited from A7 and B2 discharging with temperatures
of 29-46 °C probably heated by volcanic intrusions at depths of 3-4 km [36]. Hot groundwater from
the A7 aquifer is also known from the western Ajloun escarpment within the Lower Jordan Valley
[27,28,46]. In the Ajloun the temperature of groundwater from A7/B2 is only slightly enhanced (23-31
°C) and cool if draining the shallow basaltic aquifer or the B4.
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Figure 3. A detailed view of the sampling locations in the Lower Yarmouk Gorge. Very important are
the Lower Yarmouk (LYF)- and Mevo Hamma faults (MHF) and the rise of the Hammat Gader block in
between. DST= Dead Sea Fault. The region of Hammat Gader encloses codes, EB, ER and EM (Table 1).

With few exceptions the groundwater of the LYG are saturated with respect to calcite but neither to
gypsum nor halite [51]. The groundwater from Ain Himma, the springs of Hammat Gader (enclosing
codes ES, EB, ER and EM in Table 1) and Mezar well 3 are seemingly mixtures of local groundwater,
relic seawater evaporation brine(s) and leached evaporites and dissolved calcite from limestone [51,52].

3. Materials and methods

3.1. Sampling and analytical procedure

During a synchronous sampling campaign in 2016, wells and springs on both sides of the LYG
were chemically analyzed. To allow a regionally comprehensive elaboration, selected analytical results
from earlier local campaigns were included (Table 1). In the field, samples were collected by filtrating
(0.22 pm) water into cleaned HD-PE bottles. Cation samples have been acidified to ensure conservation.
To determine REY and U(VI), preconcentration was required. Therefore, about 4 1 of sample were
filtered (0.22 pm), acidified by sub-boiled (index sbb) HCI to a pH=2, and spiked with 1 ml of Tm
solution. At the same day, the samples were passed through Cig Sep-Pak cartridges, loaded with
ethylhexylphosphate liquid ion exchanger. In the lab, each cartridge was eluated with HClg,, and
eluates were evaporated to incipient dryness, taken up with HNOjg,p, and the resulting solution was
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analyzed applying ICP-MS (Elan DRC-e). Independently, Ca** and Mg?* were determined by similar
ICP-MS. K and Na™t were analyzed by ICP-AES (Spectro Arcos) using matrix adjusted standard
solution for calibration. C1~, Br~, SOi_ were determined by Dionex ICS (AS18 column). The alkalinity
was titrated to pH 4.3 with H,SO4 and given as HCOj; .

3.2. Selection of end member fluids in the Yarmouk basin

The suggested quantification of salinity contributions is based on defined end members of water
types in the LYG:

¢ Infiltration of precipitation over basaltic catchments, particular in the Hauran plateau;

¢ Infiltration of precipitation over limestones catchment mainly in the Ajloun Mts. and Mt. Hermon
/Golan Heights;

®  Relics of brines residing in Jurassic-Cretaceous limestones, and

¢  Dissolution of evaporites and water/rock interaction (WRI) along flow paths.

Basaltic-rock- and limestone waters with lowest C1~ concentrations are suggested as end members
because enhanced CI™ concentrations suggest dissolution of halite from evaporites and/or leaching of
seawater brines enclosed in limestones. The lowest C1~ concentrations of basaltic-rock water from the
Golan and Hauran Plateau are 0.46 and 0.32 meq/], respectively (Table Al and Table 1).

The averages of limestone water of two well waters from each the Golan Heights and the Ajloun
Mts. were selected. Their CI~ concentrations range between 0.50 and 0.80 meq/1 (Table 2). This
wide spread suggests that the samples with values >0.50 meq/1 might have already leached either
evaporites or contain seawater brines.

Table 2. Averages of water types in the Lower Yarmouk Gorge. For more details refer to appendix.

Ca?t Mgt K* Na® ClI- SO} HCO;

meq/1
Basaltic-rock water 1.218 0.720 1.049 0.069 0.393 0.174 2.290
Ajloun limestone water 4.93 1.02 0.04 0712 0.80 0.22 4.66
Golan limestone water 0.388 0493 0.101 2164 0.502 0.100 2.10
Ha’On brine 45.10 1234 879 2549 421.0 431 8.42
Rosh Pinna brine, 2486-2586 m  239.7 59.62 9.18 348.0 6428 24.19 6.06

Two particular brines have to be considered:

1. The Late Tertiary brine was generated by evaporation of intruded Tethys seawater into the
Jordan-Dead Sea Rift [31]. This evaporation brine infiltrated the Cretaceous and Jurassic aquifers
east and west of the Rift. This type of Mg?"-Cl~ brine was identified at Ha’On in the 1960s [21]
along the SE shore of Lake Tiberias. The variations in composition of two wells at Ha’On between
1961 and 2004 are averaged (Table 2). For more detail refer to Table A1.

2. The Late Triassic- to Early Jurassic brine of Rosh Pinna is hosted at depths of 2,500 m in limestones
of the Korazim block north of Lake Tiberias (Fig. 1). This brine represents a mixture with the
Tertiary Ha’On of brine and fresh water [42].

3.3. Estimation of fractions of brine, basaltic-rock- and limestone water

The fractions of basaltic-rock water, e}, in mixtures of both pure basaltic-rock water and
limestone water (Fig. 4a), are derived from interpretation of REY distribution patterns showing
the variation of mixtures of both types of groundwater. Each of the REY patterns is characterized by
C1 chondrite-normalized Tb/Lu values [1] that decrease with increasing ey, values (Fig. 4b), which
is used to approach reliable e}, for the corresponding Tb/Lu values of each groundwater in the
study area. For more information of REY patterns refer to [52]. This approach of ¢y, assumes that
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the REY patterns are not significantly varied by dissolution of evaporites or by WRI. Applying e,
and €1ng = 1 — €y, the end member composition of basaltic-rock- and limestone water (Table 2) and
the analysed concentrations of species i, ¢; agw in Eq. 1 yields the sum of €pyine * Ciprine + ¢i,wri of each
species i. The summation of contribution of CI~ from basaltic-rock- and limestone water is given as
“estimated” ccj st by Eq. 2. If halite is absent, the maximum fraction of e, is derived from Eq. 3
which probably yields an overestimation.

Ci,agw = &w * Cibw + (1 - lSlmst) * Cibw =+ €brine Ci brine + Ci WRI (1)
€bw - CCLbw T (1 — €imst) * CCLbw = CClest 2

CCl,agw — CClest — €brine * CClbrine — 0 (3)

—()  —), ] —),) —(),3 —(), ] —),5
1.0

0.6 ===0.7 ~0.8 ==0.9 1 0o &
0.8
0.7
0.6
05
0.4

03 <

) g 0.2
65 A S 01

Tb/Lu C1 chondrite normalzed

Log REY, C1 chondrite normalized

0.0

-7 — T T T T T T T T T T T T T 0O 01 02 03 04 05 06 07 08 09 1 1.1
la Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Y Er Tm Yb Lu Fraction of basaltic-rock water ¢,

Figure 4. Variation of rare earth element distribution patterns in mixtures of basaltic-rock- and
limestone water. (a) Estimates of mixing of basaltic-rock-(1) and limestone water (0); (b) resulting
C1 chondrite normalized Tb/Lu values as function of ¢,,. REY data are taken from [52] and are
normalized to C1 chondrite to get smooth curves. The average of Ein Dan and Ein Banyas in Mt
Hermon Massif are used as pure limestone water; as basaltic-rock water the analysis of Mukheibeh
2/2013 is used. Data are taken from [51].

Another way to characterize the salinization of groundwater is achieved by estimating the total
dissolved equivalents TDE (in meq/1), which is independent on processes by such as ion exchange with
clay minerals, albitization, dolomitization. TDE, however, varies due to dissolution and precipitation of
minerals and mixing of fresh and saline waters. TDE},,, and TDEy,,; are estimated for the contributions
of corresponding waters (Eq. 4). TDE of the analyzed groundwater, TDE,gy, is given by summation
over all dissolved species i (Eq. 5). The sum of TDEwRg1+TDEy,ip is estimated according to Eq. 6.

TDEest = TDEp,, + TDEj (4)
TDEagw = TDEest + TDEpyine + TDEwri (5)

z [Ci,agw - (Sbw * Cibw + (1 - ebw) : Ci,lmst)] = T]DEWRI + TDEbrine = TDEWRIerrine (6)
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4. Results

4.1. Correlations of solutes in Yarmouk groundwater

The cross plots of dissolved species in groundwater reveal relationships between end members of
saline and fresh water. The fresh water end member of basaltic-rock- and limestone water (Table 2)
are implemented in Fig. 5. The correlation of various elements with Cl~ reveals several aspects:
Mukheibeh concentrations either tightly cluster (Figs. 5a-d) or spread in one direction (Figs. 5e-f).
Waters from Hammat Gader and Mezar/Himma seem to represent dilution lines with different saline
end members and the assumed basaltic-rock- and limestone water both plotting near the Mukheibeh
cluster. The same may be true for Fig. 5d, where the Br~ concentrations of the low-salinity end
members are close to zero. Values of Ca?t and Mg?* in fresh water show a wide spread with diverging
(Fig. 5e) or monotonous (Fig. 5f) increase with increasing C1~. The Mukheibeh waters show enhanced
Ca?* and Mg?* concentrations compared with the basaltic rock water and limestone water.
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Figure 5. Cross plots of dissolved species in groundwater. Note that the high-salinity groundwaters
are related to either basaltic or limestone water (a-e). This is not the case in (f). Averages of low C1~
containing water from the Ajloun Mts. and from the Golan Heights are used for limestone water.
Average of low Cl~ containing water from the Hauran Plateau are used for basaltic-rock water (Table 1).

1th

x/yy indicates the sampling ID and the year of sampling in the 21" century.

More details reveal the indicated trend lines in the cross plots of 1000-Br~/Cl~ and Na*/Cl~
(Fig. 6). For orientation the trend of evaporated seawater is given as red line [23,37]. The groundwater
from springs of Hammat Gader and Himma and from well Mezar 2 define vertical trends, which
are only explainable by leaching of Br~ from the organic-rich limestones of the B3 aquitard. Mezar 1
and 3 and the low Br~ /Cl™ samples of all vertical trends suggest a mixing line between Mukheibeh
groundwater and evaporated seawater such as the Ha’On brine [32]. A second mixing line is indicated
by Ein (Hebrew term for spring) Sahina (ES) and the wells Mukheibeh 1 and 6. The water of Mukheibeh
9 well shows an extreme position.
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Figure 6. Cross plots of Nat /Cl~ vs 1000-Br~ /Cl~ of Ha’On brine analyses in the years 1961 to 2004
and of evaporated seawater (red line) [23,37]. Present-day Ha’On brine is a dilution product of the
original Ha’On brine and basaltic-rock groundwater with Na™/Cl™>1 (dashed line). The intersection
of the dilution line with the trend line of evaporated seawater approach the values of Nat /Cl~ and
1000Br~ /C1~ of the original Tortonian Ha’On brine to be 0.43 and 5.9, which significantly deviate from
the measured ones in the years of 1961 and 2004 (Table 1). The vertical lines indicate leaching of Br™
from B2. The solid line represents mixing of Ha’On brine and basaltic-rock water in the Mukheibeh
field. M= Mukheibeh sample.

Applying the partitioning around medoids clustering method [38] on the groundwaters of the
LYG, using the L1 norm for distance measure (=sum of the absolute distances of all components)
(Fig. 7), identifies the same distinct clusters (“code” in Table 1) based only on geographical and chemical
proximity. The results of this analysis are visualized in terms of three principal components, which
cumulatively explain 83 % of the variance of the samples. The spheres in Fig. 7 represent the position
of samples in the vectorial space of the principal components; the similarly colored small dots indicate
the corresponding projections on the three faces of the cube. In the C1/C2 plane Mukheibeh waters
(code U1, U2, U3 in Table 1) yield a curve which is far away from the projection of Hammat Gader
samples (codes ER and EM). ME2 waters show some relationship to ME1. The projection onto C1/C2
and C1/C3 planes reveal that ME3 waters are closely associated with code U3 in plane C1/C2. Only in
the plane C2/C3 ME3 and U3 are well separated. Ain Himma is well separated from Hammat Gader
and Mukheibeh (U1-U3) in the C1/C2 plane. This way, Fig. 7 visualizes different trends and groupings
of waters and brines in the LYG. The different code groups form either clusters or strings in space,
thereby indicating constant or variable mixtures, respectively.
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Figure 7. 3D visualization of the clustering of the water samples along the first three principal
components. The different colors of large spheres in three-dimensional space and the corresponding
colored dots on the projection planes visualize the differences in composition of the groundwater in
the Yarmouk Gorge subdivided into nine code groups (Table 1). This plot is based on concentrations in
mg/L
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4.2. Mixing of basaltic-rock- and limestone water

The cross plot of €y, and e, shows the distribution of the various types of water mixtures along
the diagonal line (Fig. 8). The red cross marks the arrays of either dominantly limestone- or basaltic
rock groundwater. The pure limestone water is presented by Mezar 2 and Mukheibeh 8 in the year
2013; the most basaltic-rock groundwater is among the Mukheibeh ones. Hammat Gader, Ain Himma
and Mezar 3 cover the range of ¢}, between zero and 0.5. Most of the Mukheibeh waters (U1 and
U2) are of the basaltic-water type, whereas the Mukheibeh subgroup U3 (with one exception) and the
remaining groundwaters are of limestone water type.

The Mukheibeh field is characterized by mixing of basaltic rock- and Ajloun limestone water
with epine 0f 0.0019-0.004 of Ha’On brine (Table 3); in Ain Himma water ¢, varies between 0.0086
and 0.015. When fitting Hammat Gader and the Mezar waters to mixtures of Golan limestone- and
basaltic rock water and Ha’On brine, €, range between 0.019 and 0.031 for Hammat Gader and
MEL1 and ME 2. In contrast, ME3 reveals €}, between 0.0022-0.0039 resembling Mukheibeh water.
Substituting the Ha’on brine by Rosh Pinna brine in Hammat Gader and Mezar 1 and 2, the e
decline to 0.013-0.028 (Table A2a) as the result of the enhanced chlorinity of Rosh Pinna which is 36 %
higher than in Ha’On brine (Table 2). The maximum of volume of brine fraction is 0.03; The cross plots
of ey and €y ine suggests three different trends (Fig. 9a). The low €. Values of Mukheibeh water
slightly increase with e,,,. Although Ein Sahina and Ain Saraya discharge in the area of Hammat
Gader, they plot together with Mezar 3 and the Mukheibeh data. The trend of Hammat Gader and
Mezar wells 1 and 2 show the highest &}, fraction, while Ain Himma plots at slightly lower ep,ipe.

do0i:10.20944/preprints202002.0414.v1
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Figure 9. Cross plots of ¢, and €pine and TDEy ;. and TDEwpg;. These data are obtained under the
assumption that y,,i,, can be estimated after Eq. 2. Hammat Gader and Mezar data are based on Golan
limestone water and Ha'On brine. Muhkeibeh water is related to Ajloun limestone water.

4.3. Contributions by water/rock interaction

Following the two suggested approaches of salinization in chapter 3.2, two results are obtained
depending on the origin of CI™ either from brine (Eq. 3) or from halite in evaporites. Both ways of
estimations are documented in Table A2 and Table 3 shows the main results. The approach of ejine by
Eq. 3 yields the maximum of TDEy,, and the minimum of TDE,;,. (Table A2), whereas ¢pipe = 0
yields the maximum of TDEwrRyprine in Table 3. TDEwg; increases over two orders of magnitude in
Mukheibeh groundwater. Contrastingly, the increase of TDEwpR; in Mezar, Ain Himma and Hammat
Gader is less than factor of two (Fig. 9b). The contribution of TDE from water/rock interactions
(TDEwgy) is less than by brine (TDEy, ) in Hammat Gader and Mezar and most of Ain Himma
samples.

From the estimated species i of WRI or WRI+brine (Table A2) the amounts of dissolved gypsum
and calcite is given by SOZ* /2 and (Ca?* —SOZ* )/2 in mmol/1in Table 3. The amount of halite equals
the amount of CI~ in meq/1. (-) signs indicate precipitation; (+) values show dissolution. Calcite shows
precipitation when fitting Hammat Gader and Mezar waters with Ajloun limestone water, which is
not the case when using Golan limestone water. The composition of brines from Hammat Gader and
groundwater from Mezar 1 and 2 is estimated for various combinations of brines and fresh waters. The
results of these mixing estimates are compiled in the lower part of Table A2 and Table 3. The differences
in mixing either Ajloun or Golan limestone water with either Ha’On or Rosh Pinna brines yield similar
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results for gypsum dissolution but significantly different ones for solution of calcite. In the presence of
brines, calcite is precipitated from Ajloun limestone water, whereas in Golan limestone calcite dissolves.
In absence of brine, some Hammat Gader waters dissolve calcite and Mezar groundwater precipitate
calcite when fitted to Golan limestone water. The estimates reveal dissolution of significant amounts of
gypsum and calcite in waters from Ain Himma, springs of Hammat Gader and well Mezar 2, whereas
Mukheibeh waters dissolve much smaller amounts of both minerals (Table 3). The dissolution of
calcite and gypsum leads to enhancement of Ca?" in Mukheibeh groundwater (Fig. 5e). The increase
of Mg?* in groundwater (Fig. 5f) is caused by high Mg?* concentration in the admixed Ha’On brine.

The cross plots of calcite and gypsum reveal that their amounts are very similar and independent
on the absence or presence of brine Eq. 2. Gypsum is always dissolved but calcite is both dissolved
in Hammat Gader, Mezar and part of the Muhheibeh waters and precipitated in the other part of
Mukheibeh and Himma water (Fig. 10).

The cross plots of halite and gypsum dissolution only reveal two trends between Mukheibeh at
one end and either Hammat Gader waters or Mezar and Himma waters at the other end (Fig. 11).

3.0 14
© Muk
2.5 7 B Himma 12 -
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Figure 10. Cross plots of minerals. (a) Amounts of gypsum and calcite in WRI based on the assumption
that epine can be estimated after Eq. 2. (b) Amounts of halite and gypsum in WRI+brine. Here ¢}, is
assumed to be zero and its contribution appear together with those of the WRI.

5. Discussion

5.1. Saline contributions to groundwater

Although the process of estimating the contributions of basaltic-rock- and limestone water may
not be as precise as the figures suggest, the volume contribution of brine is always less than 3 volume-%.
Because the fractions of basaltic-rock- and limestone water are based on interpretations of REY patterns,
it should be kept in mind that the limestone water may have already dissolved some gypsum and
halite. This may lead to too high brine- and limestone water fractions due to which the fraction of
basaltic-rock water is lowered. For similar reasons the true contribution of WRI may be slightly higher
than derived in Table 3. Possible atmospheric contributions are minimized by selecting basaltic-rock-
and limestone water with lowest C1~ concentrations.

The triplot visualizes the differences of the various local groundwater and brines (Fig. 11). The
contributions TDEwr1 prines TDEpyw and TDE),¢; in groundwaters show a narrow cluster of Mezar
wells 1 and 2, Hammat Gader and Ain Saraya samples, whereas water from Mukheibeh well field,
Ain Himma and Mezar 3 cover a wide field between the dashed lines. The contributions in TDE from
brine and WRI ranges between 10 and 70 %, 80-90 % in Mukheibeh, Ain Himma and Mezar 3 and
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in Hammat Gader and Mezar wells 1 and 2, respectively. These estimates do not really differ, if the
sources of limestones water or brines are varied.

The Mukheibeh groundwater originates from an aquifer with constant contribution of brine
but increasing dissolution of gypsum (Fig. 9b). Calcite in code group U3 and Ain Himma is always
precipitated (Table 3) contrasting the mixing in Hammat Gader, and Mezar wells 1 and 2. The mixture
of Mt. Hermon/Golan limestone water and Ha’On brine in Mezar 2 distinctly differs from Hammat
Gader by enhanced contributions by WRI (Figs. 7, 9 and 11).

® AH

] EM
< ER
<> ES
¢ ME1
® ME2
</ ME3
B U1
A U2
X U3

@\

—_—
TDE Limestone / Percent

Figure 11. Ternary plot of contributions in %-TDE of basaltic-rock-water, limestone water and
WRI+brine. Several trends evolve. All trends seem to culminate in the Yarmouk River water. The
dashed lines fix the array of Mukheibeh, Ain Himma, Mezar 3 and Ein Sahina. Clearly separated, the
waters from Hammat Gader (EM, ER), Mezar 1 and 2, and Ain Saraya cluster in the lower left corner.

In assumed absence of brine the dissolution of halite amounts to about 1 mmol/1 for Mukheibeh
and Mezar 3, about 4-6 mmol/1 in Ain Himma, and between 8 and 13 mmol/1 in Hammat Gader and
Mezar wells 1 and 2 (Table 3; Fig. 11). Independent on the type of estimates, the dissolution of gypsum
varies between 0 and 0.5 mol/1 in Mukheibeh and Mezar wells 1 and 3 waters. It ranges from 1-3.5
mmol/lin Ain Himma, Hammat Gader and Mezar 2.

In absence of deep brines, gypsum and calcite are dissolved in Hammat Gader and Mezar 1 and 3
in Golan limestone water. In the presence of Rosh Pinna brine instead of Ha’On brine, calcite often has
to be precipitated making the former less reasonable because the limestone water is already saturated
with respect to calcite. Mezar 3 does not dissolve gypsum but calcite particularly in the presence of
Rosh Pinna brine (Table 3). Taking Ajloun limestone water and Ha’On brine calcite is precipitated
from groundwater of Hammat Gader and Mezar (Table A2) suggesting that Ajloun water does not
play any in these waters.

All groundwater mixes with brine being present in aquifer rocks and interact with aquifer rocks.
The contribution of brine dominates the salinity of groundwater. The Tortonian Ha’On brine is
identified in the study area. It is reasonable to assume that this brine infiltrated the Cretaceous (and
probably Jurassic) limestone aquifers and is therefore omnipresent in the surroundings of the Yarmouk
Gorge [43]. Estimates based on the contributions of Rosh Pinna brine abundantly lead to dissolution of
calcite when applying Eq. 2 which is unreasonable because in limestone aquifers calcite saturation
should be attained.

5.2. Groundwater divide between the Ajloun and the Golan Heights

Chemical similarities suggest that Mezar 3 on the northern Yarmouk River bank but located very
near to the LYF produce groundwater of the Mukheibeh type (Fig. 3). Ein Sahina and M5, both north
of LYFE, produce water of the Mukheibeh type (Table 1). Ain Saraya south of the Yarmouk River just
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opposite of Hammat Gader but north of LYF produces water typical for Hammat Gader (Table 1).
Ain Himma located southwest of the Yarmouk River but north of the LYF is seemingly related to
Hammat Gader brines (Fig. 5). The thermohaline water of Hammat Gader seems to ascend along faults
from greater depth. These examples of distribution of salinized groundwater indicate that probably
not the Yarmouk River but the LYF delineates the groundwater divide between the Ajloun and the
Golan Heights. LYF clearly separates the Mukeibeh well field with 0.002 < epyine < 0.004 from the
Mezar well field (0.02 < gpine < 0.04), Ain Himma (0.009 < épyine < 0.013) and Hammat Gader region
(0.02 < epyine < 0.04).

Although the LYF follows the trend of the Yarmouk River the chemical composition of local
groundwater and brines is oriented according to the LYF and not to the political border between Jordan
and Israel given by the Yarmouk River. According to the regional differences the transboundary flow
may be influenced by local pumping on the Israeli side, the artesian outflow on the Jordanian side,
and recharge of the common aquifer on both sides of the LYFE.

In well and spring water of the Mezar field and Hammat Gader region significant changes in REY
patterns [52] indicate variation in groundwater flow and mixing of basaltic-rock- and limestone waters
(Fig. 4b). Mezar 3 in 2008 produced water with the same REY pattern of Mezar 2 which definitely
originates from the deep aquifer in the Golan. In Fig. 11 Mukheibeh 2, 4 and 8 show high variations
in composition within the Mukheibeh array of dashed lines. This behavior suggests that their flow
system probably depends on pumping and recharge. The most extremely different compositions reveal
waters from the wells Mezar 2 (depth -807 m) and Mezar 3 (depth -102 m), drilled few tens of meters
apart. Mezar 3 water in 2001 and 2016 was of the Mukheibeh type (Fig. 2). In 2008, Mezar 2 and 3
showed the same type of REY patterns which do not fit into Fig. 4a [52].

Figs. 5, 6,7, 9 and 11 suggest different aquifers. The uppermost fresh water aquifer producing
the Mukheibeh type is dominantly recharged by either basaltic-rock- or limestone water. Part of the
infiltrated water penetrate into deeper aquifers and leach along their flow paths evaporites and relics
of brine. The deepest aquifer is that of Mezar 2. Hammat Gader originates from an aquifer which
enables much less contact with gypsum but slightly more with halite, whereas Mezar 2 and Himma
water had more contact with gypsum and less halite.

6. Conclusion

The basaltic-rock groundwaters from the Hauran Plateau mix with limestone water from either
the Ajloun or the Golan Heights depending on the position of springs and wells south or north of the
Lower Yarmouk fault respectively. The most basaltic-rock-dominated waters occur in the center of the
Mukheibeh well field defined by wells 1, 2 and 4. The limestone-dominated waters are mainly present
in the region of Mezar and Hammat Gader. Running sub-parallel to the Yarmouk River, the LYF seems
to be the actual groundwater divide between the Ajloun and the Golan Heights.

Ein Sahina and Mukheihbeh 5, north and southwest of of Hammat Gader, respectively, and
Mezar 3 resemble in composition the Mukeihbeh water (Table 1) but are located north of the LYF. The
variability of Ain Himma composition sometimes resembles that of Mezar 2 suggesting groundwater
from great depth. Ain Saraya south of the Yarmouk River and opposite of Hammat Gader produces the
same type of saline water from north of the LYF. Since the Yarmouk River represents the international
border between Jordan and Israel, these examples suggest only in a political sense some transboundary
flow over short distances possibly through local N-S trending faults and fissures beneath the river
but do not impugn the general barrier character of the LYF in respect to regional groundwater flow
crossing beneath the Gorge.

The salinity of groundwater is mainly due to (i) leaching of remnants of Tertiary Rift brine but
not of mixtures of relicts of the Triassic brine with the former and (ii) water/rock interaction such as
dissolution of gypsum and calcite. The basaltic-rock-dominated waters show the lowest salinities,
whereas the waters of Hammat Gader and Mezar 2 manifest the highest salinity. Only the basaltic-rock

do0i:10.20944/preprints202002.0414.v1
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waters show higher TDEwg; than TDEy,.. The contribution of atmospheric precipitation is considered
part of the recharge water or to be negligible in water with lowest CI~ concentrations.

The uniform trend of Mg?* with C1~ in all groundwater excepting the Mukeheibeh ones suggest
leaching of the Tertiary Ha’On brine which is of Mg?*-Cl~ type. The different dilution trends of
other dissolved species such as Na™, K+, Ca?* Br~ and SOﬁ* of either Hammat Gader or Mezar/Ain
Himma indicate differences in occurrences of evaporite minerals in the respective aquifers.
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Abbreviations

The following abbreviations are used in this manuscript:

LYG Lower Yarmouk Gorge

WRI Water /rock interaction

LYF Lower Yarmouk fault

Ebrine Volume-fraction of brine

Ebw Volume-fraction of basaltic-rock water

Elmst Volume-fraction of limestone water

Cibw Concentration of species i in basaltic-rock water

Cibrine Concentration of species i in brine

Ciagw Concentration of species i in analyzed groundwater

Ci/WRI Concentration of species i due to WRI

TDEpw Total dissolved equivalents due to weathered basalt

TDE mst Total dissolved equivalents due to dissolved limestones
TDEagw Total dissolved equivalents in analyzed groundwater
TDEpsine Total dissolved equivalents in brine

TDEest Total dissolved equivalents of estimated mixture of basaltic-rock- and limestone water
TDEwr: Total dissolved equivalents due to water/rock interaction

TDEwWRI+brine Total dissolved equivalents due to water/rock interaction and mixing with brine
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