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Abstract: Large scale coherent structures in atmospheric boundary layer (ABL) are known to
contribute to the power generation in wind farms. In the current paper, we perform a detailed
analysis of the large scale structures in a finite sized wind turbine canopy using modal analysis from
three dimensional proper orthogonal decomposition (POD). While POD analysis sheds light on the
large scale coherent modes and scaling laws of the eigenspectra, we also observe a slow convergence
of the spectral trends with the available number of snapshots. Since the finite sized array is periodic
in the spanwise direction, we propose to adapt a novel approach of performing POD analysis of the
spanwise/lateral Fourier transformed velocity snapshots instead of the snapshots themselves. This
methodology not only helps in decoupling the length scales in the spanwise and the streamwise
direction when studying the energetic coherent modes, but also provides a detailed guidance towards
understanding the convergence of the eigenspectra. In particular, the Fourier-POD eigenspectra helps
us illustrate if the dominant scaling laws observed in 3D POD are actually contributed by the laterally
wider or thinner structures and provide more detailed insight on the structures themselves. We use
the database from our previous large eddy simulation (LES) studies on finite-sized wind farms which
uses wall-modeled LES for modeling the Atmospheric boundary layer laws, and actuator lines for
the turbine blades. Understanding the behaviour of such structures would not only help better assess
reduced order models (ROM) for forecasting the flow and power generation but would also play a
vital role in improving the decision making abilities in wind farm optimization algorithms in future.
Additionally, this study also provides guidance for better understanding the POD analysis in the
turbulence and wind farm community.
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1. Introduction

Wind farms in atmospheric boundary layer (ABL) pose a complex dynamical system with
turbulent phenomenology occurring at multiple length scales, mainly due the interaction of
atmospheric boundary layer turbulent eddies [1] and the turbulence generated by the wind turbine
wakes [2–4]. These interactions are manifested not only in the small scale structures (of the order
or smaller than the turbine rotor diameter) but also in the large scale structures (one or two orders
of magnitude larger than the turbine rotor diameter) [5]. In the current paper, we are concerned
towards the understanding of these large turbulent structures which arguably can serve as mediators
to the generation of large scale motions or very large scale motions [6] (LSM’s or VLSM’s) which
has significant contribution to wind farm power [4,7]. Several researchers have shown before that
large scale counter-rotating roll cell structures are formed in atmospheric boundary layer [8–11],
and wind farms in ABL modulate such structures in and around the turbine rotors [12–14]. Proper
orthogonal decomposition aka POD [15–17], has been popularly used by the community to perform
detailed analysis of these large scale roll structures [15], because of its inherent nature to “rank"
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the coherent turbulent eddies based on their kinetic energy content (POD eigenvalues). In the
current manuscript we are primarily interested in the POD analysis of a finite-sized wind farm
where the flow is heterogeneous in the streamwise direction. Finite sized wind farms have multiple
applications, e.g., fundamentally from understanding the entrance region of very large wind farms [18]
without restrained by computational expense. These finite sized turbine arrays also find their
place in utility scale farms e.g., in a distributed wind setup aimed for powering rural or remote
sub-urban community [19]. One of the key problems, in the snapshot-based POD analysis [20–22]
(more popular because it is computationally cheap), is that the snapshots need to be quite far spaced
(more than three flow though times apart), such that the snapshots are linearly independant of
each other for the generation of the correlation matrix in POD, and hence capture the large scale
structures/modes (having large decorrelation times). Restrained by the computational expense, the
number of snapshots in such a case involving finite sized wind farm canopy will be quite limited,
which will detrimentally impact the scaling and the convergence of the POD eigenspectra. Previous
work by turbulence/wind community have not addressed this issue explicitly [23]. This problem was
circumvented by performing the analysis on a periodic wind farm [15]. In this way even though very
few distant spaced (3 flow through times apart) snapshots are generated by solving the Navier-Stokes
equation, the number can be artificially amplified by “shifting" the snapshot data across the streamwise
and spanwise distance between the turbines. The shifting method only works if the wind farms are
arranged in a completely matrix setting (nx × ny turbines) in a horizontally periodic framework. In this
case the total number of snapshots generated for POD would be nxny times the snapshots obtained
from simulations. In the finite sized wind farm, as in the current manuscript, due to the heterogeneity
of the farm layout and the geometry of the domain, such shifting is not possible, and at most we can
increase the number of snapshots by two times by reflecting the data across xz plane of symmetry
passing through the middle row of turbines. Thus the data from finite-sized wind farm simulation
serves as a perfect candidate for performing such POD analysis studies. As we will see later, that
this creates a limitation on the total number of snapshots we can generate that impacts negatively
on the convergence of the POD eigenspectra. Additionally after performing detailed analysis of the
eigenspectra and understanding the dynamics of the 3D eigenmodes, we adapt a Fourier-POD (FPOD)
based framework for better understanding of the eigenspectra (most importantly their convergence)
as well as the modes. In this methodology, we perform POD analysis of laterally/spanwise fourier
transformed snapshots rather than the 3D snapshots themselves. As will be discussed in the subsequent
section, we see that the FPOD modes can provide better insights to the scaling laws of the eigenspectra
as well as illustrate on the turbulent structures which contribute to the problem of "slower convergence"
of the spectra. Ideas for computing POD with a similar spirit exists in the literature, e.g., spectral POD
(SPOD) by Towne and coworkers [24], where the temporal fourier transform of the correlation function
is used for POD eigen decomposition problem in order to understand the modal frequency content.
Towne and coworkers also-showed the connection between SPOD and dynamic mode decomposition
(DMD) [25]. Hamilton and coworkers [26,27] have introduced methodologies like dual POD as well
as 2D-POD at each streamwise location in an effort to understand the streamwise dependencies of
the coherent structures for wind farms. Glegg and Devenport [28] have also shown that for problem
involving turbulence-acoustics interference, POD can be performed in combination of linear stochastic
estimator in the homogeneous direction (space or time for homogeneous/stationary flows) to describe
flows and that such analysis requires less modes for flow representation than the conventional 3D
POD. The methods described above have utilized POD such that additional information of length
scale dynamics/ decoupling streamwise and spanwise length scales are possible. The concept of
Fourier-POD itself is not uncommon in the turbulence community and can be found in many canonical
flows having a homogeneous direction, the most recent being Rayleigh Benard convection [29,30].
Contrary to the previous methods, the FPOD methodology (operated on complex two dimensional
structures) and its novelty in the current work lies in its introduction to solely gain physical insight to
the convergence of the 3D eigenspectra and additionally showing a comparison of the reconstructed
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POD modes from FPOD modes with the 3D POD modes. Additionally, FPOD also helps us decouple
length scales of the energetic eddies based on the spanwise and streamwise direction of the flow.
Decoupling of length scales create more information of the turbulent large scale structures present
in the wind farms in atmospheric boundary layer which can be used as insights to understanding
eigenspectra convergence and turbulent structures.

The paper is organized as follows. First we briefly discuss the numerical setup with regards to
the large eddy simulation (LES) framework used for the wind farm simulations. Specifically, we also
discuss about the three dimensional proper orthogonal decomposition (method of snapshots) used in
the context of wind turbine simulations followed by analysis of the 3D results. We highlight certain
drawbacks in the method and in order to gain more insight to those drawbacks we introduce the 2D
Fourier-POD methodology accompanied by the results. Finally we conclude highlighting the merits of
2D Fourier-POD methodology in understanding the physics of wind farm compared to its 3D POD
counterpart.

2. Numerical Setup

The database for the finite sized wind farm have been obtained from spectral element simulations
in LES carried out in our previous work [5,31,32]. In particular, we use the open-source exponentially
accurate spectral element code Nek5000 [33,34] for setting up the LES simulation. Nek5000 solves the
incompressible Navier-Stokes equation in a variational/weak formulation with tessellating the domain
into 3D hexahedral elements. The variables, velocity, pressure etc., are expanded as higher order
Legendre polynomials within each element and the gridpoints where the polynomials are defined are
essentially the roots of the polynomials or Gauss-Lobatto-Legendre (GLL) points (Gauss-Lobato (GL)
points for pressure, in the current formulation).

The domain consists of a 3× 3 wind turbine array (WT) in a realistic inflow-outflow [31,35]
setup, and hence the turbine array layout is finite-sized. The inter-turbine streamwise and spanwise
distances are 7d and 3d respectively. The wind turbine rotors in the finite sized array, d is set to be
20% of the ABL thickness and the hub-height being zh = d. Such setup of hub-heights are consistent
with the wind-tunnel laboratory scale wind turbine tests carried out in the past [7,36]. The vertical
height of the domain is 5d. The LES framework involves wall-modeled large eddy simulation with
the subgrid scale closure designed as algebraic wall-damped Mason and Thompson model [37–39]
and the bottom wall boundary condition prescribed as wall-stress (corresponding to the log-law of the
wall). For validation of neutral ABL and wind farm simulations in spectral elements, please refer to
the authors’ previous work [5,40]. The wind turbines are modeled as actuator-line models [41–44].
Moreover, the finite-sized layout is inherently heterogeneous due to the streamwise growth of the
internal boundary layer, wake impingement effects etc. The top boundary condition of the finite-sized
wind farm array is “symmetry" or no mass transport in nature which mimics an inversion layer as in a
conventionally neutral boundary layer [45,46]. For the current setup, the artificial inversion layer is 5
times the hub-height/rotor diameter of the turbines and can be thought of as low-lying [45]. From
the perspective of canopy turbulence, it is apparent that the ABL above the wind turbine canopy
is essentially the “canopy sub-layer" (vertical domain size 5d/5zh). (The canopy sublayer, is where
the turbulent eddy effects of the canopy are still felt and is roughly 5 times the canopy height or
even larger, see [47–49] for details of recent canopy/roughness sublayer fundamentals). We further
illustrate the schematic of the three-dimensional layout in Figure 1a and supported by a typical
snapshot of fluctuating streamwise velocity at hub-height (Figure 1b), where the multiscale feature of
ABL-turbulence around the rotor regions are evident. Table 1 shows the specification of the domain
size of the wind turbine array as well as the precursor neutral ABL which is concurrently simulated
to generate inflow conditions [31,32]. Additionally, the grid counts and the average normalized grid
sizes for the farm layout as well as neutral ABL ( turbulent scales fed to the inflow) can be found
in Table 2. This illustrates that the smallest resolved length scales is an order of magnitude smaller
than the turbine rotor size, d. Note, here that the definition of lengthscales or wavelength resolved is
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Case Geometry Ne
x × Ne

y × Ne
z Grid points

Neutral ABL 10πd× 5πd× 5d 30× 20× 24 5.06× 106

WT Array 15πd× 5πd× 5d 48× 32× 24 1.281× 107

Table 1. Details of the computational grids for the precursor ABL and the wind turbine array domain.
Ne

η is the number of spectral elements in the η direction. 8 GLL nodes (Legendre polynomial order 7)
have been used per element per Cartesian direction

Neutral ABL WT Array

Direction λη,res max λη,res min λη,res λη,res max λη,res min λη,res

x 0.2992d 0.2992d 0.2992d 0.3366d 0.0944d 0.2804d
y 0.2240d 0.2240d 0.2240d 0.3316d 0.0358d 0.1402d
z 0.0596d 0.0596d 0.0596d 0.0942d 0.0476d 0.0596d

Table 2. Maximum, minimum and average wavelengths captured, for the ABL and the wind turbine
array domain. d is the turbine rotor diameter.

based on the Nyquist limit of the coarsest grid size ( twice the coarsest grid size). For more details
of how the grid sizes were defined, See [5,43]. From table 1 it is apparent that the precursor neutral
ABL has a much uniform distribution of grids compared to the wind turbine (WT) domain. This is
primarily because of the fact that the WT domain grids were build on the top of ABL domain, with
grid refinements around the turbine rotors (∼ 30 gridpoints per actuator line blade) for capturing the
wake turbulence accurately [31,35,43,50].

The number of snapshots obtained from the simulations is 3285, which are spaced 1/5Te apart
(Te = 15πd/U∞ is the flow-through time). Since, the domain/layout is symmetric about y = 2.5πd,
we created 2× 3285 = 6570 snapshots by reflecting /shifting the snapshot data about xz plane at
y = 2.5πd (similar to the shifting method by Verhulst et al. [15]).

(a)

(b)

Figure 1. (a) Schematic of the 3× 3 wind turbine array. (b) Normalized streamwise fluctuation velocity,
u′/U∞ at hub-height location, z = zh = d. Red arrow: inflow condition from precursor neutral ABL.
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3. Results

3.1. 3D POD – Method of Snapshots

The POD analysis was carried out using the method of snapshots [20] developed in the spectral
element code Nek5000. The 3D velocity vector field is represented as u(x, t) ≡ ui(x, y, z, t) ∀i = 1, . . . , 3.
Here, ui(x, y, z, t) ∈ Ω(R3, [0, ∞) ∩ L2(R3)). (R3 is the 3D real space, L2(R3) is the L2 or energy norm
in the 3D real space.) The velocity field can be decomposed into a set of orthonormal basis functions
ϕ ∈ V ≡ Ω(R3 ∩ L2(R3)).

u′(x, t) =
∞

∑
j=0

aj(t)ϕj(x) (1)

where the turbulent velocity fluctuation field u′(x, t) = u(x, t)− u(x), and u(x) is the time average of
the velocity field. (ϕi, ϕj) = δij ∀i, j. The POD problem can be cast as a constrained variational problem,
with the minimization of the objective function J(ϕ) = 〈|(u′,ϕ)|2〉T −Λ(||ϕ||2 − 1), 〈〉T is a temporal
averaging procedure. A necessary condition of the extrema dictates that the functional derivative

vanish for all variations ϕ+ εψ ∈ V, ε ∈ R, .i.e.,
d
dε

J(ϕ+ εψ)|ε=0 = 0. The method of snapshot is

an approximation to the solution of
d
dε

J(ϕ+ εψ)|ε=0 = 0 [22] using temporal correlation instead of
spatial correlation. Mathematically, the POD method of snapshots [20] of the velocity field dataset
arises when solving for the projection of the dataset Pr : V 7→ Vr of fixed rank r, minimizing the error
Nt−1

∑
j=0
||u′j−Pru′j||2 in the least-square sense with the constraint ||ϕ|| = 1 ( ||.|| is the norm corresponding

to the inner product (, ) ∈ V). The temporal snapshots of the velocity field u(x, tj) ∀j = 1, . . . , Nt have
been written as uj in the error expression for brevity. The projection Pr can be written as

Pru′m =
r−1

∑
j=0

(ϕj, u′m)ϕj =
r−1

∑
j=0

aj(tm)ϕj(x), r ≤ Nt (2)

The correlation matrix in indicial notation can be obtained from the inner product of the snapshots
and is given as

Cmn =
1

Nt
(u′(x, tm), (u′(x, tn)) (3)

This method ensures that the eigenvalue problem arising is independent of the size of V which is
equal to Ω(R3k) (k: number of coordinates in u(x, t) at discrete grid points). In the eigenvalue problem
in Equation 4 below, Λ is the eigenvalue corresponding to the turbulent kinetic energy and v is the
eigenvector.

[C]v = Λv (4)

The POD eigenmode can be constructed from the eigenvalues and eigenvectors as

ϕk(x) =
Nt−1

∑
j=0

bk(tj)u′(x, tj) (5)
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for some coefficients bk. Using equation 2 for u′(x, tj), equation 5 can be expanded as

ϕk(x) =
Nt−1

∑
j=0

bk(tj)
Nt−1

∑
l=0

al(tj)ϕl(x)

=
Nt−1

∑
j=0

Nt−1

∑
l=0

bk(tj)al(tj)ϕl(x)
(6)

Since, (ϕk,ϕl) = δkl , it is straightforward to see from equation 6 that bk(tj)al(tj) = δkl/Nt ∀j. It is
important to note, that Parseval’s identity can be applied in POD (orthonormal basis functions) which

from the inner product (taken in spatial domain, defined in V) gives rise to ||u′(x, t)||2 =
Nt−1

∑
j=0

aj(t)2,

and hence 〈aj(t)ak(t)〉T = Λjδjk ∀j = 0, . . . , Nt − 1. Thus, since bkal = δkl/Nt, the coefficient bk can be

defined as bk =
ak

Λk Nt
. Also the eigenvector vk =

ak√
Λk Nt

is consistent with the orthonormality of ϕ.

In this section we present the results obtained from the POD analysis of a finite-sized wind turbine
array. Unless otherwise mentioned, the results (also shown in the plot labels) have been normalized
with the free-stream velocity scale, U∞ and rotor diameter d as deemed necessary. The snapshots for
the layout are each Te/5 (Te is the flow through time) snapshots apart, which are much frequent than
the snapshots “3Te apart" as reported in Ref. [15]. This essentially means that the current POD analysis
were carried out in the framework of “smaller time scales". The snapshots ∼ 3Te apart in the previous
literature [15] in the context of asymptotic wind farms ensure that the temporal autocorrelation of the
velocities completely decay to zero. In the current manuscript we resort to snapshots separated by
time Te/5, when the velocity correlations are roughly ∼ 0.2. However, we have also used snapshots
which are 2Te/5, 3Te/5&4Te/5 times apart to test the convergence of the eigenspectra. The time extent
of 600Te has been used for the analysis of the LES database. Note, that during convergence study,
we have chosen to keep the time extent of the database for POD analysis be fixed and only varied
the time spacing between the two snapshots. Ref. [15] performed POD analysis on periodic wind
farm layout, and hence after generating a set of snapshots, 3Te apart, artificially increased the number
of snapshots by an order of magnitude by exploiting the stationarity of the flow and the large scale
statistical symmetry of the flow around every turbines in the streamwise and spanwise direction
(method of “shifting"). Figure 2a shows the normalized eignenspectra of the finite-sized farm layout
compared with the spectra of a periodic 8× 6 array with domain size 20πd× 10πd× 10d (with one
shifting using spanwise symmetry) performed by the current authors as well as a periodic 4× 6 array
with domain size 10πd× 10πd× 10d (with 4 shifting) by Verhulst et al [15]. Note, the data of the 8× 6
array reported by the current authors were generated and benchmarked in [5]. Additionally, we also
illustrate the convergence behaviour of the eigenspectra for the finite sized farm in Figure 2b. Note,
instead of comparing the eigenvalues for different POD problems λm, we compare the normalized
eigenvalues λm/λ1 (m is the number of mode), which ensures better convergence of the scaling
trends.The current convergence plots were shown for a POD computed for a same time extent of
600Te, but the snapshots were spaced for different fractions of flow-through times apart. However,
similar trends in convergence can be observed when performed with the POD for fixed spacing of
the snapshots (Te/5) and progressively adding more snapshots with each case (results not added
for brevity). The eigenspectra and their convergence trends clearly indicate the following features, i)
convergence is observed by increasing Nt, the number of snapshots, ii) with increasing number of snapshots,
the scaling law of the modes for m > 10, clearly change from m−0.5 [16] to m−0.8 which is extremely close to
m−0.9 as observed by the periodic wind farms in [15]. Additionally we can also comment that obtaining
the convergence of m−0.9 scaling law is primarily dependent on the number of snapshots rather than
the spacing of the snapshots. Incidentally, a similar scaling law m−1.2 was also observed for 2D POD
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eigenspectra performed at different streamwise locations of wind turbine array by Hamilton and
coworkers [27]. We hypothesize that with increasingly more number of snapshots, the scaling law for
modes m > 10, should approach m−0.9. However, restrained by the bottleneck of the computational
expense we cannot add further snapshots from simulation or take advantage of the symmetric shifting
to generate more “artificial" snapshots. Consequently, in order to gain more insights on the scaling law
of the eigenspectra and their convergence, we propose a different methodology based on Fourier-POD
analysis, which essentially deals with the POD of the snapshots of the lateral/spanwise Fourier
transformed velocities for different wavenumbers instead of the 3D snapshots themselves. We provide
a dedicated section (Section 3.2) for introducing the mathematical formulation and the results and
insights of the FPOD analysis, but for now we continue our discussion related to the results of the 3D
POD analysis.

Figure 3 shows the frontal (yz plane) picture of the POD modes for the first 8 eigenvalues. In
particular, the figures illustrate the colour contours of the streamwise modes overlayed on the top of
in-plane (vertical, spanwise) modes represented as vectors. The modes clearly manifest circulatory
features, reminiscent of the counter-rotating roll-cell structures and the downdrafts and updrafts of
these circulations coincide with the positive (higher energy) and negative (lower energy) streamwise
modal structures. The number of roll-cells observed in the layout is related to the modes and hence
the eigenvalues/kinetic energy of the flow domain. Figure 4 gives a 3D perspective to the circulatory
roll-cell features we discussed above, in particular, mode k = 0. The isosurface of the streamwise
velocity modes indeed shows the long counter rotating roll-cell feature spanning the whole domain.
This is corroborative of the fact that these roll-cell features are a phenomenology of the atmospheric
boundary layer turbulence [9,15]. The streamtube picture depicted in Figure 4b further illustrates the
three-dimensional nature of the large-scale structure manifested by the most dominant POD mode.
The three sets of the circulatory features depicted by the streamtubes are formed in and around the 3
columns of the turbines.

In order to get a better understanding of how the wind farm modulates these large scale structures
we take a closer look at the streamwise variation of the modes in Figure 5 illustrated as the contour
plots of the POD mode velocity magnitude. As we will see later that the streamwise plots also assist us
to make a one-to-one comparison with the Fourier-POD modes discussed in the subsequent sections.
We observe the streamwise (almost) homogeneous streaks which are essentially footprints of the
roll-structures for lower modes. Interestingly, in those footprints we can observe “wake like features"
which are clearly manifestation from the wind turbine array. For modes m < 3, we observe that the
wake like features (velocity-deficits) extend for scales ∼ 7d (inter-turbine distances) embedded in
the roll-cell footprints. Particularly, for mode m = 3, the “wake" footprints can be conspicuously
observed with high-velocity regions near the turbine wake rotors and is a clear manifestation of the
modulation of the flow structure modes by wake-turbulence. This is reminiscent of the generation of
turbulent kinetic energy at the wakes due to vertical entrainment at the inner layer. The mode m = 3 is
a clear example of the mode that is entirely due to wind-farm-ABL interactions and would not form
in a pure ABL case. Apart from the rolls, at higher modes (m ' 7), we also observe large structures
starting from the wall and inclined at an angle of 15 − 20 degrees [51,52]. We believe that these
inclined structures are footprints of clusters of hairpin vortices which together forms the framework of
“attached eddies" [53,54].

The dynamics or the temporal variation of the modes are imprinted in the projection coefficients

illustrated in Figure 6. Since, ||u′(x, t)||2 =
Nt−1

∑
j=0

aj(t)2, as explained in the mathematical formulation

owing to Parseval’s theorem, the coefficients ak(t) bear the temporal/dynamical footprints of the kinetic
energy contained in the velocity fluctuations. Expectedly, the projection coefficients corresponding to
the lower order modes (0− 3) show low frequency fluctuations compared to the projection coefficients
corresponding to modes 4 or more, indicating the fact that larger scales of motion are supposedly made
by eddies of larger time scales. Additionally, the power spectral density of the projection coefficients
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(in frequency space) of the large scale modes (k < 5) manifest a f−3 scaling law ( f is the frequency)
which has been attributed to the phenomenon of “merging of eddies" by previous literature [55,56]
(Figure 6c). Note, we start observing the f−5/3 law for modes m = 9 (and higher) manifesting energy
cascade. Consequently, it can be argued that the low-time scale dynamics of the structures comprising
of the lower 3D POD modes are predominantly governed by merging of eddies.

(a) (b)
Figure 2. (a) Eigenvalue spectrum normalized by the first eigenvalue (highest energy)) for different
wind turbine layout. Blue – periodic wind farm (asymptotically infinite) with 8× 6 array [5], Magenta –
current finite sized wind farm (3× 3 array, solid magenta). Black circle – periodic wind farm (8× 6
array, dashed blue) from previous LES simulation by Verhulst [15]. (b) Spectral convergence of the
eignevalue spectrum λm/λ1 for finite sized wind farm. Snapshot separation, black – 4Te/5, red – 3Te/5,
blue – 2Te/5 and magenta – Te/5

In the next section, we discuss the Fourier-POD methodology for complex fourier-transformed
velocity snapshots.

3.2. Fourier-POD methodology

For the Fourier-POD methods, analogous to the projections methods of 3D POD, we can write the
projection P f ,r as

P f ,ru′m =
∫ ∞

−∞

r−1

∑
j=0

(ϕ̂j, û′m)ϕ̂je
ikyydy =

∫ ∞

−∞

r−1

∑
j=0

âj(ky, tm)ϕ̂j(x, z, ky)eikyydy, r ≤ Nt (7)

In a similar spirit, the correlation matrix can be written as

Ĉmn =
1

Nt
(û′(x, ky, z, tm), (û′(x, ky, z, tn)) (8)

where û′ is the Fourier transform in the lateral/spanwise y direction of the velocity fluctuation
vector u′(x, tm).

û′(x, ky, z, tm) =
1

2π

∫ ∞

−∞
u′(x, y, z, tm)e−ikyydy (9)

Since the snapshots in FPOD methods are complex valued rather than being real-valued as in the 3D
POD case, the modes are expected to be complex in nature as well. Note, however that the correlation
coefficient (3D POD as well as 2D Fourier-POD) are based on the inner products of snapshots. If χ

is a matrix containing columns of snapshot χi = [χ1, χ2, χ3, . . . , χn], then the correlation matrix can
be written as χχT while for complex snapshots (e.g., 2D FPOD), the inner product can be written as
χχH , where []T and []H represent transpose and Hermitian (complex conjugate transpose) respectively.
Subsequently, it is apparent that while the eigenvectors and hence the modes can be complex for

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2020                   doi:10.20944/preprints202002.0390.v1

Peer-reviewed version available at Energies 2020, 13, 1660; doi:10.3390/en13071660

https://doi.org/10.20944/preprints202002.0390.v1
https://doi.org/10.3390/en13071660


9 of 21
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(e) (f)

(g) (h)

Figure 3. Normalized POD mode for (a) k = 0, (b) k = 1, (c) k = 2, (d) k = 3, (e) k = 4, (f) k = 5, (g)
k = 6, (h) k = 7. Red-blue contours indicate the normalized streamwise velocity modes, ϕu

k
√

λk/U∞

overlayed with in-plane spanwise and vertical modes, ϕv
k
√

λk/U∞, ϕw
k
√

λk/U∞ as vectors. Yellow
circles– turbine locations.
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(a)
(b)

Figure 4. 3D normalized POD mode, k = 0 (a) Isosurface levels of streamwise POD mode for
ϕu

k
√

λk/U∞ (b) Streamtubes of vector streamwise POD mode for ϕu,v,w
k
√

λk/U∞

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5. Normalized POD mode for (a) k = 0, (b) k = 1, (c) k = 2, (d) k = 3, (e) k = 4, (f) k = 5, (g)
k = 6, (h) k = 7, (h) k = 8, (h) k = 9. Red-blue contours indicate the normalized velocity magnitude
modes, |ϕu

k
√

λk/U∞|. Thick black vertical lines – turbine locations.

FPOD, the eigenvalues (or the diagonal eigenvalue matrix) are given by diag(λ) = ΣΣH (since svd
can be complex for real systems ), where Σ is the matrix containing singular values at diagonal entries
from the SVD of the snapshot matrix χ. Consequently, the eigenvalues of 3D POD as well as complex
2D Fourier-POD are always real-valued and represent kinetic energy comtent the mode. The FPOD
analysis has been carried out in an open-source python code MODRED [57] written as a high-level
class interface using spectral methods.

Before moving into the results related to Fourier-POD analysis, we present the spanwise Fourier
energy spectra of the velocity snapshots (Figure 7).

The spanwise spectra (averaged in the streamwise, vertical direction as well as time) can be given
as

〈Ẽu′i
〉x,z,Tavg =

1
Tavg

∫ Tavg

0

[ 1
LxLz

∫ xmax

xmin

∫ zmax

zmin

u′i(x, λy, z, t)∗u′i(χ, λy, z, t)dydz
]
dt, (10)

where x, y are the streamwise and spanwise direction respectively. Note the presence of the λ11/3

or k−11/3
y law near the tail of the spectrum. This appears to be a filtering of the k−5/3

y spectrum, as
G(ky)k−5/3

y , with G(ky) = k−2
y spectrum. Such filtering is possibly an outcome of vertical averaging

of the spectra, streamwise averaging of the heterogeneity owing to wind turbine array and is mainly
an observational documentation. Note for performing the Fourier transform a total of 512 uniform
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Figure 6. (a), (b) Projection coefficient of 3D POD modes, ak(t) vs time normalized by flow-through
time, Te = 15πD/U∞. (c) Power spectral density of the projection coefficients vs normalized frequency,
f Te.

Figure 7. u (solid), w (dashed) energy spectra and their variability (± twice the standard deviation;
transparent blue and red). Energy spectra computed in spanwise wavenumber space, averaged
temporally and in the streamwise, wall normal direction

grid points are chosen in the spanwise/lateral direction which ensures a total of lateral resolved
length scale (Nyquist limit) of 5πd/256 = 0.06d, which is lower than what the LES simulation with
Navier-Stokes solver could resolve ( 1). Such a high number of grid points for the FFT ensure that the
aliasing error could be avoided during the reconstruction of the 3D POD mode from the 2D complex
Fourier-POD modes. Figure 7 not only indicates energy cascade from the larger to the smaller length
scales in the spanwise spectra, but also illustrates that the larger length scales are associated with higher
degrees of uncertainties (larger decorrelation time scales) than their smaller scale counterpart. Figure 8
manifesting the Fourier-transformed velocity magnitude serves as a sanity test of the Fourier-transform
itself, with the snapshot at kyd = 0 representing the temporal snapshot of spanwise averaged velocity
magnitude, while the same for kyd = 2, manifests wake-imprints from finer scale fluctuations.
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Figure 8. Snapshots of Fourier-transformed velocity magnitude, ||u|| for spanwise wavenumbers, (a)
kyd = 0 and (b) kyd = 2.0. Thick black vertical lines - turbine locations.

From equation 2 and 7, we can define the complex velocity magnitude mode from the POD

analysis as ||u|| =
√
|û|2 + |v̂|2 + |ŵ|2 and |ûi| = [R(ûi)

2 + I(ûi)
2]1/2, ∀i = 1, 2, 3.. Additionally, the

phase of the complex POD mode can also be defined as ψui = arctan(I(ûi)/R(ûi))

Figure 9a illustrates the eigenspectra of the 2D complex field snapshots (spanwise Fourier
transformed velocity) documented at different wave numbers. Expectedly, we observe that the
eigenspectra has slower decay with modes as we move to higher wavenumbers or smaller spanwise
length scales (laterally thin structures). This is manifested by the spectra getting flatter for higher
wavenumbers. This indicates that for turbulent structures which are laterally thin (higher ky), the
energy content does not vary significantly based on the POD ranks and should approach towards a
uniform distribution of eigenspectra at ky → ∞ (isotropization of small scales). Figure 9b shows the
convergence of the Fourier-POD modes for a representative wavenumber of kyd = 2. While similar
results can be obtained for other wavenumbers, it is striking to note that the FPOD eigenspectra
converge much better than the 3D POD eigenspectra at all modes. Since the number of snapshots and
the spacing between the snapshots are the same for the 3D POD and 2D Fourier-POD analysis, the only
way this is possible is when most of the uncertainty manifested at the larger length scales are contained
in the Fourier energy spectra as is evident in Figure 7. It is worth noting that the Fourier-modes
are analytical descriptors of the POD modes with periodic boundary conditions [22]. Consequently,
a FPOD type of decomposition for a wind farm with spanwise periodic boundary conditions, by
construction, picks up the correct spanwise modes without running into convergence issues. The 3D
POD modes are supposed to converge to the FPOD modes asymptotically with the increase in the
number of snapshots.

(a) (b)
Figure 9. (a) Normalized eigenspectra λm/λ1 for different wavenumbers ky for the Fourier-POD
modes. (b) Convergence of the normalized eigenspectra λm/λ1 for wavenumber kyd = 2. Different
snapshot spacing, Te/5 – green, 2Te/5 – black, 4Te/5 -blue, 4Te/5 (not considering the reflected data) –
red square.

In Figures 10a, 10b, 10c, we illustrate the behaviour of the FPOD eigenspectra for lower and higher
wavenumbers. What is striking, is that we can capture a m−1 scaling law for modes spanning a decade
from m = 10− 100 for wavenumbers kyd < 2.0. For the number of snapshots considered, we observed
a scaling law of m−0.8 in the 3D POD eigenspectra. Interestingly, we also observe this scaling of FPOD
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eigenspectra at 25% of the total number of snapshots (∼ 1600 snapshots) used in eigen-decomposition,
where we were only able to capture m−0.5 scaling for the 3D POD eigenspectra [16]. This is one of
our most crucial observations in the whole analysis. We observe that the scaling exponent gradually
decay as we consider the eigenspectra at higher wavenumbers indicating a flatter spectral tail as was
discussed above (more isotropization of structures). The results have two implications; i) The m−1

(m−0.9 [15].) scaling is not an “artifact of the lack of convergence" and is observed in laterally wide
turbulent structures for FPOD modes m > 10. Interestingly, similar scaling laws (m−1.2) were also
noted by Hamilton and coworkers [27] for 2D POD of wind turbine arrays at different streamwise
locations. For FPOD eigenspectra, as the turbulent eddies become thinner, the scaling exponents
become larger and tend closer to zero (for higher wavenumbers). Note, in 3D POD we were not able
to capture scaling laws of m−1 or m−0.9, owing to the lack of enough number of snapshots to cover
several decorrelation times of the larger scales of interest (higher uncertainties in the larger coherent
scales). In the FPOD analysis, we were not only able to decouple the length scales in the spanwise
(Fourier) and streamwise(POD) direction, but were also able to decouple the uncertainties – with the
Fourier energy spectra carrying most of the uncertainty. Consequently we were able to capture the
scaling laws of the FPOD modes (less uncertainty due to better convergence) accurately.This analysis
shows that while FPOD expectedly cannot essentially improve the POD results, they have the potential
to provide crucial insights to the lack of convergence in the 3D POD eigenspectra and hence their
scaling laws.

100 101 102 103
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m
/λ

1

m−1 scaling

kyd = 0

kyd = 0.4

kyd = 0.8

kyd = 1.2

(a) (b)
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101

m
3/

4
λ
m
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1
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kyd = 3.2

kyd = 3.6

kyd = 4.0

kyd = 4.4

kyd = 4.8

kyd = 5.2

(c)
Figure 10. Premultiplied normalized eigenspectra for different wavenumbers ky for the Fourier-POD
modes. (a) mλm/λ1, for kyd = 0, 0.4, 0.8, 1.2. (b) mλm/λ1, for kyd = 1.6, 2, 2.4, 2.8 (c) m3/4λm/λ1, for
kyd = 3.2, 3.6, 4.0, 4.4, 4.8, 5.2.

In Figures 11- 14, we illustrate the Fourier-POD eigenmodes for wavenumbers kyd = 0, 0.4, 0.8, 1.2.
Interestingly, for all modes m = 0, ∀ky, we see homogeneous/quasi-homogeneous streaks in the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2020                   doi:10.20944/preprints202002.0390.v1

Peer-reviewed version available at Energies 2020, 13, 1660; doi:10.3390/en13071660

https://doi.org/10.20944/preprints202002.0390.v1
https://doi.org/10.3390/en13071660


14 of 21

(a) (b) (c)

(d) (e) (f)

(e) (f) (g)
5      10    15    20    25    30     35    40    45 5      10    15    20    25    30     35    40    45

0
2.5
5.0

0
2.5
5.0

0
2.5
5.0

x/d

z/
d

5      10    15    20    25    30     35    40    45

Figure 11. Normalized Fourier-POD mode for wave-number (POD of spanwise averaged snapshot
data), kyd = 0. (a) m = 0, (b) m = 1, (c) m = 2, (d) m = 3, (e) m = 4, (f) m = 5, (g) m = 6, (h) m = 7, (h)
m = 8. Red-blue contours indicate the normalized velocity magnitude modes, |ϕu
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Figure 12. Normalized Fourier-POD mode for wave-number, kyd = 0.4. (a) m = 0, (b) m = 1, (c)
m = 2, (d) m = 3, (e) m = 4, (f) m = 5, (g) m = 6, (h) m = 7, (h) m = 8. Red-blue contours indicate the
normalized velocity magnitude modes, |ϕu
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λk/U∞|. Thick yellow vertical lines – turbine locations.
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Figure 13. Normalized Fourier-POD mode for wave-number, kyd = 0.8. (a) m = 0, (b) m = 1, (c)
m = 2, (d) m = 3, (e) m = 4, (f) m = 5, (g) m = 6, (h) m = 7, (h) m = 8. Red-blue contours indicate the
normalized velocity magnitude modes, |ϕu

k
√

λk/U∞|. Thick yellow vertical lines – turbine locations.
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Figure 14. Normalized Fourier-POD mode for wave-number, kyd = 1.2. (a) m = 0, (b) m = 1, (c)
m = 2, (d) m = 3, (e) m = 4, (f) m = 5, (g) m = 6, (h) m = 7, (h) m = 8. Red-blue contours indicate the
normalized velocity magnitude modes, |ϕu
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λk/U∞|. Thick yellow vertical lines – turbine locations.
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Figure 15. Phase of streamwise Fourier-POD mode for wave-number kyd = 0.4. (a) m = 1, (b)
m = 2, (c) m = 3, (d) m = 4. Red-blue contours indicate the phase of the streamwise modes,
ψ = tan(I(ϕu

k )R(ϕu
k )). Thick yellow vertical lines – turbine locations.

streamwise direction which are evidently the footprints of the “roll-cells" modulated by wake
turbulence. Apart from the “roll cells", modes m > 0, ∀ky ≥ 0.8 also display large scale inclined
structures (kyd = 0.8, m = 2 − 5, ky = 1.2, m = 2 − 5) which are essentially manifestations of
“attached eddies" [6,53]. The FPOD’s manifest that the attached eddies form at some threshold
spanwise wavenumbers which could not be identified in 3D POD modes. These structures also
display similarity to the modes computed from the 3D POD eigen decomposition. Additional to the
“roll-cells" and “attached eddy" foot-prints, we observe another type of mode, which are reminiscent
of wave like features (kyd = 0.4, m ' 4, kyd = 0.8− 1.2, m = 6). The feature is most conspicuous for
ky = 0.4, m = 4. Such modes might be manifestation of wave modulation of large turbulent structures
at the particular wavenumber ky = 4, but further studies are needed to speculate the hypothesis.
Interestingly, we also observe that as kyd increases (laterally thin structures) the streamwise size of
the inclined structures/attached eddies remain approximately the same for a fixed mode number
and the streamwise length scale progressively decreases with increasing mode size. This manifests
disintegration/cascading of larger eddies to their smaller counterpart.

Figure 15 illustrate the phase of the complex streamwise FPOD modes for mode m ≤ 4. The
streamwise FPOD modes are dominant compared to their lateral and vertical counterparts. It is
interesting to observe that the mode phase ψ changes sign at the edge/boundaries of the large scale
eddies and hence is expectedly a great method to visualize the edges of the turbulent structures.

3.3. Reconstruction of 3D modes from Fourier-POD

In this final section we deal with the reconstruction of the three-dimensional modes obtained by
performing inverse fourier transform of the complex Fourier-POD 2D modes. The three dimensional
reconstruction of the modes, ϕ̃j(x, y, z) can be obtained as

ϕ̃j(x, y, z) =
1

2π

∫ kmax

−kmax
ϕ̂j(x, ky, z)eikyydy (11)

. Note mathematically, ϕ̃ 6= ϕ (3D POD) as will be established later from the structure of the correlation
matrix.

The correlation matrix for FPOD can be written as

Cmn = (u(x, ky, z, tm), u(x, ky, z, tn))

=
∫

Ω
u(x, ky, z, tm)u∗(x, ky, z, tn)dV

= (
∫ kmax

−kmax
ûj(x, ky, z, tm)eikydk,

∫ kmax

−kmax
û∗j (x, ky, z, tn)e−ik′ydk′)

(12)
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(a) (b)

Figure 16. Reconstructed 3D POD modes from 2D Fourier-POD modes at yz plane - x = 7.85d, (a)
m = 0, inverse FFT ∀kyd = 0.8, (b) m = 1, inverse FFT, ∀kyd = 0.8. Contours - φ̃u, in-plane vectors -
φ̃v, φ̃w Thick yellow circles – turbine locations.

Note for the inner-product in the physical space (
∫

Ω()()∗dV), the complex conjugate (denoted
by ∗) of the real velocity snapshot is the velocity snapshot itself. For brevity of analysis, we use the
symbol k instead of ky for spanwise wavenumbers in subsequent derivations.

Cmn = (
∫∫ kmax

−kmax

∫
Ω

ûj(x, ky, z, tm)û∗ j(x, ky, z, tn)ei(k−k′)ydkdk′dV)

=

(∫∫ kmax

−kmax
[
∫

Ω
ûj(x, ky, z, tm)û∗ j(x, ky, z, tn)ei(k−k′)ydV]dkdk′

)
(13)

Since
∫

Ω
dV =

∫ Lx

0

∫ Ly

0

∫ Lz

0
dxdydz and

∫
Ω û∗ j(x, k′, z, tm)ûj(x, k, z, tn)dxdy = ˆ̃Cmn(k, k′), we

have a relation between Cmn and Ĉmn as follows.

Cmn =
∫ Ly

0

∫∫ kmax

−kmax

ˆ̃Cmn(k, k′)ei(k−k′)ydkdk′dy (14)

Realizing Ĉmn(k) = ˆ̃Cmn(k, k′ = k), with the assumption that the temporal correlation of the
snapshots are the strongest when the wavenumbers k = k′. Equation 14 can be simplified as

Cmn(k) ≈
∫∫ kmax

−kmax
Ĉmn(k)

(
ei∆kLy − 1)/i∆k

)
dkdk′ (15)

Note, the integration does not have a closed form. However, the function in the integrand(
ei∆kLy − 1)/i∆k

)
is bounded between 0 (kmax −→ ∞ and finite complex constant Ly[1 + i]. Thus, we

can comment that Ĉmn(k) is bounded if Cmn is bounded as well. Additionally, since the (x, z) spatial
structure of Cmn and Ĉmn are the same (from Equation 13), the eigenvalue scaling laws for the FPOD
modes are similar to its 3D counterpart indicating that the scaling laws are a manifestation of the
streamwise dominance of the large scale eddies.

We present the reconstruction of the 3D POD modes by inverse Fourier transform (IFFT) of the
FPOD modes as illustrated in Equation 11. Figure 16 represents the reconstructed mode by IFFT of
FPOD modes, m = 0, m = 1 for kyd = 0.8 (ky = 2). Figure 17 illustrates similar such reconstruction,
but for ky = 1.6 (ky = 4). Finally, Figure 18 illustrates the reconstructed modes by performing IFFT of
m = 1, for a set of wavenumbers kyd = 0− 1.2 (ky = 0− 4) and kyd = 0− 1.6 (ky = 0− 5). From a
more quantitative perspective, the reconstructed 3D POD modes from the FPOD that are illustrated in
this paper, can be given as

ϕ̃j(x, y, z) =
1

2π

∫ kmax

−kmax
ϕ̂j(x, ky, z)W(ky)eikyydky (16)
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(a) (b)

Figure 17. Reconstructed 3D POD modes from 2D Fourier-POD modes at yz plane - x = 7.85d, (a)
m = 0, inverse FFT ∀kyd = 1.6, (b) m = 1, inverse FFT, ∀kyd = 1.6. Contours - φ̃u, in-plane vectors -
φ̃v, φ̃w. Thick yellow circles – turbine locations.

(a) (b)

Figure 18. Reconstructed 3D POD modes from 2D Fourier-POD modes at yz plane - x = 7.85d, (a)
m = 0, inverse FFT ∀kyd = 0− 1.2, (b) m = 0, inverse FFT, ∀kyd = 0− 1.6. Contours - φ̃u, in-plane
vectors - φ̃v, φ̃w. Thick yellow circles – turbine locations.

Here, W(ky) is a weight function of wavenumbers which act as a filter to the Fourier transform. For
Figures 16 and 17, W(ky) = 1 for ky = ±2 and ky = ±4, respectively, while W(ky) = 0 for all other
wavenumbers. For Figure 18, W(ky) = 1∀ − B ≤ ky ≤ B (B = 3, for Figure 18 (a), B = 4, for Figure 18
(b)) and W(ky) = 0 for all other wavenumbers. In other words, while Figures 16, 17 illustrate single
spanwise modes, Figure 18 represents summation of the first several most dominant spanwise modes
for a particular m. The reconstruction methodology is motivated by the fact that the first two dominant
modes (highest contributors of kinetic energy) have two-pairs of counter-rotating roll-cells or four
vortical structures corresponding to an “apparent wavenumber" of 2 [15]. The partial reconstructions
(via IFFT), shown in Figure 18, further illustrate the importance of the 3 − 4 pairs (ky = 3, 4) of
counter-rotating roll-cells in the dominant mode shapes contributing to the reconstruction, despite
having a dominant Fourier mode ky = 2 identified as the most energetic POD mode. Note, also that the
partial reconstructions give rise to variable size and shape of the modes as opposed to reconstructions
by IFFT involving a single wave number or modes obtained from the 3D POD decomposition. This can
be probably attributed to the exponential premultiplier term

(
ei∆kLy − 1)/i∆k

)
referred in Equation 15

that alter the y variation of the FPOD correlation matrix as opposed to the 3D-POD correlation matrix.
While examining the m = 0 and m = 1 mode composition for ky d = 0.8 and ky d = 1.6 that correspond
to the most dominant 3D POD modes (Figures 16, 17 ), an interesting fact can be observed. It can be
seen that the modes m = 0 illustrate the global mechanisms of momentum transfer via ejections and
sweeps (updrafts and downdrafts) across the entire boundary layer depth, i.e. the global interactions
between the inner and outer layer, as 3D POD modes capture as well. However, m = 1 modes illustrate
a “bi-layer” structure, corresponding to a momentum transfer between the wind turbine wake region
and the inner/outer layer respectively. These modes, which characterize the important energetic
mechanisms in wind-farm/ABL interactions, are not picked up by the 3D POD decomposition, while
they are by FPOD. The analysis involving the 3D-POD, 2D Fourier-POD and the reconstruction of

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2020                   doi:10.20944/preprints202002.0390.v1

Peer-reviewed version available at Energies 2020, 13, 1660; doi:10.3390/en13071660

https://doi.org/10.20944/preprints202002.0390.v1
https://doi.org/10.3390/en13071660


18 of 21

the 3D modes from FPOD reveals that, while one-to-one mapping of the 3D POD modes and the
reconstructed 3D modes by the mode ranks, m, is difficult at this stage, it shows the importance of
counter-rotating roll-cell structures involving ejections and sweeps in wind farms and the atmospheric
boundary layers in general.

4. Conclusions

In the current manuscript we have analysed the dynamics of large turbulent structures in a
heterogeneous finite-sized wind canopy using three-dimensional proper orthogonal decomposition.
Large counter-rotating roll-cell structures as well as inclined wall-attached structures have been
identified in this analysis. The current analysis further reveals that substantial number of snapshots are
required to obtain the convergence of the scaling trends of the POD eigenspectra, or in particular, the
m−0.9 law. In a heterogeneous wind-farm, where artificial snapshots cannot be created exploiting the
domain homogeneity (shifting in periodic wind farms) [15], the eigenspectra does not converge well
beyond mode m > 10. The lack of convergence is attributed to the uncertainty (higher decorrelation
times) in the large scale structures which are still present even in high-order POD modes m>10 (cf.,
e.g., Figure 3). Consequently, the scaling trend is slightly deviated to m−0.8. This led us to adapt a
novel Fourier-POD methodology (FPOD), to gain further insights on the convergence of eigenspectra
as well as the dynamics of large scale modes. FPOD essentially performs the POD eigendecomposition
of the laterally Fourier-tranformed two dimensional complex velocity snapshots at each wavenumber
as opposed to the three dimensional physical velocity for the 3D POD. The Fourier-POD analysis helps
us gain valuable insights on the convergence of the eigenspectra by decoupling the length scales in
the spanwise and streamwise direction. In particular it shows that the laterally wider structures are
responsible for the m−0.9/m−1 scaling laws, while the spanwise thinner structures manifest m−β where
β < 0.9. Additionally, we show excellent convergence of the Fourier-POD eigenspectra, indicating
that the uncertainty of the larger turbulent scales are mostly contained in the Fourier energy spectra,
rather than the FPOD modes. Finally, we look into the reconstruction of the 3D modal structures
by performing inverse FFT operations on the 2D FPOD modes. From the mathematical analysis
of the functional form of the correlation matrix, we provide deep insights about the similarities in
the eigenspectra scaling and the modal shapes of the FPOD and 3D-POD. Eventually, our study
reconstructs 3D POD modes from the 2D FPOD modes, which further provides guidance towards
the understanding of the modal structure in wind farms. From the fundamental perspective, we
have seen that the roll-cells are phenomenologically rudimentary structures contributing to the global
sweeps and ejections. While [15] have predicted the contribution of such structures towards the kinetic
energy entertainment in infinite wind farms, our studies corroborate such structures to be rather a
fundamental property of rough ABL flows and are modulated by the wind turbines at rotor scales.
Finally, even though our study was performed in the context of a finite-sized wind turbine array,
it introduces a novel framework of Fourier-POD modal analysis, which can be useful for analysis
of turbulent flows in other flow domains and configurations, as long as they possess one periodic
direction.
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