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Abstract: 

We present and benchmark FilterNet, a flexible deep learning architecture for time series 
classification tasks, such as activity recognition via multichannel sensor data. It adapts popular 
CNN and CNN-LSTM motifs which have excelled in activity recognition benchmarks, 
implementing them in a many-to-many architecture to markedly improve frame-by-frame accuracy, 
event segmentation accuracy, model size, and computational efficiency. We propose several model 
variants, evaluate them alongside other published models using the Opportunity benchmark 
dataset, demonstrate the effect of model ensembling and of altering key parameters, and quantify 
the quality of the models’ segmentation of discrete events. We also offer recommendations for use 
and suggest potential model extensions. FilterNet advances the state of the art in all measured 
accuracy and speed metrics on the benchmarked dataset, and it can be extensively customized for 
other applications. 

Keywords: activity recognition; time series classification; neural; networks; deep learning; machine 
learning; CNNs; LSTMs; many-to-many 
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1. Introduction

Time series classification is a challenging problem in numerous fields [1], including finance [2], 
cyber security [3], electronic health record analysis [4], acoustic scene classification[5], and EEG-based 
brain computer interfaces [6], and it is a central challenge in the field of activity recognition [7]. 
Numerous time series classification algorithms have been proposed [8], and the diversity of time 
series classification problems is evident in dataset repositories such as the UCR Time Series Archive 
[9] or the UCI Machine Learning Repository [10]. While the time series classification algorithm
described in this work is applicable to many of these domains, it was developed as an activity
recognition algorithm, and we present and benchmark it here primarily in that context.

Activity recognition (AR) is the classification of a subject’s moment-to-moment activities, 
typically using an input time series acquired via electronic sensors. AR is used in applications as 
diverse as smart homes	 [11],	 gesture recognition [12], computer control interfaces [13], health 
monitoring [14], and home behavior analysis [15].  

Body-worn sensors are among the most common data sources, and of these, accelerometers are 
among the most common sensors types, partially due to their low cost and low energy consumption. 
Sometimes, accelerometers are accompanied by gyroscopes and magnetometers, as in an inertial 
measurement unit. Other sensors may include microphones, pressure sensors, and various object-
mounted sensors that detect object displacement.  

Classification can be performed with a variety of algorithms, ranging from traditional K-nearest-
neighbors (KNN) and support vector machine (SVM) approaches that operate on hand-crafted 
features, to the more recent deep learning-based approaches that represent the current state of the art 
[7]. 

1.1 Motivation 

The model described in this work was developed as part of the Pet Insight Project [16], a large 
pet health study that requires using activity recognition algorithms to measure health-related canine 
behavior. The project aims to provide a resource for studying and improving pet health by combining 
dogs’ electronic medical records and owner-provided survey data with a high-resolution 
longitudinal record of each dog’s behaviors and activity levels. It intends to include data from over 
100,000 dogs over 2-3 years. Behavior recognition is performed on 3-axis 50 Hz accelerometer time 
series, recorded via a collar-mounted Whistle activity monitor [17].  

Assembling this dataset requires highly accurate behavior recognition with a very low false 
positive rate. The classification problem is made more challenging by differences in dog behavior and 
morphology, collar tightness, and even the positioning of the device on the collar and the natural 
movement of the collar around and along the dog’s neck. Predictions must be relatively high-
frequency (3 Hz or more) in order to resolve short-duration events such as barking and shaking, and 
it is helpful if the output time series can be easily segmented into events. Finally, cost-effectively 
processing hundreds of thousands of device-years of data with such high input and output 
frequencies requires algorithms to be extremely computationally efficient. 

To our knowledge, besides the model described here, there is no published algorithm that 
achieves the level of prediction accuracy that we require, while being cost effective to operate at scale. 
Furthermore, as wearable devices become more ubiquitous and as machine learning algorithms are 
increasingly deployed to the edge for continuous real-time monitoring, we expect that the need for 
accurate and extremely computationally efficient activity recognition and event segmentation 
algorithms will only intensify.  

1.2. Traditional approaches 

Until the relatively recent advent of deep-learning AR approaches, traditional AR 
methodologies [7] involved (1) acquiring appropriate time series; (2) calculating hand-crafted 
statistical and spectral feature vectors over finite temporal windows; (3) training models such as 
KNN, SVM, naïve Bayes, or random forests, which mapped those feature vectors to activity 
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predictions; and (4) evaluating those models on new or held-out time series data to infer activities. 
Over the years, a large variety of classifiers have been proposed and benchmarked, culminating in 
ensemble-based methods such as COTE (Collective of Transformation-based Ensembles) [8] and its 
hierarchical voting variant HIVE-COTE [18]. However, the improved accuracy of the ensemble 
methods comes at the cost of a greatly increased computational burden [19].  

1.3. Deep learning approaches 

In deep learning approaches, the traditional machine learning model is replaced with a so-called 
deep learning or neural network model with many layers [7]. These models can achieve very high 
classification accuracy without the need for hand-crafted features [20][21].  

Many deep learning AR models are composed at least partially of convolutional neural network 
(CNN) components. While traditional neural networks usually train a learned weight for every input-
output pair, CNNs instead convolve trainable fixed-length kernels (filters) along their inputs. Often, 
pooling and striding are used to reduce the size of the a CNN’s output in the dimensions that the 
convolution is performed, reducing computational cost and making overtraining less likely [22]. 
Excellent AR results have been obtained using 1-D CNNs to process fixed-length time series segments 
produced with sliding windows [23][24]. These models may also include pooling and striding, and 
they typically run in a many-to-one configuration, often concatenating the outputs of the final CNN 
layer and using a fully-connected layer to produce a single class prediction at each time step. 

While 1-D CNNs convolve fixed-length kernels along an input signal, recurrent neural networks 
(RNNs) instead process each time step sequentially, so that an RNN layer’s final output is a function 
of every preceding timestep. However, basic RNNs suffer from various shortcomings [25] and most 
recent work employs more complex variants. Perhaps the most successful RNN variant is the long 
short-term memory (LSTM) model [26], which extends the basic RNN with a memory cell and several 
control gates in order to better model time dependencies in long sequences [27]. LSTMs are typically 
unidirectional (i.e., they process the time series in the order it was recorded), but if an entire input 
sequence is available then two parallel LSTMs can be evaluated in opposite directions (e.g., forwards 
and backwards in time) and their results can be concatenated, forming a bidirectional LSTM (bi-LSTM) 
that can model temporal dependencies in both directions.  

Ordóñez and Roggen combine CNNs and LSTMs in their DeepConvLSTM model [28], which 
advanced the state of the art considerably on the Opportunity [29] and Skoda [30] benchmarks. 
DeepConvLSTM consists of a stack of four unstrided CNN layers followed by two LSTM layers and 
a softmax classifier. The input signals to the CNNs are not padded, so even though the layers are 
unstrided, each CNN layer shortens the time series by several samples. The LSTM layers are 
unidirectional, and so the softmax classification corresponding to the final LSTM output is used in 
training and evaluation, as well as in reassembling the output time series from the sliding window 
segments. DeepConvLSTM operates primarily in a many-to-one configuration. 

Hammerla et. al. [31] describe and compare several classifiers, including dense, CNN, and LSTM 
variants. The LSTM variants include LSTM-F, a unidirectional LSTM model that operates in a many-
to-one mode, and LSTM-S (unidirectional) and b-LSTM-S (bidirectional), which can operate in a 
many-to-many mode, generating a output class prediction output for every input timestep, and 
obviating the need for sliding-window segmentation. These models were trained with innovative 
techniques to minimize overtraining, and the LSTM variants did not include CNN preprocessing 
layers.  

LSTMs have proved to be well suited to AR tasks, and several of the highest performing models 
employ them in one form or another [32][33][34].  

1.4. Our Approach 

Our FilterNet approach incorporates ideas from several existing models, but combines them in 
an arrangement that is potentially more accurate and often much faster. Its characteristics include: 
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• Many-to-many. It can process entire input signals at once (see Figure 1), and does not require 
sliding, fixed-length windows. 

• Striding/downsampling. If appropriate, it can use striding to reduce the number of samples it 
outputs. This can both improve computational efficiency and enable subsequent layers to model 
dynamics over longer time ranges. 

• Multi-scale. Like the well-known U-Net image segmentation model [35], FilterNet can 
downsample beyond its output frequency to model even longer-range temporal dynamics. 

This work describes a prototypical FilterNet architecture; enumerates several variants with 
different architectural and performance characteristics; benchmarks those variants and compares 
them to results from the literature; explores the effect of adding or removing model components, and 
of altering model parameters; and offers recommendations for use and customization. 

 

  

Figure 1: In a typical many-to-one approach (left) an input is first divided into fixed-length 
overlapping windows, then a model processes each window individually, generating a class 
prediction for each one, and finally the predictions are concatenated into an output time series. In a 
many-to-many approach (right), the entire output time series is generated with a single model 
evaluation.  

2. FilterNet 

We choose the name FilterNet in order to emphasize a key and distinguishing property of this 
class of architectures—namely, that like the FIR filters common in signal processing [36], a FilterNet 
model can be applied to time series of arbitrary length, and it will infer an output time series of length 
proportional to the input length. This is true for FilterNet because it is true for all of its constituent 
building blocks – 1D CNNs, LSTMs, pooling layers, interpolation layers, batch normalization layers, 
etc. As a many-to-many (i.e., sequence-to-sequence) model, the architecture of a FilterNet model is 
not tied to the length of its input, and a larger time series length or sliding window length does not 
require a larger FilterNet model. 

2.1. FilterNet layer modules (FLMs) 

FilterNet models are composed primarily of a stack of parameterized modules, which we will 
refer to here as FilterNet layer modules (FLMs). They are meant to be easily combined into signal-
processing stacks, to be easily tweaked and re-configured, and to train efficiently. They are also 
coverage-preserving; that is, even though the input and output of an FLM may differ in sequence 
length due to a stride ratio, the time period that the input and output cover will be identical. The 
basic components of an FLM are shown in Figure 2 (a). For brevity, we describe FLMs with the 
notation 

𝐹𝐿𝑀$%&'(𝑤out, 𝑠 = 1, 𝑘 = 5, 𝑝drop = 0.1, 𝑏45 = True: 

where 𝑡𝑦𝑝𝑒 is the type of the primary trainable sub-layer (‘cnn’ for a 1-D CNN or ‘lstm’ for a bi-
directional LSTM); 𝑤out is the number of output channels (the number of filters for a cnn or the 
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dimensionality of the hidden state for an lstm); 𝑠 is a stride ratio (default 1); 𝑘 is the kernel length 
(only for CNNs, default 5), and 𝑝drop is the dropout probability (default 0.1). If 𝑠 > 1, then a 1-D 
average-pooling with stride s and pooling kernel length s reduces the output length by a factor of 𝑠. 

Each FLM consists of an (optional) dropout layer which randomly drops out input channels 
during training with probability 𝑝drop; either a 1D CNN or a bidirectional LSTM layer (depending on 
FLM type); a 1D average-pooling layer which pools and strides the output of the CNN or LSTM layer 
whenever 𝑠 ≠ 0 (we may refer to these simply as strided layers, but these always include a matching 
pooling step so that all CNN or LSTM output samples are represented in the FLM output); and a 1D 
batch normalization layer. The dropout layer and/or batch normalization layer(s) serve to regularize 
the network and improve training dynamics [37]. 

All CNN layers are configured to zero-pad their input by ceil GHIJ
K
L, so that their input and 

output signal lengths are equal. Consequently, each FLM maps an input tensor 𝑋in of size [𝑤in, 𝐿in	] 
to an output tensor 𝑋in of size [𝑤out, 𝐿out = 	 𝐿in/𝑠].  

Other modifications can sometimes be useful, such as GRU layers, ‘grouping’ of CNN filters, 
and different strategies for pooling, striding, and dilation; however, these are avoided here for clarity 
and brevity.   

Figure 2. FilterNet architecture. (a) Each FilterNet model is composed primarily of one or more stacks 
of FilterNet layer modules (FLMs), which are parameterized and constructed as shown (see text for 
elaboration). (b) In the prototypical FilterNet component architecture, FLMs are grouped into 
components that can be parameterized and combined to implement time series classifiers of varying 
speed and complexity, tuned to the problem at hand. 

2.2. Component Architecture 

The potential configurations of a stack of FLMs are virtually limitless. Therefore, we present a 
prototypical FilterNet architecture in Figure 2 (b) that we have found to be performant and applicable 
to a wide range of use cases. Applications which require highly optimized performance may benefit 
from modifying this architecture.  
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This prototypical FilterNet architecture is composed of six optional components, each of which 
can be parameterized or simply removed to adjust the network’s properties. These components are: 

• (A) Full-Resolution CNN (s=1, t=cnn). High-resolution processing. Convolves CNN filters against
the input signal without striding or pooling, in order to extract information at the finest available
temporal resolution. This layer is computationally expensive because it is applied to the full-
resolution input signal.

• (B) Pooling Stack 1 (s>1, t=cnn). Downsamples from the input to the output frequency. This stack of
𝑛&J CNN modules (each strided by s) downsamples the input signal by a total factor of 𝑠TUV.
The output length of this stack determines the output stride ratio, 𝑠out = 𝑠TUV , and thus the
output length of the network for a given input, 𝐿WX$ = 𝐿YT 𝑠TUV⁄ .

• (C) Pooling Stack 2 (s>1, t=cnn). Downsamples beyond the overall output frequency. This stack of
𝑛&[modules (again, each strided by s) further downsamples the output of the previous layer in
order to capture slower temporal dynamics. To protect against overtraining, the width of each
successive module is reduced by a factor of 𝑠 so that 𝑤Y = 𝑤&𝑠JIY for 𝑖 = 1. . 𝑛&[.

• (D) Resampling Step. Matches output lengths. In this step, every output of Pooling Stack 2 € is
resampled in the temporal dimension via linear interpolation to match the network output
length 𝐿WX$. These outputs are concatenated with the final module output of Pooling Stack 1 (B).
Without this step, the lengths of the outputs of (C) would not match the output length, and so
they could not be processed together in the next layer. We have found that exposing each
intermediate output of (C) in this manner, as opposed to only exposing the final output of (C),
improves the model’s training dynamics and accuracy.

• (E) Bottleneck Layer. Reduces channel number. This module effectively reduces the width of the
concatenated outputs from (D), reducing the number of learned weights needed in the recurrent
stack (F). This bottleneck layer allows a large number of channels to be concatenated from (C)
and (D) without resulting in overtraining or excessively slowing down the network. As a CNN
with kernel length 𝑘 = 1, it is similar to a fully connected dense network applied independently
at each time step.

• (F) Recurrent Stack (s=1, t=lstm). Temporal modeling. This stack of 𝑛] recurrent LSTM modules
provides additional modeling capacity, enables modeling of long-range temporal dynamics, and
improves the output stability of the network.

• (G) Output Module (s=1, k=1, t=cnn). Provides predictions for each output time step. As in (E), this
is implemented as a CNN with 𝑘 = 1, but in this case without a final batch normalization layer.
The multi-class outputs demonstrated in this work use a softmax activation function.

Again, not all components are beneficial for every application, and each component can be 
independently reconfigured or removed to optimize the model’s properties. 

2.3. FilterNet variants 

In order to demonstrate the effects of adding and removing components, we define several 
model variants in Table 1, ranging from simpler to more complex.  

Of these, only the base LSTM (b-LSTM) does not downsample the network input. It is a stack of 
(usually one or two) 𝐹𝐿𝑀^_`a layers followed by an output module. It is most structurally similar to 
the b-LSTM-S architecture demonstrated by Hammerla et. al. [31]. This model would likely benefit 
from additional CNN layers, but we include it here for demonstration purposes. 

The pooled CNN (p-CNN) is simply a stack of 𝐹𝐿𝑀b55 layers where one or more of the layers 
is strided, so that the output frequency is lower than the input frequency. This improves 
computational efficiency and increases the timescales that the network can model, relative to an 
unstrided CNN stack. The pooled CNN/LSTM (p-C/L) adds one or more recurrent layers that operate 
at the output frequency immediately before the output modules layer. The p-C/L architecture is in 
some ways similar to the DeepConvLSTM [28] architecture, although the striding and pooling 
features of p-C/L, and its many-to-many approach, lead to substantially different performance 
characteristics. 
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The multiscale CNN (ms-CNN) and multiscale CNN/LSTM (ms-C/L) variants modify the p-CNN 
and p-C/L variants by adding a second pooling stack and subsequent resampling and bottleneck 
layers. This progression from p-CNN to ms-C/L demonstrates the effect of increasing the variants’ 
ability to model long-range temporal interactions, both through additional layers of striding and 
pooling, and through recurrent LSTM layers.  

Table 1. Model variants 

Variant 
Components 

A B C D E F G 
Base LSTM (b-LSTM) 1 - - - - - ✓ ✓ 
Pooled CNN (p-CNN) ✓ ✓ - - - - ✓
Pooled CNN/LSTM (p-C/L) ✓ ✓ - - - ✓ ✓ 
Multi-Scale CNN (ms-CNN) ✓ ✓ ✓ ✓ ✓ - ✓
Multi-Scale CNN/LSTM (ms-C/L) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
1 Base LSTM has a 1:1 output stride ratio, unlike the other variants 

3. Materials and Methods

In this work, we demonstrate and benchmark several FilterNet variants, and we compare the 
results to our implementation of the DeepConvLSTM model[28] and to select results from the 
literature. 

3.1. Benchmark Dataset 

While many quality datasets are available for benchmarking AR algorithms	 [38], we use the 
Opportunity Activity Recognition dataset to demonstrate FilterNet due to its wide usage as a 
benchmark dataset in the activity recognition field [7], its relatively large size (about 6 hours of 
recordings), and its diverse array of sensors and labels (from which we can choose various subsets). 
Furthermore, like the real-world datasets for which FilterNet was developed, much of the Opportunity 
dataset consists of the null class – that is, regions without labeled behaviors. The full dataset was 
released publicly following its use in the Opportunity activity recognition challenge [29], and it can be 
freely downloaded online [39]. It consists of four subjects performing normal morning activities in a 
sensor-rich setting. Each subject was recorded performing a single practice (Drill) session of predefined 
and scripted activities and five sessions of activities of daily living (ADL) in an undefined order. The 
dataset is provided at a 30 Hz frequency. 

We use the same train and test sets used in the Opportunity challenge. Specifically, we attempt to 
follow the data processing steps employed by Ordóñez and Roggen [28] as closely as possible, since 
other works have differed markedly in, e.g., their handling of missing values or their choice of 
validation and test sets [31][40].1 In all instances, we hold out ADL sessions 4 and 5 for subjects 2 and 3 
as a test set, and we do not use data from subject 4.2 Unless otherwise specified (e.g., n-fold ensemble 
models), we hold out ADL session 3 for subjects 2 and 3 as a validation set, and train our models on the 
remaining ADL and Drill sessions.  

Following Ordóñez and Roggen [28], we use only the 113 sensor channels used in the original 
challenge [29], which comprise the outputs from 7 inertial measurement units (IMU) with 
accelerometer, gyroscope, and magnetic sensors, and 12 Bluetooth accelerometers, and we use linear 
interpolation to fill in missing sensor data. However, instead of rescaling and clipping all channels to a 
[0,1] interval using a predefined scaling, we re-scale all data to have zero mean and unit standard 

1 Hammerla et al. specify a test set matching that in this paper, but the publicly available implementation uses a test set of 
Subjects 2 and 3, Runs 3 and 4. Also, Hammerla et. al. appear to skip samples with missing data, as opposed to interpolating 
the missing data. 
2 The Opportunity challenge uses data from subject 4, but Ordóñez and Roggen do not. 
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deviation according to the statistics of the training set. Where noted (e.g., multimodal fusion analysis in 
Section 4.4), we restrict our experiments to a subset of these 113 sensor channels. 

We reproduce the ‘Task B’ challenge of inferring the occurrence of sporadic gestures such as using 
doors or kitchen appliances. This is an 18-class (including the null class) classification task. 

3.2. Reference Architectures 

Even the six model variants in Table 1 can vary widely in their implementation due to the 
number of layers in each component and the configuration (e.g., striding and number of output 
channels) in each layer. Therefore, we demonstrate and benchmark a specific reference architecture 
for each variant. We keep model parameters consistent between the variants to facilitate comparison. 
The specific number, sizes, and configurations of each layer for these reference architectures is shown 
in Table 2, where the layers are constructed and arranged as shown in Figure 2.  

For clarity, we also present the ms-C/L reference architectures in more detail in Table 3. This is 
the largest of our reference architectures, and the others are composed primarily of subsets of the ms-
C/L layers (although changes in layer input sizes may affect the exact number of trainable 
parameters). We define the region of influence (ROI) for a layer as the maximum number of input 
samples that can influence the calculation of a single output sample. This region is increased by larger 
kernels, by larger stride ratios, and by additional layers. It represents an upper limit on the timescales 
that an architecture is capable of modeling. Note that it is only calculated for CNN-type layers, since 
the region of influence of bi-directional LSTMs is the entire input. The ROIi  for a 𝐹𝐿𝑀b55(𝑠Y, 𝑘Y) 
layer i that is preceded in a stack only by other 𝐹𝐿𝑀b55 layers can be calculated by 

ROIi=	ROIi-1 + (𝑘Y − 1)k 𝑠l
Y

lmJ
	 (1) 

We also implemented a version of DeepConvLSTM [28] using the publicly available source code 
[41] as a reference. Our libraries and training methodology vary from the original and we were unable
to match the original’s performance, but we include the results here to qualitatively demonstrate key
differences.
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Table 2. Reference architectures used in this article. 

Component b-LSTM p-CNN p-C/L ms-CNN ms-C/L 
A - Full-Res CNN - 𝐿CNN(100) 
B - Pooling Stack 1 𝐿CNN(100,	s=2)  

𝐿CNN(100,	s=2) 
𝐿CNN(100,	s=2) → 𝑖J 

C - Pooling Stack 2 

- 

𝐿CNN(100,	s=2) → 𝑖K 
𝐿CNN(50,	s=2) → 𝑖q 
𝐿CNN(25,	s=2) → 𝑖r 
𝐿CNN(13) → 𝑖t 

D - Resampling Step - 195 output channels1 
E - Bottleneck Layer - 𝐿CNN(100,	k=1) 
F - Recurrent Layers 𝐿LSTM(100) - 𝐿LSTM(100) - 𝐿LSTM(100) 
G - Output Module 𝐿CNN(18,	k=1) 

1 Resamples intermediates 𝑖K..t  to each have len(𝑖J) . Concatenate with 𝑖J  for 195 output channels with 
matching lengths. 

Table 3. Layer detail for Multi-Scale CNN/LSTM (ms-C/L) 

Component Type 
𝒘𝒊𝒏 𝒘𝒐𝒖𝒕 𝒔 𝒌 Params1 

Output 
stride ratio2 ROI3 

in input 113 4 1 
A 𝐹𝐿𝑀CNN 113 4 100 1 5 56,700 4 1 5 
B 𝐹𝐿𝑀CNN 100 100 2 5 50,200 2 13 
B 𝐹𝐿𝑀CNN 100 100 2 5 50,200 4 29 
B 𝐹𝐿𝑀CNN 100 100 2 5 50,200 8 61 
C 𝐹𝐿𝑀CNN 100 50 2 5 25,100 16 125 
C 𝐹𝐿𝑀CNN 50 25 2 5 6,300 32 253 
C 𝐹𝐿𝑀CNN 25 13 2 5 1,651 64 509 
C 𝐹𝐿𝑀CNN 13 7 1 5 469 64 765 
D resample 195 195 765 
E 𝐹𝐿𝑀CNN 195 100 1 1 19,700 8 765 
F 𝐹𝐿𝑀LSTM 100 100 1 80,500 8 all 
G 𝐹𝐿𝑀CNN 100 18 1 1 1,818 8 all 

out output 18 all 
1 Number of trainable parameters, including those for bias and batch normalization. 
2 Ratio of layer output frequency to system input frequency. 
3 Region of influence; see text for detail. 
4 Varies when sensor subsets are used. 

3.4. Software and Hardware Specifications 

We implemented the models in Python using PyTorch v1.0.1 [42] and the 2019.10 release of the 
Anaconda Python distribution (64-bit, Python 3.7.5). We used the ward-metrics v0.9.5 library [43] for 
calculating and plotting event metrics according to Ward et. al. [44]. We trained and evaluated our 
models on a p2.xlarge instance on Amazon Web Services [45] with 4 vCPUs (Intel Xeon E5-2686 v4), 
61 GB RAM, and a NVIDIA Tesla k80 GPU with 12 Gb RAM, running Ubuntu 16.04.  

3.5. Inference Windowing 

FilterNet is a many-to-many model. Consequently, it can process signals of any length. 
However, due to memory, efficiency, and sometimes latency constraints, it is typically helpful to (a) 
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divide long input signals into segments using a sliding window of a moderate fixed length and with 
some segment overlap, (b) process the segments in batches sized appropriately for available memory, 
and (c) reconstruct the corresponding output signal from the processed segments.  

Typically, classification accuracy suffers near the start and end of each segment due to edge 
effects. Overlap between segments allows these edge regions to be removed without creating gaps in 
the output signal. Alternatively, to prevent signal discontinuities, segments can be averaged using a 
weighted window that de-emphasizes the edge regions, as in this work. 

Unless otherwise noted, we use a sliding window length of 512 samples with 50% overlap and 
a Hanning window for weighted averaging of overlap regions. 

3.6. Performance Metrics 

We calculate validation and test set performance using both sample-based and event-based 
metrics. Sample-based metrics are aggregated across all class predictions, and are not affected by the 
order of the predictions. Event-based metrics are calculated after the output is segmented into 
discrete events, and they are strongly affected by the order of the predictions. 

We calculate sample-based precision, recall, and F1 scores for each output class, including the 
null class. Then, for comparison with the various metrics reported in the literature, we summarize 
overall model performance as either a mean F1 score averaged across the non-null classes (𝐹J�), or as 
a weighted F1 score (𝐹J�), across all classes, where each class is weighted according to its sample 
proportion in the ground-truth label set. When required for comparison to other works, we also 
report a non-null weighted F1 score (𝐹J�,TT)	which ignores the null class.  

For event-based metrics, we follow the recommendations of Ward et. al. [44]. We also define an 
event F1 metric (𝐹J') in order to summarize these extensive metrics. We calculate 𝐹J' in terms of 
true positives (TP), false positives (FP), and false negatives (FN) 

𝐹J' = 2
Precision⋅Recall
Precision+Recall = 2

TP
TP+FP ⋅

TP
TP+FN

TP
TP+FP+

TP
TP+FN

Here, TP events are correct (C) events as defined by Ward, while FN events are incorrect actual 
events (D, F, FM, and M in Ward et. al.), and FP events are incorrect returned events (M’, FM’, F’, and 
I’ in Ward et. al.). To calculate the overall 𝐹J', we simply sum the TP, FP, and FN counts across all 
classes. This score is not weighted by event length, so long events have the same influence as short 
events. 

We also report training (GPU) speed as seconds/epoch, and inference speed (both GPU and 
CPU-only) as input samples processed per second, measured using our GPU-enabled compute 
instance.  

3.7. Hyperparameter search 

We conducted a hyperparameter search using the Ray v0.7.6 distributed application framework 
and its included Tune scalable hyperparameter tuning library. We ran hundreds of trials to evaluate 
the effect of training and architectural parameters on prediction accuracy. However, due to relatively 
high run-to-run variance caused by the small number of subjects and runs in the Opportunity dataset, 
and potentially due to the use of LSTMs in several models (which we find can decrease repeatability 
run-to-run), we were unable to achieve finely tuned hyperparameter choices with this approach.  

3.8. Model training 

We trained the models on GPUs using the parameters in Table 4, unless otherwise noted. We 
divided the training and validation sets into segments using a sliding window. We chose window 
lengths that are integer multiples of all models’ output stride ratios in order to minimize 
implementation complexity. Because window length varied in some of our experiments, we adjusted 
the batch size to hold the total number of input samples in a batch approximately constant.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 February 2020                   doi:10.20944/preprints202002.0318.v1

https://doi.org/10.20944/preprints202002.0318.v1


11 of 22 

We found that the validation loss is too noisy to be used as an early stopping metric, due to the 
small number of subjects and runs in the validation set. Consequently, we use a custom stopping 
metric that is more robust and which penalizes oscillations in performance, so that stopping does not 
occur until model performance is relatively stable between epochs. Specifically, we define a smoothed 
validation metric as the exponentially weighted moving average (with a half-life of 3 epochs) of 
𝑙� 𝐹J�,�⁄  where 𝑙�  is the validation loss and 𝐹J�,�  is the weighted F1 score of the validation set, 
calculated after each training epoch. This metric decreases as the loss and/or the F1 score improve. 
We also calculate an instability metric as the standard deviation of the past five 𝑙� 𝐹J�,�⁄  values. We 
sum these metrics to yield a checkpoint metric. The model is checkpointed whenever the checkpoint 
metric reaches a new minimum, and training is stopped after patience epochs without checkpointing. 

A representative training run is shown in Figure 3 to illustrate this process. We find that this 
approach allows us to train models consistently across architectures using small validation sets and 
without excessive tuning. 

Table 4. Training parameters used 

Parameter Value Recommended range 
Max epochs 100 50 - 150 
Initial learning rate 0.001 .0005 - .005 
Samples per batch 5,000 2,500 - 10,000 
Training window step 16 8 - 64 
Optimizer Adam Adam, RMSProp 
Weight decay 0.0001 0 - .001 
Patience 10 5 - 15 
Learning rate decay 0.95 0.9 - 1.0 
Window length 512 64 - 1024 

Figure 3. Representative training history for a ms-C/L model. While the validation loss oscillates and 
has near-global minima at epochs 27, 35, and 41, the custom stopping metric (see text) adjusts more 
predictably to a minimum at epoch 36. Training is stopped at epoch 47 and the model from epoch 36 
is restored and used for subsequent inference.  

3.9. Ensembling 

Where noted, we perform n-fold ensembling by (a) combining the training and validation sets 
into a single contiguous set, (b) dividing that set into n disjoint folds of contiguous samples, (c) 
training n independent models where the ith model uses the ith fold for validation and the remaining 
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n-1 folds for training, and (d) ensembling the n models together during inference by simply averaging
their logit outputs before the softmax function is applied. Performance of the overall ensemble was
still measured on the same test set used in other experiments; only the train and validation sets varied.
For efficiency, the evaluation and ensembling of the n models is performed using a single
computation graph in PyTorch.

4. Results

4.1. Model Performance 

We summarize the performance of the reference FilterNet models on the Opportunity dataset 
gestures task in Table 5. We also include three variants of the ms-C/L architecture: a 4-fold ensemble 
of the ms-C/L architecture, and scaled versions in which the 𝑤WX$ values were scaled by ½ or by 2x. 
Finally, in order to demonstrate key differences with prior work, we include our reimplementation 
of the DeepConvLSTM architecture. However, we note again that this implementation does not 
match published test set performance, and that we include it in an effort to demonstrate qualitative 
differences in speed and in event segmentation performance.  

The 4-fold ms-C/L model is substantially more accurate than the simpler variants by all of our 
accuracy measures, and particularly in terms of event-based metrics. Indeed, we have found that 3-
to-5-fold ms-C/L ensembles perform well on many tasks and datasets, especially if inference speed 
and model size are not of critical importance. 

Table 5. Model and results summary for Opportunity dataset 

Architecture Classification metrics Efficiency 

Model n1 
Stride 
Ratio 

Params 
(k) 𝑭𝟏𝒘 𝑭𝟏𝒎 𝑭𝟏𝒆 𝑭𝟏𝒘,𝒏𝒏 

kSamp 
/s 

Train 
s/epoch 

FilterNet reference architectures 
b-LSTM 9 1 87 0.895 0.595 0.566 0.787 865 15 
p-CNN 9 8 209 0.900 0.638 0.646 0.803 1,340 2.0 
p-C/L 9 8 299 0.922 0.717 0.822 0.883 1,160 4.0 

ms-CNN 9 8 262 0.919 0.718 0.792 0.891 1,140 3.5 
ms-C/L 9 8 342 0.928 0.743 0.842 0.903 1,060 5.1 

Other variants 
4-fold ms-C/L 10 8 1,371 0.933 0.755 0.872 0.918 303 5.1 ´ 4 

½ scale ms-C/L 9 8 100 0.921 0.699 0.815 0.880 1,350 5.2 
2x scale ms-C/L 9 8 1,250 0.927 0.736 0.841 0.901 682 7.0 

Non-FilterNet models 
DeepConvLSTM 

reimplementation2 20 12 3,965 0.868 0.492 0.514 0.676 9 170 

1 Results are mean of n repeats. 
2 Performance may differ from [28]. 
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Figure 4. Heatmap demonstrating differences between model outputs. The ground-truth labels (a) for 
150 s during the first run in the standard Opportunity test set, alongside the corresponding 
predictions for the 17 non-null behavior classes for various FilterNet architectures (b-e). Panes are 
annotated with weighted F1 scores (𝐹J�	and the event-based 𝐹J') calculated over the plotted region.  

Figure 4 shows ground-truth labels and model predictions for approximately 150 s during the 
first run in the standard Opportunity test set, for several models. It demonstrates qualitatively why 
FilterNet models score highly in event-based performance metrics. FilterNet models – especially 
fully-featured ones such as the ms-C/L architecture – produce far fewer short, spurious events. This 
reduces the false positive count, while also preventing splitting of otherwise correct events. For 
instance, in the region of interest shown, the event-based 𝐹J' metric increases from 0.66 in (d) to 1.0 
in (b), while the sample-by-sample 𝐹J� metric increases only from 0.84 to 0.90. In applications where 
event counts are quantified, or where actions are taken in response to discrete events, high event 
segmentation performance is critical. The event segmentation performance that FilterNet achieves 
can obviate the need for further event processing and downselection. Often, FilterNet outputs can 
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produce excellent event segmentation results by simply thresholding the output signal at 𝑝 = 0.5 
and enumerating the contiguous regions, as we have done in this work. 

Figure 5. Event-based metrics. Performance metrics for several classifiers, including event-based 
precision 	𝑷𝒆 , recall 𝑹𝒆 , and F1 score 𝑭𝟏𝒆 , alongside event summary diagrams, each for a single 
representative run. 

Figure 5 shows results for the same models as in Figure 4, but calculated for the entire test set, 
and broken out into more detail as recommended by Ward e. al. [44]. The event summary diagrams 
compare the ground truth labels (actual events) to model predictions (detected events). Correct events 
(C) do not necessarily indicate exact agreement, but simply that there is a 1:1 correspondence between
actual and detected events. The event summary diagrams depict the number of actual events that are
missed (D - deleted) or multiply detected (F - fragmented), as well as the detected fragments (F’ –
fragmenting) and any spurious detections (I’ – insertions).

 It is evident that the lower performing models (c-e) suffer primarily from low precision; the b-
LSTM implementation detects 117 out of 204 events correctly, but it generates 448 spurious or 
fragmented events. The ms-CNN model (b) demonstrates the effect of adding additional strided 
layers to the p-CNN model, which increases the model’s ROI from 61 to 765 samples, meaning that 
the ms-CNN model can model dynamics occurring over a 12x longer region of influence. The 4x ms-
C/L ensemble (a) improves further by adding an LSTM layer, and by making it difficult for a single 
model to register a spurious event without agreement from the other ensembled models. The 
DeepConvLSTM reimplementation also contains an LSTM layer, of course, but its ROI is limited to 
the input window length (24 samples, approx. 3% as long as the ms-C/L ROI), and the hidden state 
of the LSTM at one windowed segment does not impact the next segment. Consequently, 
DeepConvLSTM models may be unable to model event dynamics on time scales longer than 24 
samples.   

4.2. Model ensembling 
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Figure 6: Performance of n-fold ensembled ms-C/L models. Both sample-based (a) and event-based 
(b) weighted F1 metrics improve substantially with the number of ensembled models, plateauing
between 3-5 folds, while inference rate (pane c) decreases. (mean ± sd, n=10)

The effects of model ensembling on accuracy (sample-by-sample 𝐹J� and event-based 𝐹J'), as 
well as the inference rate of the ensemble, are plotted in Figure 6. As described earlier, these models 
are trained on 𝑛 − 1 folds, with the remaining fold used for validation. The 2-fold models, therefore, 
have validation sets equal in size to their test sets, and the train and validation sets are simply 
swapped in the two sub-models. The higher-n models have a more traditional train-validation split 
(approx. 67%:33%, 75%:25%, and 80%:20% for the 3-, 4-, and 5-fold ensembles, respectively) and this 
is likely why the average sub-model performance increases with n in the plotted range.  

It is notable that the event-based metrics (b) benefit more from ensembling than the sample-by-
sample metrics (a) (as measured by the difference between the ensemble and sub-model metrics), 
likely because the ensembling helps to suppress short, uncertain events unless the majority of sub-
models are in agreement.  

It is unclear whether ensembling would be as beneficial on a larger dataset with, e.g., more 
subjects and experimental runs so that each fold would have a more representative and consistent 
collection of behaviors.  

4.3. Window length effects 

Figure 7. Effects of inference window length. For all models, accuracy metrics (top panes) improve as 
inference window length increases, especially when models incorporate multi-scale or LSTM 
architectural features. For LSTM-containing models, inference rate (bottom panes) falls off for long 
windows because their calculation across the time dimension cannot be fully parallelized. (n=5 each) 
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Figure 7 demonstrates the effect of changing the sliding window length used in the inference 
step. As described above, although FilterNet is able to process time series of arbitrary length, 
efficiency and memory constraints necessitate windowing in most applications, and some overlap is 
necessary to reduce edge effects in those windows. For simplicity, this work uses windows with 50% 
overlap, weighted with a Hanning window to de-emphasize edges and prevent the introduction of 
discontinuities where windows meet. Batch size is 100 windows in this figure. 

While model accuracy is monotonically non-decreasing with window length, the inference rate 
reaches a maximum for LSTM-containing models where the efficiencies of constructing and 
reassembling longer segments, and the efficiencies of some parallel execution on the GPUs, balance 
the inefficient sequential execution of the LSTM layer on GPUs. While this balance can vary, we find 
that windows of 256 to 2048 samples tend to perform well. On CPUs, these effects are less prominent 
due to less parallelization, although very short windows still can exhibit overhead. The efficiency 
drawbacks of executing LSTMs on GPUs are substantially mitigated by using a GPU-optimized 
LSTM implementation (e.g., cuDNN) as we have done in this work, and by using an architecture with 
a large output-to-input stride ratio so that the input sequence to the LSTM layer is shorter. 

We note that if FilterNet models do not include any LSTM layers (e.g., the p-CNN and ms-CNN 
variants, above), then they have a finite ROI, and edge effects are only possible within ROI/2 of the 
window ends. Consequently, windows only need to overlap by approximately ROI/2 input samples, 
and the windows can simply be concatenated after discarding half of each overlapped region. If this 
windowing strategy is used, then the efficiency benefit of longer windows is even more pronounced, 
and especially considering the excellent parallelizability of CNNs, it may be advisable to use a batch 
size of 1 and to simply use the longest window length possible given system memory constraints.  

In almost all cases that we have explored, GPUs achieved far greater inference rates than CPUs 
and are more cost efficient at typical cloud computing prices. However, if models are small (few 
trainable parameters), or are primarily LSTM-based, or if time series are especially short, then CPU 
execution may be preferred. 

4.4. Performance using fewer sensor channels 

Table 6. Model mean F1 score without nulls (𝐹J�,TT) for different sensor subset (n=5 each). 

Gyros Accels 
Accels 
+ gyros

Accels 
+ gyros

+ magnetic

Opportunity 
sensors set 

# of sensor channels 15 15 30 45 113 
DeepConvLSTM [28] 0.611 0.689 0.745 0.839 0.864 
p-CNN 0.615 0.660 0.722 0.815 0.798 
ms-C/L 0.850 0.838 0.886 0.903 0.901 
4-fold ms-C/L 0.857 0.862 0.903 0.923 0.916 

FilterNet models are especially well-suited to datasets with relatively few sensors. Table 6 
reproduces the multimodal fusion analysis of [28], wherein models are trained and evaluated on the 
same train, validation, and test sets, but with different subsets of sensor outputs ranging from 15 to 
113 channels. We hold models’ architecture parameters constant where possible, but note that the 
number of trainable parameters in the first model layer will vary when the number of input channels 
changes. We compare the DeepConvLSTM results reported in [28] with a p-CNN model (which has 
a relatively small ROI of 61 samples and moderate performance on this dataset), an ms-C/L model 
(which has large/unbounded ROI and high performance on this dataset), and a 4-fold ensemble of 
ms-C/L models. We extend this analysis in Figure 8, plotting both 𝐹J�,TT and the event-based 𝐹J' 
across the same set of sensor subsets, for all 5 FilterNet reference architectures and a 4-fold ms-C/L 
ensemble.   

As expected, the 4-fold ms-C/L ensemble is the most accurate model, especially according to 
event-based metrics. It is interesting to note the consistent performance of the ms-C/L, ms-CNN, and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 February 2020                   doi:10.20944/preprints202002.0318.v1

https://doi.org/10.20944/preprints202002.0318.v1


17 of 22 

p-C/L models even with fewer sensors. All of these models have long or unbounded ROIs, which
may help them to compensate for the missing sensor channels. We also note that the FilterNet models
often perform best on the 45-sensor subset, indicating possible overtraining or a suboptimal
architecture for the full complement of sensors.

For all models in Table 6, accelerometers appear to be more useful than gyroscopes, but models 
using both perform best. It is unclear if the usefulness of the magnetic sensors would persist in real-
world scenarios where subjects may be oriented in any direction while performing tasks. 

Figure 8. Performance of different Opportunity sensor subsets (mean of n=5 runs) according to (a) the 
sample-by-sample 𝐹J�,TT  and (b) the event-based F1 𝐹J' . Using larger sensor subsets, including 
gyroscopes (G), accelerometers (A), and the magnetic (Mag) components of the inertial measurement 
units, as well as all 113 standard sensors channels (All), tended to improve performance metrics. The 
best models (e.g., 4x ms-C/L, ms-C/L, ms-CNN, and p-C/L) maintain relatively high performance even 
with fewer sensor channels. 

4.5. Comparison to published results 

Table 7 compares the benchmark results described in this paper to similar results from the 
literature. Performance comparisons on this dataset are imperfect since details such as the exact test 
set used and the handling of missing values are not always identical or even explicit, and the 
performance metrics employed vary widely. The source code used to train and evaluate the models 
is often unavailable, so key implementation details are unknown. Furthermore, since the test set is 
publicly available, it is often not clear whether the training parameters were tuned to maximize test 
set performance. Finally, performance is sometimes reported using the ‘best’ model (as measured by 
test set performance) instead of as an unbiased average of independent replicates. In other cases, the 
train and test sets are shuffled in a way that prevents fair comparison.  

Regardless, FilterNet advances the state of the art on all of the performance metrics in Table 7, 
even though several of the reported metrics select (or may select) the best test-set performance post-
hoc from multiple runs. It is surprising that the ms-CNN model, which does not contain a recurrent 
layer, exhibits such high performance. In [34] Guan and Plötz demonstrate excellent performance 
using an ensemble of twenty carefully trained LSTM learners which, like FilterNet, use a many-to-
many architecture. It is likely that an ensembling strategy such as that in [34], combined with the 
pooling and multiscale features exhibited in this work, could improve performance even further. 
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Table 7. Performance comparison alongside published models on Opportunity dataset 

Method/Model 𝐹J� 𝐹J� 𝐹J�,TT n 
DeepConvLSTM [28] 0.672 0.915 0.866 ? 

LSTM-S [31] 0.698 
0.619 

0.912 best of 128 
median of 128 

b-LSTM-S [31] 0.745
0.540

0.927 best of 128 
median of 128 

LSTM Ensembles [34] 0.726 mean of 30 
Res-Bidir-LSTM [46] 0.905 ? 

Asymmetric Residual Network [47] 0.903 ? 
DeepConvLSTM + Attention [48] 0.707 mean 

FilterNet ms-CNN 0.718 0.919 0.891 mean of 9 
FilterNet ms-C/L 0.743 0.928 0.903 mean of 9 

FilterNet 4-fold ms-C/L 0.755 0.933 0.918 mean of 10 

5. Discussion

5.1. Recommendations for use 

The preceding results attempt to illustrate the performance improvements possible with a fully-
featured FilterNet architecture. However, compared to simple FilterNet architectures, full-featured 
ones are typically slower to train, slower to run, exhibit more variance from run-to-run (complicating 
model exploration and hyperparameter tuning), and are far more prone to overtraining on small 
datasets. 

Typically, we recommend beginning exploration with a simple, small p-CNN architecture with 
the largest output:input stride ratio that can fully resolve the shortest events of interest. For instance, 
if a dataset has a 50 Hz input sampling rate and output events as short as 1 second, then a 16:1 
output:input stride ratio will resolve each event with at least three output samples. This might 
suggest, e.g., four pooling layers with stride ratios of 2, or two pooling layers with stride ratios of 4, 
etc, depending on the desired model capacity. The resulting architecture can be tuned relatively 
quickly because the model should be fast and consistent from run to run. 

If the p-CNN model exhibits adequate performance, then it could be useful to try a similar ms-
CNN architecture, wherein the second pooling stack (component C) is long enough that the longest 
dynamics of interest are within its region of influence. If overtraining is evident, it can be especially 
helpful to lower 𝑤WX$  for the layers in component C, since their large ROI causes the dataset to 
effectively appear smaller with respect to its ability to prevent overtraining. Once the ms-CNN model 
is tuned, and if it does not exhibit problematic overtraining, then adding one or more recurrent LSTM 
layers (component F) may substantially improve accuracy and/or event segmentation performance. 
However, not all datasets exhibit improved performance with these layers, and the simpler ms-CNN 
architecture can be much faster and more consistent run-to-run. Finally, once an accurate and 
properly optimized model is found, it can be useful to simply create a 3-to-5-fold ensemble using the 
same training and architecture parameters. 

5.2. Other modifications 

The approach used in FilterNet is far more flexible than we are able to fully demonstrate in this 
work. For instance, it is possible to use the network to simultaneously calculate multiple independent 
outputs. For instance, the same network can simultaneously predict both a quickly-varying 
‘behavior’ and a slowly-varying ‘posture’, such as the ‘gestures’ and ‘locomotion’ labels in the 
Opportunity dataset. The loss functions for the multiple outputs can be simply added together, and 
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the network can be trained on both simultaneously. This enables some degree of automatic transfer 
learning between the two labelsets, but also presents challenges in optimally training the network. 

FilterNet can also be easily adapted to multi-label classification problems and regression 
problems by simply changing the output type(s) (e.g., changing the final activation function from 
softmax to sigmoid or linear) and the loss functions (e.g., from cross-entropy to binary cross-entropy 
or mean squared error), and it may be possible to combine these as independent outputs in the same 
model. In our experience, these changes are relatively straightforward but usually require re-tuning 
of the training parameters. 

Furthermore, the approach outlined in this work can be easily extended with new layer types, 
although we have found the layers presented above to form a strong and widely applicable basis for 
modeling many sensor time series. However, GRUs or other RNNs sometimes outperform LSTMs, 
especially when computational resources are limited. Also, networks with extremely high stride 
ratios may require additional measures such as dilation of the CNN layers or longer CNN kernels to 
prevent gaps where input data or intermediate activations are ignored. Finally, it may be possible to 
improve the layer modules for certain applications by using skip connections or even a 
heterogeneous inception-like architecture. We also note that the basic FilterNet approach can be 
extended to real-time or streaming applications by, for instance, using only CNNs or by replacing 
bidirectional LSTMs with unidirectional LSTMs. 

6. Conclusions

FilterNet arose from our need for activity recognition models that could match or exceed the 
state-of-the-art accuracy, while running at much lower cost. We also aimed to lessen the need for 
additional event segmentation or event down-selection steps. We have found that the FilterNet 
approach described in this article substantially improves upon existing methods in all of these areas, 
setting new records in 𝐹J�, 𝐹J�, and 𝐹J�,TT for the Opportunity dataset. While speed comparisons 
are difficult without freely available reference implementations of existing models in compatible 
frameworks, FilterNet’s many-to-many approach, combined with its abilities to achieve very high 
stride ratios and to model relatively long-term dynamics without a strict need for LSTMs, give 
practitioners important levers with which to minimize computation cost. Finally, as shown above, 
FilterNet architectures are able to largely obviate the need for custom event segmentation steps, 
especially when they include multi-scale and/or LSTM components. 
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