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Abstract: Exploiting the linguistic knowledge of the source language for neural machine translation 

(NMT) has recently achieved impressive performance on many large-scale language pairs. 

However, since the Turkish→English machine translation task is low-resource and the source-side 

Turkish is morphologically-rich, there are limited resources of bilingual corpora and linguistic 

information available to further improve the NMT performance. Focusing on the above issues, we 

propose a multi-source NMT approach that models the word feature in parallel to external linguistic 

features by using two separate encoders to explicitly incorporate linguistic knowledge into the NMT 

model. We extend the word embedding layer of the knowledge-based encoder to accommodate for 

each word’s linguistic annotations in the context. Moreover, we share all parameters across encoders 

to enhance the representation ability of the NMT model on the source language. Experimental 

results show that our proposed approach achieves substantial improvements of up to 2.4 and 1.1 

BLEU scores in Turkish→English and English→Turkish machine translation tasks, respectively, 

which points to a promising way to utilize the source-side linguistic knowledge for the low-resource 

NMT. 

Keywords: linguistic knowledge; source language; neural machine translation (NMT); low-

resource; multi-source NMT 

 

1. Introduction 

Neural machine translation (NMT) model is widely used for machine translation tasks [1-5], 

which directly learns the translation relationship between distinct languages from bilingual corpora. 

The NMT model employs the encoder to map the source sentence to a continuous representation 

vector, then it feeds the resulting vector to the decoder to generate the desired target sentence [1]. 

Recently, by using advanced neural mechanisms, such as GRU [2] and attention [3], the NMT model 

surpasses the previously dominant statistical machine translation (SMT) model [6], and it achieves 

the state-of-the-art performance on many natural language processing (NLP) tasks [7-9]. 

Despite their current success, the existing NMT models reply on large-scale bilingual sentences, 

and they cannot provide an effective mechanism to utilize the linguistic knowledge of the language. 

Recently, researchers attempt to explicitly incorporate the source-side linguistic information into the 

NMT model. Currey and Heafield introduce a multi-source technique that exploits the syntax structure 

of the source sentence by employing separate encoders, one encoder for the source word sequence and 

the other encoder for the linearized source parse tree [10]. 

However, the NMT models still suffer from the low-resource and morphologically-rich scenarios. 

For Turkish→English machine translation task, the main problem is that the source-side Turkish is a 

morphologically-rich language with derivational morphology [11]. The vocabulary is very large even 

in the small-scale training corpus, which leads to many inaccurate translation results [12-13]. Due to 

the complex morphology, no high-quality syntactic analysis tool is available to provide the linguistic 

annotations at the sentence-level for Turkish sentences, such as named entity chunking, dependency 

label, and parsed tree. Thus, it is valuable to fully utilize the linguistic annotations at the word-level 

to improve the low-resource NMT performance. To address the above issue, Sennrich and Haddow 

modify the architecture of the encoder to allow for linguistic input features [14]. They generalize the 
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word embedding layer of the encoder to encode each word and its corresponding functional labels. 

Nevertheless, since their model reduces the word embedding size to adapt to additional linguistic 

features, it cannot balance the contribution from the word sequence and the linguistic information. 

Moreover, their model adds the lemma feature as linguistic input while using a fixed-size vocabulary, 

it suffers from the out-of-vocabulary (OOV) problem [15]. 

Focusing on the above issues, we propose a multi-source NMT approach for the low-resource 

NMT to explicitly utilize the source-side linguistic knowledge. The approach models the source word 

sequence in parallel to linguistic features by using two separate encoders with parameter sharing. 

The source sequence is encoded by the word-based encoder, the linguistic features is encoded by the 

knowledge-based encoder. We extend the word embedding layer of the knowledge-based encoder 

to accommodate for each word’s linguistic annotations in the context. Then we combine the hidden 

states and cell states from each encoder to pass on to the decoder. Experimental results show that our 

proposed approach achieves substantial improvements in Turkish→English and English→Turkish 

machine translation tasks. In particular, extensive experiments show that our approach is capable of 

better utilizing the source-side linguistic knowledge and effective integrating them together. 

2. Multi-Source NMT Model 

We follow the NMT architecture proposed by Vaswani et al. [5], and we will briefly summarize 

in this section. The NMT model is implemented as a Transformer with encoder-decoder framework. 

The encoder maps the source sequence 𝒙 = (𝑥1, … , 𝑥𝑚) to a representation vector 𝒛 = (𝑧1, … , 𝑧𝑚). 

Given z, the decoder produces the target sequence 𝒚 = (𝑦1 , … , 𝑦𝑛)  based on all the previously 

generated symbols. Both the encoder and decoder are composed of a stack of N identical layers. Each 

layer has two sub-layers of a multi-head self-attention and a fully connected feed-forward network. 

The decoder additionally inserts a third sub-layer, which performs multi-head attention over the 

output of the encoder stack. 

We denote the encoder in the NMT model as word-based encoder, which is employed to encode 

the source word sequence. Figure 1 shows our proposed multi-source NMT model. We use two 

separate encoders to model the word feature and the linguistic features, respectively. 
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Figure 1. The architecture of our proposed multi-source NMT model. 
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2.1. Knowledge-based Encoder 

 Inspired by the NMT model proposed by Sennrich and Haddow [14], we employ additional 

knowledge-based encoder to incorporate external linguistic information into the NMT model. More 

specifically, we extend the input embedding layer of the knowledge-based encoder to accommodate 

for each word’s linguistic annotations in the context. Figure 2 shows the input embedding layer. 
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Figure 2. The input embedding layer of the knowledge-based encoder. 

Given |F| linguistic annotation sequences 𝒌𝟏 = (𝑘11, … , 𝑘1𝑚), 𝒌𝟐 = (𝑘21, … , 𝑘2𝑚), …, and 𝒌|𝑭| =

(𝑘|𝐹|1, … , 𝑘|𝐹|𝑚) corresponding to the source sequence 𝒙 = (𝑥1, … , 𝑥𝑚), the knowledge-based encoder 

maps k1, k2, …, k|F| to a continuous representation vector 𝒑 = (𝑝1, … , 𝑝𝑚), where pi is computed by: 

𝑝𝑖 = 𝑡𝑎𝑛ℎ⁡ (𝑾(⋃𝑬𝒕𝑘𝑡𝑖

|𝐹|

𝑡=1

) + 𝑼𝑝𝑖−1) (1) 

where ⋃ ⁡is the vector concatenation operator, Et is the feature embedding matrice, both W and U are 

weight matrices. 

2.2. Combination Method 

Both the hidden states and cell states from each encoder are combined to pass on to the decoder. 

The hidden states of h1 and h2 are concatenated. Then, a linear transformation and a tanh nonlinear 

transformation are applied on the resulting vector: 

ℎ = 𝑡𝑎𝑛ℎ⁡(𝑾𝒄[ℎ1; ℎ2]) (2) 

where Wc is the weight matrice. The new cell state is the sum of the cell states of c1 and c2: 

𝑐 = 𝑐1 + 𝑐2 (3) 

3. Linguistic Knowledge for Turkish and English 

We utilize three linguistic features for experiments. The first is lemma, which is widely used for 

information retrieval tasks. Lemmatization can make better generalization by allowing the inflected 

and morphological variants of the same word to share representations. The second is part-of-speech 

(POS) tag, which provides the syntactic role for each word in the sentence. It is helpful in extracting 

information and reducing data ambiguity. The third is morphological tag. Since different word types 

have distinct sets of morphological features, morphology analysis can reduce data sparseness. 

For Turkish→English task, the java toolkit Zemberek1 with morphological disambiguation [16] 

is utilized to annotate the Turkish word with lemma, POS tag and morphological feature. Each 

word’s morphological features are concatenated as its morphological tag. For English→Turkish task, 

the python toolkit NLTK2 is utilized to annotate the English word with lemma and POS tag. 

We use BPE technique [17] to segment the word and lemma in Turkish and English into subword 

units, and we add “@@” behind each non-final subword. We annotate the lemma annotation sequence 

by coping the other linguistic annotations’ feature value to each lemma’s subword units. All the 

linguistic annotation sequences have the same length. The training examples for Turkish→English 

and English→Turkish machine translation tasks are shown in Table 1 and Table 2, respectively. 

 
1 https://github.com/ahmetaa/zemberek-nlp 
2 https://github.com/nltk 
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Table 1. The training examples for Turkish→English machine translation task. 

Turkish Word Sequence Ve bunlar sinek@@ kap@@ an an@@ em@@ onlar. 

Lemma Sequence ve bu sinek@@ kapan ane@@ mon . 

POS Tag Sequence Conj Pronoun Noun Noun Noun Noun Punc 

Morphological Tag Sequence <null> A3pl <null> <null> A3pl A3pl <null> 

Table 2. The training examples for English→Turkish machine translation task. 

English Word Sequence And these are fly@@ trap an@@ em@@ ones. 

Lemma Sequence and these be fly@@ trap ane@@ mone . 

POS Tag Sequence CC DT VBP JJ JJ NNS NNS . 

4. Experiment 

4.1. Data Preparation 

Following Sennrich et al. [18], we merge the WIT corpus [19] that consists of TED talks and the 

SETimes corpus [20] that consists of news as training corpus, merge dev2010 and tst2010 as validation 

corpus, and use tst2011, tst2012, tst2013, tst2014 as test corpus. The training and validation corpus 

statistics in experiments are shown in Table 3. 

Table 3. The training and validation corpus statistics in experiments. 

Dataset # Sentences # Turkish Tokens # English Tokens 

Training 355,251 6,712,018 8,376,414 

Validation 2,455 39,272 54,061 

4.2. Model Parameter 

We implemented our proposed multi-source NMT model by using the OpenNMT-tf3 toolkit. 

Both the encoder and decoder have N=6 layers. The number of hidden units is 512. The number of 

heads for self-attention is 8. Both the source and target word embedding size are 512, and the number 

of hidden units in feed-forward layers is 1024. The batch size is 48 sentences. The maximum sentence 

length is 100. The label smoothing is 0.1. The dropout rate in Transformer is 0.1. The length penalty 

is 0.6, and the clip gradient is 5.0 [21]. The parameters are uniformly initialized in [-0.1, 0.1]. We train 

the model for 120,000 steps by using the Adam optimizer [22] with the learning rate of 0.0002, and 

we report the result of averaging the 5 last saved checkpoints (saved every 5,000 steps). Decoding is 

performed by using the beam search with the beam size of 5. 

We normalize and tokenize the Turkish and English sentences, and we use BPE to segment the 

word and lemma by learning separate vocabulary with 32K merge operations. Moreover, we report 

the case-sensitive BLEU [23] score and the ChrF3 [24] score to evaluate the translation performance. 

The vocabulary size and embedding size of Turkish and English are shown in Table 4. We keep the 

total embedding size of the linguistic annotations fixed to 512 in experiments. 

Table 4. The vocabulary size and embedding size of Turkish and English. 

Encoder Input Feature 
Vocabulary Size Embedding Size 

Turkish English Turkish English 

Word-based Encoder Word 32,064 31,306 512 512 

Knowledge-based Encoder 

Lemma 30,637 30,646 352 384 

POS Tag 14 45 64 128 

Morphological Tag 9,176 - 96 - 

 
3 https://github.com/OpenNMT/OpenNMT-tf 
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5. Result and Discussion 

 The experimental results of Turkish→English and English→Turkish machine translation tasks 

are shown in Table 5 and Table 6, respectively. The NMT model [5] is baseline with only the word 

feature input. The single-source NMT model proposed by Sennrich and Haddow [14] with additional 

linguistic feature input is employed for comparison. For Turkish→English machine translation task, 

we can see from Table 5 that our proposed multi-source NMT model outperforms both the NMT 

model and the single-source NMT model. It achieves the highest BLEU and ChrF3 scores on all the 

test datasets, which indicates that our approach is capable of improving machine translation quality. 

Moreover, it achieves the highest improvements on tst2014 of 2.4 BLEU points and 1.6 ChrF3 points. 

 For English→Turkish machine translation task, we can see form Table 6 that our proposed model 

achieves the highest BLEU and ChrF3 scores on tst2012, tst2013, and tst2014. It achieves the highest 

improvements on tst2012 of 1.1 BLEU points and 1.5 ChrF3 points. As for the test dataset of tst2011, 

the multi-source NMT model is worse than the NMT model on BLEU score, but it is better on ChrF3. 

The main reason is that BLEU score is based on the precision of the Turkish words while ChrF3 score 

is based on both the precision and recall, so the two metrics are disagree. ChrF3 score was found to 

correlate well with human judgments, especially for the translation results out of English [25]. 

Therefore, we consider the multi-source NMT model is better than the NMT model on translation 

performance. Nevertheless, it is still not better than the single-source NMT model. The main reason 

is that the test data in tst2011 is not suitable for the multi-source NMT model since the linguistic 

features of English are not accurate or sufficient enough. 

Table 5. The experimental results of Turkish→English machine translation task. 

Model 
BLEU ChrF3 

tst2011 tst2012 tst2013 tst2014 tst2011 tst2012 tst2013 tst2014 

NMT Model [5] 24.18 25.95 26.60 24.98 47.18 48.61 48.65 48.05 

Single-Source NMT 

Model [14] 
24.69 26.65 27.43 25.98 47.99 49.26 49.89 48.87 

Multi-Source NMT 

Model 
25.44 26.75 28.48 27.37* 48.30 49.80 50.61 49.74* 

Table 6. The experimental results of English→Turkish machine translation task. 

Model 
BLEU ChrF3 

tst2011 tst2012 tst2013 tst2014 tst2011 tst2012 tst2013 tst2014 

NMT Model [5] 13.82 14.37 13.48 14.73 46.08 46.72 46.15 46.62 

Single-Source NMT 

Model [14] 
13.95 15.37 14.39 14.90 46.86 47.90 47.21 47.50 

Multi-Source NMT 

Model 
13.75 15.48* 14.44 15.36 46.74 48.21* 47.51 47.73 

To further evaluate the effectiveness of different linguistic features, we incorporate single feature 

into our proposed multi-source NMT model. The experimental results of Turkish→English and 

English→Turkish machine translation tasks are shown in Table 7 and Table 8, respectively. 

Table 7. The experimental results of incorporating single feature into the multi-source NMT model 

in Turkish→English machine translation task. 

Encoder Input 
BLEU ChrF3 

tst2011 tst2012 tst2013 tst2014 tst2011 tst2012 tst2013 tst2014 

Word 24.18 25.95 26.60 24.98 47.18 48.61 48.65 48.05 

Word + Lemma 24.60 25.75 26.69 25.20 47.66 48.77 49.25 48.33 

Word + POS Tag 24.10 25.54 26.20 24.98 47.32 48.66 48.84 47.98 

Word + Morph Tag 24.34 25.70 26.39 25.50 47.41 48.61 49.08 48.36 
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Table 8. The experimental results of incorporating single feature into the multi-source NMT model 

in English→Turkish machine translation task. 

Encoder Input 
BLEU ChrF3 

tst2011 tst2012 tst2013 tst2014 tst2011 tst2012 tst2013 tst2014 

Word 13.82 14.37 13.48 14.73 46.08 46.72 46.15 46.62 

Word + Lemma 13.79 14.59 13.06 14.55 45.99 47.11 46.18 46.51 

Word + POS Tag 14.06 15.01 12.93 14.93 46.52 47.98 45.82 46.73 

For Turkish→English machine translation task, we can see from Table 7 that incorporating the 

lemma feature of Turkish into the multi-source NMT model achieves the highest BLEU and ChrF3 

scores on tst2011, tst2012, and tst2013 while incorporating the morphological tag achieves the highest 

BLEU and ChrF3 scores on tst2014. For English→Turkish machine translation task, we can see from 

Table 8 that incorporating the lemma feature of English into the multi-source NMT model achieves 

the highest BLEU and ChrF3 scores on tst2013 while incorporating the POS tag achieves the highest 

BLEU and ChrF3 scores on tst2011, tst2012, and tst2014. Experimental results show that different 

linguistic features are appropriate for different translation tasks and test datasets. 

In addition, we find that incorporating single linguistic feature into the multi-source NMT model 

sometimes cannot yield improvements on BLEU or ChrF3 scores. The main reason is that the single 

feature cannot provide enough linguistic information of the source language for model training, so 

the multi-source encoder framework is not conducive to improving the NMT performance on source 

language representation. This fact indicates that our proposed approach is capable of better utilizing 

the source-side linguistic knowledge for the low-resource NMT and effective integrating linguistic 

information together at the word-level. 

6. Related Work 

Machine translation, which aims to perform transition between distinct languages, is a major focus 

of NLP research [26-27]. Recently, researchers show great interest in utilizing the source-side linguistic 

information as prior knowledge to improve machine translation quality. In phrase-based SMT model, 

the factored translation models are employed to incorporate external linguistic knowledge into the 

translation process [28]. Aqlan et al. integrate the linguistic features on top of the word surface form in 

translation model, and they iteratively train the SMT model to find the most optimized parameters [29]. 

However, the encoder-decoder based NMT model is more flexible to exploit additional information. 

The popular method is to modify the architecture of the encoder in the NMT model. Eriguchi et al. 

present a tree-to-sequence NMT model that encodes each phrase in the source parse tree, and they use 

an attention mechanism that allows the encoder to align both the input words and the input phrases 

with the output words [30]. Yang et al. improve the above work by encoding each node in the source 

parse tree with the local and global context information, and they introduce a weighted variant of the 

attention mechanism to adjust the proportion of the conditional information [31]. Li et al. combine the 

source sequence with its linearized syntactic structure into a single sequence to make the NMT model 

automatically learning useful language information [32]. 

Multi-source neural model is firstly proposed by Zoph and Knight for multilingual translation [33]. 

It is a many-to-one setting in the multi-task learning (MTL) method [34]. The model consists of multiple 

encoders with one encoder per source language. Then it combines the representation vectors from each 

encoder and feeds the resulting vector to the decoder to generate the desired target language. Following 

the above model, Li et al. build a knowledge gate and an attention gate to control the information from 

the source sentence and the linguistic features [35]. However, since their model simply concatenates 

each word’s linguistic annotations into one single token, it cannot enrich the word representations in 

different context to capture semantic correlation. Different from their method, our approach mainly 

focus on the low-resource NMT, and it provides an effective way to fully exploit the source-side 

linguistic features at the word-level. Moreover, all the linguistic features are shared in the knowledge-

based encoder to make better generalization. 
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7. Conclusion 

 In this paper, we propose a multi-source NMT approach for the low-resource NMT to explicitly 

utilize the source-side linguistic knowledge, which models the word sequence in parallel to the 

linguistic features by using two separate encoders with parameter sharing. Compared with the single 

encoder based NMT model, our approach employs additional knowledge-based encoder and extends 

its input embedding layer to accommodate for each word’s linguistic annotations at the word-level, 

which can effectively enrich the word representations in different context. Experimental results show 

that our proposed approach is benefit for improving the low-resource NMT performance, and it 

achieves substantial improvements in Turkish→English and English→Turkish machine translation 

tasks. In particular, we demonstrate that different linguistic features are appropriate for different 

translation tasks and test datasets. 

In the future, we plan to modify the attention mechanism in Transformer to better control the 

conditional information from different encoders. In addition, we plan to perform machine translation 

tasks on the other high-resource and morphologically-rich language pairs. 
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