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Viruses have stablished symbiotic relationships with almost every other living organism on Earth
and at all levels of biological organization, from other viruses up to entire ecosystems. In most cases,
peacefully coexisting with their hosts, but in most relevant cases, parasitizing them and inducing
diseases. Viruses are playing an essential role in shaping the eco-evolutionary dynamics of their
hosts, and also have been involved in some of the major evolutionary innovations either by working
as vectors of genetic information or by being themselves coopted by the host into their genomes.
Viruses can be studied at different levels of biological organization, from the molecular mechanisms
of genome replication, gene expression and encapsidation to global pandemics. All these levels are
different and yet connected through the presence of threshold conditions allowing for the formation
of a capsid, the loss of genetic information or epidemic spreading. These thresholds, as it occurs with
temperatures separating phases in a liquid, define sharp qualitative types of behavior. These phase
transitions are very well known in physics. They have been studied by means of simple, but powerful
models able to capture their essential properties, allowing to understand them. Can the physics of
phase transitions be an inspiration for our understanding of viral dynamics at different scales?
Here we review the best known examples of transition phenomena in virology and their simplest
mathematical modeling approaches. We suggest that the advantages of abstract, simplified pictures
used in physics are also the key to properly understand the origins and evolution of complexity
in viruses. By means of several examples, we explore this multilevel landscape and how minimal
models provide deep insights into a diverse array of problems. The relevance of these transitions
in connecting dynamical patterns across levels and their evolutionary and clinical implications are
outlined.

Keywords: Epidemics, molecular replicators, mutation, multi-level selection, quasispecies, recombination,
self-assembly, phase transitions, virus evolutionary dynamics

I. INTRODUCTION

Researchers from different disciplines tend to study
viruses at their favorite level of biological organization
(Fig. 1). At the lowest scale of biological complexity,
molecular virologists carefully characterize the mecha-
nisms of viral replication and pathogenesis, the molecular
interactions between viral proteins and among viral and
host proteins, and how cells respond to infection by trig-
gering diverse defense mechanisms. At the highest scale,
ecologists and epidemiologists describe the incidence of
viruses in their reservoir and potential novel hosts, and
their spread among host populations and at the global
level, including their impact on nutrient cycling. At each
scale, what is considered as the ’host’ is different: single
cells or tissues for molecular virologists, individuals for
clinical virologists and plant pathologists, populations of
hosts or even entire ecosystems for ecologists and epi-
demiologists. Likewise, the ’virus’ unit upon which se-
lection operates also differs among the levels of biological
organization being studied: mutant swarms within indi-
viduals, infected individuals in ecological studies or viral

lineages in phylogeography and epidemiological studies.
But the ultimate host for any virus is always an individ-
ual cell. It is inside the cell wherein the virus expresses
its genes, kidnaps the cellular resources and manipulate
structures to build the replication factories. Viral pro-
teins and RNAs interact with a large number of cellular
factors in order to block cell defenses, to ensure reproduc-
tion, encapsidation and spread to neighboring cells. From
there to colonize other tissues and organs, and from there
to be transmitted to other susceptible hosts, to spread in
the host populations and, ultimately, to reach diverse
ecosystems.

Different selective pressures operate on viruses at each
of the above levels. For example, whereas at the cellu-
lar and within-organism levels fast replication may pro-
vide competitive advantage to one strain over another, at
the population level such strategy may not be optimal,
as it jeopardizes transmission between hosts by immo-
bilizing the infected host and thus effectively reducing
the rate of transmission (Doumayrou et al. 2012). An-
other remarkable example of seemingly opposed obser-
vations: population-level human immunodeficiency virus
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type 1 (HIV-1) phylogenies are mainly shaped by se-
lective neutral epidemiological processes, implying that
genealogy-based population genetic inferences can be
useful to study the HIV-1 epidemic history and dating
events (Lemey et al. 2006). In sharp contrast, HIV-1
phylogenies reconstructed from within-host sequences in-
dicate the action of strong selective pressures imposed by
the heterogeneity of cell types in which the virus can be
replicated (Lemey et al. 2006). Indeed, the existence of
within-host reservoirs of latently infected CD4+ T cells
produces a delay in the evolutionary dynamics within
single hosts. These delays can fundamentally change the
dynamics of the virus transmission between individuals
and, hence, have an impact at the epidemiological scale
(Doekes et al. 2017). Therefore, while the general con-
nection between the infection dynamics within a host and
the population-level transmission dynamics of viruses is
widely acknowledged, a comprehensive and quantitative
understanding that would allow full integration of the
two scales is still lacking.

There have been attempts to model multi-scale selec-
tion for viruses. At most, studies have tried to model
between-host transmissions as a function of within-host
replication parameters (Coombs et al. 2007; Mideo et al.
2008; Metzger et al. 2011; Feng et al. 2012; Schole et al.
2013; Shin and MacCarthy 2016; Doekes et al. 2017; Dor-
ratoltaj et al. 2017), or tissue/organ colonization as an
extension of within-cell replication events and interaction
with host factors (Sardanyés and Elena 2011; Heldt et al.
2013; Kumberger et al. 2016). Unfortunately, the former
models usually ignore the inherent within-host complex-
ity, while the latter never extend beyond the individual
tissue or single host. Gong et al. (2015) identified seven
challenges for developing multi-scale models of virus evo-
lution:

1. Lack of models and data to elucidate the processes
underlying transmission probabilities and bottle-
necks. From the donor host side, how does infec-
tiousness depend on virus load? From the recipient
host side, initial infection depends on the dose (bot-
tleneck), route of transmission, time of exposure,
etc. Stochastic and spatial invasion models will of-
fer insights if feed with the appropriate empirical
data.

2. Heterogeneity within a single host. Many of the
existing within-host models describe the host as a
single population of target cells without any struc-
ture. This is obviously not the case and heterogene-
ity in cell type, spatial structure, susceptibility and
immune response will all play important roles in
shaping infection dynamics.

3. Fitness landscapes may be highly dynamic and
variable between host types. Very little is known
about the topography of the fitness landscapes into
which viral populations evolve. Evidences suggest
they may be rugged but also contain some degree

a
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FIG. 1: The multiple levels of virus dynamics. Here only three
key examples are displayed, namely (a) molecular assembly
(b) virus-cell infection, and (c) social network of individual
hosts, represented as a graph with links indicating potential
transmissions. Between these levels, other intermediate scales
such as tissue/organ levels need to be considered.

of neutrality (Kouyos et al. 2012; Lalić and Elena
2015). Landscape’s topography may be strongly
affected by the cell types and immune responses,
with epistasis (Elena et al. 2010) and antagonis-
tic pleiotropy being essential components (Cervera
et al. 2016). Indeed, it has been recently sug-
gested that the dominant view among biologists of
a static fitness landscape as a succession of valleys
and peaks may be misleading to explain many ob-
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servations in virus evolution. Instead, it has been
suggested that an adaptive multiscape (Catalán et
al. 2017), or a time-fluctuating adaptive seascape
(Mustonen and Lässig 2009), may provide a much
better representation.

4. Current models do not easily incorporate high-
throughput next-generation sequencing (NGS)
data. Empirical studies have demonstrated that
during acute and chronic infections, RNA viruses
generate massive amounts of genetic variability
(Domingo et al. 2012). In some cases, this ge-
netic diversity is transmitted, in some other not.
NGS provides valuable information to assess the
size of bottlenecks and the spread of resistance
variants. Furthermore, quantitative methods have
been established at the epidemiological level, or us-
ing global level phylogeography analyses, typically
based on consensus sequences, but there seem to
be no well-established methods for analysis of NGS
data at this level, thus missing the opportunity to
link within- and between-individual diversity with
epidemiological processes.

5. Ignoring superinfectiona has greatly simplified
modeling efforts. However, it is not clear when this
approximation should be valid. Superinfection is
known to be important in many viruses, e.g. HIV-
1, increasing viral load and hastening progression
to AIDS (Korenromp et al. 2009).

6. The distinction between within- and between-host
dynamics can be easily made. However, the fact
that both of these scales involve further nested lev-
els has been often neglected. While multi-scale
models at the population level are common, these
models ignore the within-host components. This
lack of integration of within-host levels of complex-
ity, so far, resulted from the lack of information in
vivo. Fortunately, this limitation is being overcome
with NGS and the development of models that take
into account cellular processes (e.g., Loverdo et al.
2012).

7. What approaches should be used to link processes
across scales? modeling multi-scale processes in full
mechanistic detail, or even simulating such mod-
els, is unrealistic. One possibility is to come up
with ways of extracting the essential features of
lower-scale models to embed them into higher-scale
models efficiently (Mideo et al. 2008). An ap-
proach that has been successfully taken is to sep-
arate timescales, which essentially separates mod-
els that may be used at different scales. Following

a Superinfection refers to the process in which an already infected
host becomes secondarily infected by a different virus or a differ-
ent strain of the same virus.

this philosophy, Park et al. (2013) used Markov
chain modeling at the within-host level embedded
into a stochastic branching process for between-
host transmission. The challenge is to develop bet-
ter methods for incorporating multiple scales into
a single framework.

As complex adaptive dynamical systems, viruses ex-
perience critical phase transitions at different levels of
organization (Solé and Elena, 2019). These critical tran-
sitions involve a sudden change in the dynamical behav-
ior or the internal structure of the system. At the lowest
molecular level, the concept of critical points at phase
transitions have been used to describe process such as
the assembly and disassembly of viral particles (Dhar-
mavaram et al. 2017), the error threshold associated to
the highly mutagenic replication of viral genomes (Eigen
1971), the spread of perturbations across host protein-
protein and regulatory networks induced by viral factors
(Bosque et al. 2014), and the agglomeration of viral par-
ticles to form pseudo-crystal structures which may op-
erate as units of selection (Cuevas et al. 2017). At the
individual patient level, coordinated changes in expres-
sion levels of host proteins linked into functional modules
may act as early-warning signals for the critical transi-
tion between healthy and disease stages during infection
(Liu et al. 2012). Finally, at the epidemiological level,
spread of a viral disease in a scale-free network formed
by connected populations of susceptible host show com-
plex dynamical behavior and phase transitions from non-
epidemic to epidemic stages associated with the existence
of highly connected hubs (Barthélemy et al. 2005; Bal-
can and Vespignani 2011). So far, models connecting
phase transitions at different levels have not been pro-
posed. Likewise, no model has been brought forward to
explore whether transitions at one level may results from
the dynamical properties of the levels below, especially
whether the role of natural selection at each level may
interplay with criticality.

In this article, we promote the idea that phase transi-
tions should be considered as a unifying principle across
the different scales of virus complexity. In the following
sections, we will illustrate this idea by presenting a num-
ber of well-characterized examples of phase transitions
in virology. All selected examples involve transitions be-
tween different, well-defined phases. These include: self-
assembly of viral particles, intra-host infection dynamic,
the existence of epidemic thresholds, the triggering of
large-scale pandemics on highly connected networks, and
the evolution of multipartite viruses as a case of mu-
tualistic interactions between molecular replicators. In
addition, we will describe three more examples that fit
within the more general class of information and diversity
thresholds: the error catastrophe at increasing mutation
rates, the two-sides of recombination in purging delete-
rious variation or in driving towards extinction, and the
antigenic diversity threshold in the set point of HIV-1
progression. In all examples, we will provide a simplified
mathematical description of the system and show the ex-
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FIG. 2: Phase transitions in both physics and virus dynamics involve marked qualitative changes. An example is (a) the boiling
of water, where the two phases (liquid and steam) coexist. For different values of temperature and pressure, a phase diagram
(b) reveals three basic phases are separated by well-defined critical curves. The molecular organization of viral capsids is also
sharply affected by key parameters. An example is the formation of TMV that takes place by self-assembly of coat proteins
(c) leading to long rods. But such process and the final nature (phase) of the self-assembly process is sharply controlled by
physicochemical parameters, such as pH or ionic strength. This pair of parameters allow displaying a phase diagram (d) that
also exhibits transition lines between different configurations.

istence of these critical organization thresholds that can
be clearly identified by means of the so-called bifurca-
tions. Readers less interested in mathematical details
can jump over the next section without losing the main
messages.

II. PHASE TRANSITIONS: SIMPLE MODELS
EXPLAIN COMPLEX CHANGES

Phase transitions are introduced in this paper with the
aim of providing a proper framework to understand the
nature of change in virology. By change we refer to the
qualitative dynamical and structural shifts of organiza-
tion of complex systems. The term phase transition was

coined to describe the sudden shift between states of mat-
ter, but has been since then generalized to many other
domains (Solé, 2011). An example is the phase change
from ice to liquid water or from water to steam, as shown
in Fig. 2a . Each phase is defined by some state that is
uniform within its domain in the phase diagram, which
essentially tells us which phases are stable under what
conditions. Such properties can rapidly change close to
the boundaries between phases. Figure 2b shows a clas-
sical example, namely the transition from liquid water
to steam. Within a given phase, no major differences
can be seen beyond smooth quantitative changes. As
an example, when water is heated from 2 oC to 25 oC
the same state (liquid) is observed and its density only
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changes slightly (by just 2 %) while it decreases 1600-
fold as boiling temperature is reached. In other words, a
slight change close to the transition point drives a very
large, abrupt change in density. Such abrupt transition
is termed ”first-order” and is also observed in the melt-
ing of ice. This occurs also in other diverse systems,
such as polymers and other materials experiencing qual-
itative structural re-arrangements (Dill and Bromberg
2012), abrupt climate change (see Solé 2011 and refer-
ences therein) or ant colonies exploring their environ-
ments (Beekman et al. 2001; Piñero and Solé 2019).
In all these systems it is possible to define a phase dia-
gram showing the parameter values at which the different
states (phases) are found. Now, instead of temperature
and pressure, the axes can include, for example, molec-
ular concentrations or strength of ionic forces, which af-
fect the kinds of capsid assembly for the tobacco mosaic
virus (TMV) (Fig. 2c-d). The process of virus assembly
requires the formation of rods (Fig. 2c) which is affected
by key external parameters defining a space of shapes
(Fig. 2d). The structures shown here are the dominant
ones in each phase (Klugg 2010).

A different class of transition, known as a second-order
phase transition, involves a qualitative change as well
but this change occurs in a smooth manner as parame-
ters vary. This is the case for example in the behavior
of ferromagnetic materials: when a magnet is heated, it
initially maintains its magnetization, which decays until
it vanishes altogether at a critical temperature Tc. In
these transitions, remarkably rich behavior can be ob-
served, including both very high variance in both struc-
tural and dynamical traits. wide fluctuations in the mea-
sured macroscopic properties (such as magnetization) are
observed as we approach criticality (the phase transition
point) where the variance diverges. For this example,
we have a microscopic description that allowed to for-
mulate a simple model capable of capturing most rele-
vant features of the real transition. This is the so called
Ising model or, as physicist Nigel Goldenfeld calls it, ”the
Drosophila model of statistical mechanics”.

A magnet can be imagined as a lattice of units (atoms)
each one describable as some kind of magnet itself, with
two possible orientations (or ”spins”): up and down.
Mathematically, that means that we have a collection of
N units whose states are indicated as Sk, located on a ge-
ometric grid and having two possible states, say Sk = −1
and Sk = +1. From quantum mechanical arguments, it
is known that the lowest energy state (and thus the more
likely) is the one where nearest atoms have the same spin
states (with some probability). If the two types of spins
are indicated as +1 and −1, the difference between the
number of up spins (N+) and down spins (N−), defines
the global magnetization M , i.e. M = N+ − N−. This
value gives the capacity of the magnet to attract other
ferrous materials. As temperature grows, the coupling
between spins becomes less and less strong. If tempera-
ture T is below a critical value, labeled Tc, interactions
among nearest spins would favor a dominant direction.

Assuming that the system started from a random ini-
tial condition, the outcome of spin-spin interactions is
one of two possible macroscopic ordered states: either
a majority of up spins or the alternative dominated by
down spins. However, if T > Tc, disorder wins, and spins
essentially behave randomly. This is thus a transition
between two equally likely ordered states where M 6= 0
and a disordered phase with M = 0. Within each of the
two phases, all measurable properties change smoothly.

The previous observations can be captured using a mi-
croscopic model (the so called Ising model) that involves
defining an energy function H given by the sum (Chris-
tensen and Moloney, 2005)

H = −1

2

∑

〈i,k〉
JSkSi, (1)

where J is a coupling constant that weights the strength
of spin-spin interactions. The bracket 〈i, k〉 indicates that
the pairs are restricted to nearest neighbors. As defined,
we can see that energy decreases (as it occurs with any
spontaneous phenomenon) when SiSk = 1, i.e. when
both spins are oriented in the same direction. Along with
this energy function, a set of rules is needed to introduce
changes into the state of the units as they interact under
a given temperature. In a nutshell, we need probabilities
of transition P [Si → 1− Si] for every chosen unit Si be-
tween the two possible states, that include on one hand
the effect of temperature (the higher, the weaker the in-
teraction) and, on the other hand, the set of neighbors
of the chosen unit. The larger the fraction of neighbors
pointing in the same direction, the more likely that our
unit will follow them. It can be shown (Solé 2011) that
one simple way of implementing this probability is:

P [Si → 1− Si] =
1

1 + exp(∆H/kT )
, (2)

where ∆H indicates the change in energy associated to
the spin flip. It can be easily shown that this transition
probability properly behaves as expected: it will be close
to 0.5 (coin toss) for high temperatures while will be
close to one at low temperature when the energy change
is favorable, i.e. when ∆H < 0 (see also chapter two in
Solé and Goodwin, 2001).

A specially important consequence of the Ising model
was the realization that it was able to explain not just the
presence of phase transitions. When analyzing the quan-
titative properties of this model close to critical points,
it turned out that they predicted with enormous preci-
sion the experimental observations. In other words, in
order to accurately explain the experimental data, ex-
tremely simple models with the minimal description of
units and their interactions turned to be enough. Actu-
ally, very different systems undergoing phase transitions
were shown to respond to exactly the same class of min-
imal model. Such universality pervades the theory of
critical phenomena (Stanley et al. 1996, Kadanoff 2000,
Goldenfeld 2018) and has been used in multiple scenarios,
from cosmology to social and economic systems.
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A full analysis of these Ising-like models would require
going deeper into statistical physics methods (Goldenfeld
2018) but it can be shown that on a coarse-grained ap-
proximation, the so called mean field b Ising-like models
follow the simple differential equation (Christensen and
Moloney, 2005; Solé 2011)

dM

dt
= fT (M) = (Tc − T )M −M3, (3)

where M is the magnetisation but would indicate, for ex-
ample, the average values of concentration or populations
levels. This is the kind of mathematical approximation
followed in this paper, where we will also ignore most
details of the interactions among different components,
as well as stochastic and spatial effects (Stollenwerk and
Jansen 2011) which require mathematical developments
beyond the scope of our contribution. The last equation
does represent fairly well what takes place when a magnet
experiences the phase transitions. The relevant states are
defined by the so called fixed points of the model, namely
those M∗ such that

(
dM

dt

)

M=M∗
= 0 (4)

in other words, those M such that the the right-hand side
of (3) is zero. This gives three solutions: (a) the zero-
magnetization state M∗ = 0 which would be associated
to the disordered state (equal average numbers of up and
down spins) and two additional states

M∗± = ±
√
Tc − T

which only exist when T < Tc, i. e. at the low-T phase.
It can be shown (Strogatz 1994) that each of these points
will be stable if the sign of

λ(M∗) =

(
dfT (M)

dT

)

M=M∗
(5)

is negative. As an example, M∗ = 0 will be stable (and
that. will be the observable state) when T > Tc while
the two others will be stable if the opposite condition
(T < Tc) holds. Using this class of model the location
of Tc and other quantities will deviate from the spatial
system, when only nearest neighbors interact. However,
this is a rather limited context that can be ignored here.
In most cases, these models are enough to capture the
presence and implications of transition phenomena.

An additional message that emerges from the success
of simple models is that even apparently too complicated
systems can be properly approached by highly simplified

b Mean field models are a very powerful tool in statistical physics.
They ignore local, spatial correlations among the interacting en-
tities assuming the system is perfectly mixed. This assumption
usually allows to obtain dynamical equations.

dynamical pictures. This is in fact at the root of the
success of mathematical models and, to a large extent,
the success of well established disciplines like the physics
of collective phenomena and, in a more general sense,
the theory of complex systems. Intuition tells us that
a complicated system (almost any real system we would
handle) would require a proportional degree of detail and
complication. If that were true, models would be seldom
useful to understand reality, since they would become
too complicated to be understood. The good news is
that, for most complex nonlinear systems, there are a
few key variables that play a major role in controlling
the dynamics of different phases of a system as well as
the presence of transitions between them (Haken 1975;
Nicolis 1995).

In this paper we present several well-defined, simple
models for a diverse range of problems in virology. Al-
though models incorporating microscopic dynamics have
been developed, our approach is based on mean field ap-
proximations where only the population-level dynamics is
taken into account. This means that we consider the av-
erage features of interactions and use them to construct
population-level descriptions. This allows to show the
general relevance of the concept of phase transition, its
conditions for occurrence and relevance, avoiding a more
technical and lengthy presentation of each case study.

A. Self-assembly of viral particles

As a first example of phase transition at the molecular
scale, let us consider the self-assembly of viral capsids.
This process depends on energy-driven physical forces.
Self-assembly results from cooperative interactions under
the laws of physics and is a crucial component of emer-
gent dynamics (Whitesides and Grzybowski 2002; Fre-
itas and Merkle 2004; Mouritsen 2005; Solé 2009). We
can treat viral assembly as an energy minimization pro-
cess (Hagan and Chandler 2006, Higks and Henely 2006,
Rossman and Rao 2012, Perlmuter and Hagan 2015).
As pointed out by Zlotnick (2004), understanding the
physics of viral self-assembly requires a proper knowl-
edge of the requirements of viral stability and how it is
regulated. In this section we consider the problem of how
key parameters such as the concentration of capsomers
can act as a control parameter for a phase transition sep-
arating a set of disconnected units from a fully formed
capsid. How such model can be formulated and what are
its consequences?

Several studies have used well-defined physical models
of capsomer structure and interactions, usually based on
different extensions of well-known reaction kinetic mod-
els including self-assembly and polymerization (Kushner
1969) and, in particular, physical models of viral as-
sembly based on the minimization of energy functions
(Bruinsma et al. 2003; Zandi et al. 2004; Hagan 2014).
Among the most interesting results offered by these mod-
elling approaches, when applied to spherical viruses, is
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FIG. 3: Second-order phase transition in the capsid assembly process. (a) Predicted theoretical result fc(ρT ) = 1 − (ρ∗/ρT )
for (from left to right) N =12, 60 and 1000, respectively. f(ρ) represents the fraction of capsids present in a given cell as a
function of the capsomer concentration (ρ). An experimental test of this theoretical result is shown in panel (b) using empty
capsids of hepatitis B virus (inset) under different dimer subunit and salt concentrations (adapted from Hagan (2014)). In (c)
several snapshots from a spatial simulation of capsid self-assembly are shown (modified from Rapaport 2010). They show an
early state (T0) and several intermediate states where only shells and well formed capsids are shown (the units not forming
these structures are not shown in T1, T2, T3 for proper visualization of the larger structures)

the finding that the limited repertoire of possible icosa-
hedral ’solutions’ corresponds to the minima of an en-
ergy landscape (Bruinsma et al. 2003) thus showing that
physics pervades the constraints associated to the uni-
verse of viral forms. One important side effect of this
result is the explanation for the discrete nature of pos-
sible icosahedral viruses and their ’mathematical’ nature
(Stewart 1999).

Let us now explore the simplest picture of self-assembly
processes based in a kinetic model leading to a dynami-
cal pattern of aggregation characterized by the presence
of a second-order phase transition behavior (Dill and
Bromberg 2011). This can be illustrated by a minimal
model where a set of n capsomer aggregate to form an
entire capsid. If we indicate by A1 single building cap-
somers and as An the full assembled capsid, the reaction
for the whole process could be easily described by

nA1
K−→ An, (6)

where K = [An]/[A1]n is the equilibrium constant. If
we indicate by C0 the initial concentration of A1, the
reaction kinetics for A1 would be described by a nonlinear

equation dA1/dt = −KAn1 whose solution is given by

A1(t) =

[
C0

1 +KC0(n− 1)t

] 1
n−1

, (7)

displaying two markedly different behaviors as a function
of K. This can be shown by looking at the fraction ν(x)
of components associated to assembled aggregates as a
function of K, where x = [A1]. Since [A1] + n[An] is
the total number of capsomers and [A1] + [An] the total
number of ’objects’

ν(x) =
1 + nKxn−1

1 +Kxn−1
, (8)

which exhibits a sharp transition close to a critical value
given by

xc = K−1/(n−1). (9)

This cooperative behavior indicates that, once a crit-
ical capsomer concentration xc is reached, the system
experiences a rapid and irreversible transition into large
structures with a characteristic size. This occurs in a
thermodynamically favored direction, and thus the re-
sulting assemblies are highly stable structures. In a
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chemical system formed by inert molecules, self-assembly
takes place by an energy-minimization process (that is
captured in the irreversible reaction described above)
eventually ending up in stable assemblies. Continu-
ous translation of the virus’ capsid protein gene(s) into
capsomers creates the conditions for this transition as
the concentration of capsomers in the cell cytoplasm in-
creases until the xc required for self-assembly is reached.

The specific application of this approach to the self-
assembly of viral capsids can be used to obtain an ex-
pression for the fraction of capsids f(ρ) present in a given
system (such as the cytoplasm) as a function of the cap-
somer concentration (ρ) assuming that (as before) we
neglect all molecular intermediates except free capsomers
(Hagan 2014). If the total concentration of capsid units
ρT is given by: ρT = ρ1+NρN , where N is the number of
capsomers necessary to build a capsid, and ρ1 and ρN the
densities of single capsomers and whole capsids, respec-
tively, one can define the fraction of capsomers already
forming part of capsids using

fc =
NρN
ρT

. (10)

A critical concentration ρ∗ exists such that a phase tran-
sition occurs, separating a sub-critical phase with essen-
tially no self-assembly of viral particles, i.e.,

fc(ρT ) ≈
(
ρT
ρ∗

)N
(11)

for ρT � ρ∗ , from a second phase in which virus capsids
form, and f reads

fc(ρT ) = 1− ρ∗

ρT
(12)

when ρT � ρ∗. The phase transition curves predicted
from the model are displayed in Fig. 3a, using three dif-
ferent values of N . The results of an experimental test
of this model are shown in Fig. 3b, where different con-
centrations of capsomers have been used under variable
salt concentrations enhancing the self-assembling process
(see Hagan (2014) for details).

The study of the microscopic processes underlying vi-
ral assembly has been a very active area where the use of
both kinetic and thermodynamic (physical) models has
been very successful. In particular, molecular dynamic
models provided the basis for describing the details of
such self-assembly using energy functions that capture
the nature of the underlying potentials (Rapaport 2010,
2014). In Fig. 3c we display an example of the simu-
lation outcome of this process, where the units have a
three-dimensional geometry and assembly follows several
intermediate steps, involving for example the formation
of shells. More sophisticated models allow to study the
interaction between genomes and capsomers as the full
viral particle is formed (Permuter et al 2013).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Vs

Is

P
o

p
u

la
ti
o

n
 e

q
u

ili
b

ri
u

m

−
kinfection rate

− γ
− δI− εT

FIG. 4: Simple models and complex interactions. Second-
order phase transition showing how the equilibrium values of
the virus population (Vs, solid line) and infected cells (Is,
dashed line) diminish at decreasing the infection rate k. The
inset displays a schematic diagram of the model, with the in-
teractions between the susceptible cells (T ) and viruses (V )
(drawings by R. Solé). See Eqs. (13)-(15) for the mathemati-
cal description.

B. Intrahost infection dynamics

When a model of cell-virus interactions is to be build,
population biologists usually consider the number of in-
dividuals in each two species (say X and Y for cells
and virus, respectively) as the key variables. Interac-
tion, growth and mortality parameters are then intro-
duced and the main problem is how to properly express
the functional relations associated to all these processes
(Case 2000). The reactions required to represent this
Lotka-Volterra type model (May 1973; Gotelli 1988) are
represented schematically in the inset of Fig. 4. One
could say that this is too simple to represent the true
complexity of a natural virus-cell system, but the truth
is that this toy model accounts for one particularly rel-
evant property of these systems, namely the presence of
cycles, which are a consequence of the internal dynamics
of the system. Instead of being driven by some exter-
nal driver, the nonlinearities of the model fully account
for the emergence of oscillatory behaviour. This oscilla-
tory regimes have been recently identified in mathemati-
cal models incorporating further complexity in infection
processes (Nurtay et al. 2018).

Consider now the problem of a minimal model of vi-
ral infection (Fig. 4) where three variables are at least
needed: the number of target cells (T ), the number of
infected cells (I) and the amount of viruses (V ). This
model has been studied in detail elsewhere (Perelson and
Nelson 1999; Statford et al. 2000; Perelson 2002; Nowak
et al. 1996) and assumes that a population of cells is
generated at some constant rate λ. These cells are the
target of a virus that infects them at some rate k and
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this process generates infected cells, which produce virus
particles at some rate p (the burst size). All the three
populations decay with given rates (indicated as ε, δ and
γ in the inset of Fig. 4).

The set of interactions also involves pairwise ’reac-
tions’, but in this case viruses transform their host (turn-
ing T cells into infected I cells) into a different type
of ’particle’ and moreover they are produced by the in-
fected cell population I at a constant rate. Additionally,
the model assumes a completely mixed system where en-
counters between viruses and cells occur at random with
homogeneous rates. This is of course another simplifica-
tion: susceptible cells are usually strongly structure in
space forming tissues, the model considers no evolution
of the viral component, which of course is also a very
strong assumption.

The following set of equations describes the basic dy-
namics outlined in the inset of Fig. 4:

dT

dt
= λ− εT − kV T (13)

dI

dt
= kV T − δI (14)

dV

dt
= pI − γ V. (15)

This model gives intuition concerning the potential
outcomes of the infection dynamics. It has two alter-
native equilibrium points (steady states), obtained from
dT/dt = dI/dt = dV/dt = 0. The first corresponds to
the virus-free system, and is given by S0 = (λ/ε, 0, 0),
whereas the second equilibrium point provides the steady
state S1 = (Ts, Is, Vs) where we have a steady infected
population

Is =
1

δ

(
1− εγδ

pk

)
(16)

and the equilibrium value for the virus population given
by

Vs =
p

δγ
− ε

k
. (17)

The last expression gives a critical condition for the virus
to persist: since we need Vs > 0 to meet this condition,
we have p/δγ > ε/k or, by rearranging terms, if

R0 =
pk

δγε
> 1. (18)

R0 is known as the basic reproductive number, represent-
ing a threshold condition for infection success occurring
when R0 > 1. R0 thus defines the critical value for a
second-order transition, as shown in Fig. 4 by tuning the
infection rate k.

This only one among many different models of virus-
host interactions and in particular the role played by
immune responses. Several monographs have explored
diverse scenarios (Nowak and May 2000; Wodarz 2007;

Bocharov et al. 2018; see also Perelson and Weisbuch
1997 for a more physics-oriented view). Despite the po-
tential richness and high-dimensional character of ex-
tended models, it is often feasible to find the condi-
tions for successful propagation by means of simple mod-
els. This has also important consequences for defining
the critical conditions for successful therapies (Perelson
2002).

C. Epidemic thresholds

Epidemiological models are diverse in their structure
and complexity, depending on how many categories of in-
dividuals are included and whether they are deterministic
or incorporate stochastic components. The simplest pos-
sible model is the susceptible-infected-susceptible (SIS)
one, that only includes susceptible (S) and infected (I)
individuals. This is a toy model, and some basic assump-
tions are required. The first one being that I + S = N ,
which means that, at some scale, the total population re-
mains constant. Secondly, there is no heterogeneity and
thus all interactions between individuals are weighted
with exactly the same parameter values. In a well-mixed
system, the rules outlined above can be described with
two reactions associated to infection and recovery, given
by:

I + S
µ−→ 2I, (19)

I
α−→ S. (20)

It is easy to show that the equations describing our sys-
tem are:

dI

dt
= µIS − αI = −dS

dt
(21)

and since the total population I + S is conserved, using
a normalized density of infected individuals ρ = I/N , we
have

dρ

dt
= µρ(1− ρ)− αρ (22)

consistently with the previous result. We now have a
one-variable model that can be solved analytically. This
equation is actually the well-known logistic model with
density-independent decay rate. This simple model is
known to suffer a smooth transition as µ decreases below
a given threshold (Fig. 5). Indeed, the mathematical pic-
ture of this smooth continuous phase transition is given
by the so called transcritical bifurcation (Strogatz 1994).

Equation (22) can actually be re-written in a logistic-
like form by defining ρ∗ = 1− α/µ, i.e.

dρ

dt
= µρ(ρ∗ − ρ), (23)

If ρ0 that represents the initial condition, the solution of
this differential equation is:

ρ(t) =
ρ∗

1 +
(
ρ∗

ρ0
− 1
)
e−(µ−α)t

. (24)
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After long periods of time, i.e., in the limit ρ∞ =
limt→∞ ρ(t) two solutions are possible, namely ρ∞ = ρ∗

when µ > α and ρ∞ = 0 when µ < α. The first point in-
volves a stable epidemic event that would infect a fraction
(1 − α/µ) of individuals of the population, whereas the
second represents the extinction of the virus. The critical
point µc = α separates the subcritical phase, where the
epidemics dies out from the supercritical phase, where
the epidemics is self-maintained.

An important result from the previous model definition
is that, at the supercritical phase, the initial growth of the
epidemics is exponential. This can be shown by assuming
that the current relative frequency of infected individuals
is very small, i.e., ρ � 1. In this case, it is possible to
make the approximation 1−ρ ≈ 1 and thus the equation
for epidemic spreading now becomes:

dρ

dt
≈ α(R0 − 1)ρ, (25)

where we define R0 = µ/α as the basic reproductive num-
ber. Using this definition, an exponential growth is ob-
tained

ρ(t) = ρ(0)eα(R0−1)t. (26)

which is positive (and epidemic spreading occurs) pro-
vided that R0 > 1 and the epidemic would die out if
R0 < 1. R0 can also be seen as a the critical point at
which the system transitions from no epidemic to epi-
demic success. Values of R0 are quite variable among
viruses. For example, it was estimated in the range 1.5 -
2.5 for the Ebola virus. It ranges from 2 to 5 for the sex-
ual transmission of HIV-1, while the measles virus, which
is airborne transmitted, has R0 values ranging from 12
to 18. It is interesting to note that R0 involves several
components, including the infectivity of the pathogen µ,
the recovery rate α and the population size N . There-
fore, the behaviour of the critical point can be explored
as a function of any of these three parameters, e.g., µ as
shown in Fig. 5.

This very basic SIS model can be improved by adding
specific spatial structure: hosts live in a lattice and the
probabilities of transmission depend on the physical dis-
tances between individuals in the lattice. Obviously, this
system makes computations slightly more complicated,
but the conclusion is that a critical R0 can still be re-
covered as a function of the rate arrival of infected indi-
viduals into the population, β, and the rate of recovery,
α (Anderson and May 1998): R0 =β/α, which still de-
fines a second-order phase transition. The exact location
of the transition point has moved and the shape of the
curve on the right hand side (Fig. 5) is slightly different,
but the phenomenon itself remains preserved.

D. Large-scale pandemics on networks

In the previous section we have considered in certain
detail the very simple SIS model of epidemic spreading

FIG. 5: Epidemic spreading as a continuous transition
(dashed line). Here we use α = 0.1 and plot the station-
ary fraction of infected individuals (ρ) against the infection
rate, µ. For comparison, we also display the same plot for
a spatially extended system on a two-dimensional 100 × 100
square lattice. Here, infected and susceptible sites are shown
as black and white patches. The spatial effects make more
difficult the propagation of the epidemics and thus the criti-
cal point predicted by the mean field theory is found at higher
values of µ.

that occurs in a well mixed (mean field) context. Simi-
lar results would be found by assuming that individuals
interact at random with a given probability. However,
the networks of interactions among humans can depart
from the mean field approach. Similarly, transportation
networks connecting humans on large scales strongly de-
part from these simplified pictures (Pastor-Satorras and
Vespignani 2001; Lloyd and May 2001; Brockman and
Helbing 2013; Pastor-Satorras et al. 2015; Barabási
2016).

If we look at the probability P (k) of a node (e.g., an
airport) being connected to k other nodes, they follow
heavy-tailed distributions described as scaling laws, i.e.
P (k) ∼ k−γ , where γ is known as the scaling exponent.
Here we will explore the problem of epidemic spreading in
scale-free networks by means of a SIS model. Each node
in the graph of interactions represents and individual and
each link a potential transmission event. The average
density of infected individuals ρ(t) (prevalence) at the
mean-field level is

dρ(t)

dt
= µ 〈k〉 ρ(t) [1− ρ(t)]− αρ(t), (27)

where µ is the infectivity of the virus and 〈k〉 the average
degree of the graph (i.e. the number of connections per
node). As we can see, we have just recovered the mean
field equation for the SIS model, given by Eq. (22).

By defining an effective spreading rate λ = µ/α, we
can write:

dρ(t)

dt
= λ 〈k〉 ρ(t) [1− ρ(t)]− ρ(t). (28)
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a

b

c

d

FIG. 6: Lack of eradication thresholds in epidemic models on scale-free networks. Large-scale transportation networks, such as
the international web of airports (a) display highly heterogeneous connectivity distributions (picture after Dirk Brokman). (b)
Mean field model prediction displaying a phase transition (in a SIS mode, continuous line) is compared with the one shown for a
scale-free network (dashed line). When dealing with disease transmission networks among humans, which also display scale-free
structure (c), protecting the hubs can effectively make the web homogeneous (d) thus recovering the standard, second-order
transition found in homogeneous graphs(d). Insets c-d adapted from Barabási (2016).

The benefit of this mean-field equation stems from the
fact that density correlations are ignored. On random
graphs and related graphs, one can assume that k ' 〈k〉.
It is easy to demonstrate that a non-zero epidemic thresh-
old exists at λc = 〈k〉−1

such that

ρ = 0 if λ < λc, (29)

ρ ∼ 1− 1

〈k〉 if λ ≥ λc. (30)

So far, everything seems pretty much the same, but
a crucial property of scale-free networks changes every-
thing (Pastor-Satorras and Vespignani 2001; Lloyd and
May 2001; Dezsö and Barabási 2001; Barabási 2016).
The fluctuations

〈
k2
〉

in scale-free networks diverge for
any value of the critical exponent 2 < γ < 3 and thus
highly connected nodes are statistically significant: the
mean field approximation breaks down. In order to take

into account these fluctuations, the relative density ρk(t)
of infected nodes with given connectivity k must be taken
into account. The mean-field equations can thus be writ-
ten as

dρk(t)

dt
= λk [1− ρk(t)] Θ(ρ(t))− ρk(t) (31)

for k = 1, ...N . A new term Θ(ρ(t)) indicates the proba-
bility that any given link points to an infected node. The
probability that a link points to a node with k links is
proportional to kP (k). A randomly chosen link is thus
more likely to be connected to an infected node with high
connectivity, yielding

Θ(ρ(t)) =

∑
k kP (k)ρk(t)∑

k kP (k)
, (32)

where
∑
k kP (k) = 〈k〉 by definition. At the steady state
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dρk(t)/dt = 0, and hence

ρk =
λkΘ

1 + λkΘ
(33)

and the following relation follows:

Θ =
1

〈k〉
∑

k

kP (k)
λkΘ

1 + λkΘ
, (34)

where Θ is now a function of λ alone.
The solution Θ = 0 is always satisfying the previous

equation. A non-zero stationary prevalence (ρk 6= 0) is
obtained when the right hand and the left hand sides of
Eq. (34), expressed as function of Θ, cross in the interval
0 < Θ ≤ 1 allowing a nontrivial solution. It is easy to
realize that this corresponds to the inequality

d

dΘ

(
1

〈k〉
∑

k

kP (k)
λkΘ

1 + λkΘ

)

Θ=0

≥ 1 (35)

being satisfied, defining the critical epidemic threshold
by:

∑
k kP (k)λck

〈k〉 =

〈
k2
〉

〈k〉 λc = 1, (36)

or rewritten as

λc =
〈k〉
〈k2〉 , (37)

which is nothing but the inverse of the coefficient of vari-
ation of the network’s degree (CV, Anderson and May
1991). This result means that in scale-free networks with
γ ∈ (2, 3) λc = 0 (see dashed line in Fig. 6b) and thus
for any value of λ the infection can pervade the system
with a finite prevalence (Pastor-Satorras and Vespignani
2001). For small λ it is possible to solve explicitly the
previous equation and calculate the prevalence in the en-
demic state as follows:

ρ =
∑

k

P (k)ρk. (38)

In the particular case of the Barabási-Albert network
with γ = 3, we have ρ ∼ exp(−C/λ) where C is a con-
stant.

The absence of any epidemic threshold in this network
can be understood by noticing that in heterogeneous sys-
tems R0 contains a correction term linearly dependent on
the standard deviation of the connectivity distribution.
In scale-free networks the divergence of the connectivity
fluctuations always leads to an R0 > 1 at any rate λ. This
ensures that epidemics always have a finite probability to
survive indefinitely. This of course makes more difficult
to properly exploit a propagation threshold and define
containment strategies. However, it is possible to ”cure”
the hubs (by immunizing them) and generate an effective
threshold (Dezso and Barabási 2002; see also Kitsak et al.

2010; Wang et al. 2016; see also Hufnagel et al. 2004).
The key idea here is that, once these highly connected
nodes are protected from infection, the remaining graph
is not fat-tailed anymore, as shown by the inset graph
in Fig. 6d. The presence or absence of epidemic thresh-
olds in the real world has thus considerable implications,
both in the context of disease spreading and the propa-
gation of computer viruses (see Solé and Elena 2019 and
references therein).

III. THE EVOLUTIONARY DIMENSION:
MULTIPARTITE VIRUSES AND MUTUALISM

The previous examples illustrate how simple dynami-
cal models can display marked changes in the behavior
of a diverse range of problems in virology. Except for the
self-assembly problem, all these case studies share a uni-
fying feature: in a way or another, the transition requires
achieving a critical threshold level of infection beyond
which propagation occurs. There is, however, another
layer of complexity beyond these two-phase systems that
has to do with the nature itself of ecological interactions
and their impact on virus evolution. Crossing thresh-
olds in these cases has consequences for the presence or
absence of cooperative interactions among different viral
components.

Transitions between different kinds of population level
dynamics, such as competition versus mutualism or par-
asitism, are particularly important for evolutionary biol-
ogy. What kind of transitions can be found in models of
virus dynamics? A very interesting example is given by
a particular class of RNA viruses known as multipartite
viruses (Iranzo and Manrubia 2012; Sicard et al. 2016,
2019; Lućıa-Sanz et al. 2018). In a multipartite virus, no
single viral particle contains all the genomic segments,
which appears segregated in two or more particles. As a
consequence, the information required for a full infection
cycle is not linked into a single molecule but distributed.

An example of multipartite virus (Fig. 7a) is tobacco
rattle virus (TRV), which infects, along with tobacco,
many other plant species. It consists of two particles,
a long and a short one. The first contains the RNA1

segment encoding for the replicase, while the second par-
ticles encapsulates RNA2 segment that encodes for the
coat protein. As a consequence, the long particle can in-
fect and trigger the disease on its own, but the RNA1

will be trapped in the plant unless the coat protein is
present. A full cycle of infection thus requires the two
particles to be present. This kind of constraint creates
somewhat of a puzzle: viruses are typically seen as very
efficient, optimal replicators, but the picture of viruses
split into different particles seem to contradict this pic-
ture. What are the consequences of this genome split-
ting? A model brought forward by Nee (2000) illustrates
the richness of population models of multipartite viruses
and the presence of different types of ecological interac-
tions. The model includes three variables and the tran-
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FIG. 7: Multipartite viruses include two or more genomic segments, encapsidated independently, and all required to complete
the full life cycle of the virus. An example is tobacco rattle virus TRV, shown in (a) where we can appreciate the presence of
two kinds of particles (image by John Antoniw). A simple metapopulation model with a simple set of transition rules (b) can
help to explore the population and evolutionary traits of multipartite viruses. In a simple model of multipartite virus dynamics
(Nee 2000) the previous set of rules led to a sharp transition phenomenon (c) where the abundance of plants carrying the two
components of the multipartite virus are indicated against h.

sitions between states, as described in Fig. 7b. Here a
given habitat is considered, which can be visualized as a
grid of patches, as usual in many models of metapopula-
tion dynamics (Mollanen and Hanski 1998; Hanski 1999).
Patches can be empty, occupied by a plant carrying only
RNA1 or plants carrying the two components of the mul-
tipartite virus. These populations (normalized) are indi-
cated as x, y, z respectively. A fraction 0 ≤ h ≤ 1 of this
habitat is occupied.

Two main events are considered here: colonization, at
a given rate c and extinction, at a rate e. Both are prob-
abilities and thus 0 ≤ c, e ≤ 1. The basic model defining
the dynamics of each component is given by (Nee 2000):

dx

dt
= ey + ez − czx, (39)

dy

dt
= −ey + czx− czy, (40)

dz

dt
= −ez + czy, (41)

with a normalization condition defined by:

h = x+ y + z. (42)

This constraint allows to reduce our three-equation
model to a two-dimensional system, i. e.

dy

dt
= −ey + cz(h− y − z)− czy, (43)

dz

dt
= −ez + czy. (44)

The equilibrium points obtained from dy/dt = dz/dt =
0, are (after some simple algebra)

x∗ = h− y∗ − z∗, (45)

y∗ =
e

c
, (46)

z∗± =
1

2

(
h− 2e

c
±
√
h2 − 4eh

c

)
. (47)

A domain involving three possible equilibrium points
(two of them stable) is given by the condition

h2 − 4eh

c
≥ 0 (48)

i. e. the argument within the square root needs to be
positive. This will occur provided that

h > hc =
4e

c
. (49)

This is illustrated in the bifurcation diagram in Fig.
7c, where the possible equilibrium values of z are plot-
ted against the available population size h. The discon-
tinuous jump separating the phases of mutualism and
extinction is given by the so-called saddle-node bifurca-
tion, which often arises in systems with positive feedbacks
such as facilitating or cooperation. The diagram thus
indicates that a minimal accessible number of individ-
uals (plants in our metapopulation context) is required
to allow for the propagation of the multipartite viruses.
This is indicated by the extinction phase (left), separated
by a mutualistic, persistence phase (gray domain). The
positive solution starts at a value z∗ = Σ defining the
minimal (critical) population size. This result is related
to those found within the context of extinction thresh-
olds in metapopulation models due to habitat loss and
fragmentation including continuous (Bascompte and Solé
1996) and first-order (Sardanyés et al. 2019) transitions.
It thus connects the problem of reduced habitat and the
persistence of viral associations requiring higher-order in-
teractions (such as mutualism).

Beyond this simplistic model, other model approaches
to multipartite viruses incorporate other types of transi-
tions, such as transitions from monopartite to multipar-
tite life cycles (Valdano et al 2019). These models are
an essential part towards an understanding of the evo-
lutionary origins of multipartite viruses and how they
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are affected (among other things) by the multiplicity of
the infection (Lucia-Sanz and Manrubia 2017). The full
analysis of these models reveal a rich phase space where
diverse phases include competition, mutualism and com-
mensalism.

IV. INFORMATION AND DIVERSITY
TRANSITIONS

In this section we expand our previous case studies
of phase transitions with three more examples. These
cases are not related to transitions at different levels of
virus organisation, as we have discussed so far, but with
another type of phenomena: phase transitions involving
changes in information and genetic diversity. The first
example is the well known phenomenon of the meltdown
of genetic information at increasing mutation rates, with
viral populations entering into the so-called error catas-
trophe regime. This is a nice example of second-order
phase transition. The second example has to do with the
dual role of homologous recombination in the rescue of
mutationally compromised populations if recombination
is at some critical value, or driving them to extinction
if recombination is far too high. Interestingly, the first
situation corresponds to a second-order phase transition,
while the second situation corresponds to a first-order
one. The third example deals with the role of within-
host HIV-1 diversity in the progression towards AIDS,
which is also a second-order phase transition.

A. The error catastrophe

Because of their intrinsic simplicity and their strong
dependence upon the host molecular machinery to com-
plete their cellular infection cycle, viruses are unique dy-
namical systems. One particularly important trait of
RNA viruses is their high mutation rates, much higher
than any other rates exhibited by cellular systems and
a consequence of the lack of repair mechanisms associ-
ated to their RNA-dependent RNA polymerases (the in-
set in Fig. 8 shows the structure of hepatitis C virus repli-
case). This enzyme catalyses the replication of RNA tem-
plates producing new RNAs and mutation rates per nu-
cleotide and replication cycle are in the range 10−4−10−5

(Sanjuán et al. 2010). Recent research has also deter-
mined mutation rates of about 10−3 per base per cell
in the revers transcriptase of HIV-1 (an RNA-dependent
DNA polymerase) in peripheral blood mononuclear cells
(Cuevas et al. 2015). In DNA-based systems, such as
the cellular hosts, the process of DNA polymerization is
usually associated to a proofreading and highly efficient
and redundant repair mechanisms that effectively reduces
mutation rates to a range 10−8 − 10−11 ensuring a con-
trolled replication cycle (Drake et al. 1998). Since high
mutation carries a burden of genetic errors, this implies

⌫
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FIG. 8: Scaling law in the per-site mutation rate (µ) versus
genome size (ν), shown in log-log scale. The plot includes
chosen examples of RNA viruses, which lack error-repairing
mechanisms during replication (the inset displays the struc-
ture of hepatitis C virus RNA replicase (image obtained from
the wikipedia)). Larger genomes are represented by both
single-stranded and double-stranded RNA viruses and DNA
viruses, bacteria and a few eukaryotes (adapted from Gago et
al. 2009). The continuous line is used to highlight the inverse
law linking mutation rate µ and genome length ν predicted
by the error threshold theory.

that many resulting viral genomes can contain deleteri-
ous changes leading to non-viable viral particles.

Mutation is a crucial component of evolution, as ge-
netic variability is the fuel on which natural selection
operates to adapt populations to their environment. In
this sense, an error-prone polymerase can be seen as use-
ful to keep pace with the always changing environmental
conditions in which RNA viruses live (Domingo 2000).
However, keeping in mind that mutation is a random pro-
cess independent on the value that mutations may have
in the future generations, mutation itself is a double-edge
sword: too many mutations per genome may simply drive
fitness levels to such a low values that would not be com-
patible anymore with a successful replication. Therefore,
mutation rates, as any other trait, have evolved and have
been optimized for the lifestyle of RNA viruses: just high
enough but not more (Elena and Sanjuán 2005). For
RNA viruses, a heterogeneous population results in a so-
called viral quasispecies (Eigen 1971; Eigen et al. 1987;
Schuster 1994; Domingo and Holland 1994; Domingo et
al. 1995; Domingo et al. 2012). A viral mutant swarm
can be seen as a group of genomes dominated by a master
sequence of high fitness that may, or may not, coincide
with the average sequence of the population, the consen-
sus sequence.

The quasispecies population structure has many impli-
cations for the biology of RNA viruses. The most impor-
tant is that the mutant swarm stores a reservoir of phe-
notypes crucial to cope with environmental uncertainties:
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FIG. 9: The error catastrophe on a four-dimensional hy-
percube. Three occupation patterns for 4-bit strings are
shown: strings 1111 have a large fitness fm, whereas all
s1s2s3s4 6= 1111 (si ∈ {0, 1}) have the same, smaller fitness f .
Strings replicate with a mutation rate µ per bit. (a) Starting
with all 1111 strings, very small µ leads to a large majority
of strings located at 1111. (b) Larger mutation generates a
more disperse mutant cloud still surrounding the node 1111
(b). (c) A mutation rate close to its critical value allows to
preserve a cloud of strings while generating much more diver-
sity and keeping the information of sequence 1111. Beyond
the threshold, the population experiences pure genetic drift
and the master sequence is not found at all.

within the context of the virus infection and pathogen-
esis, that includes the host responses tied to immunity
but also others such as tissue specificity or resistance to
drugs (Andino and Domingo 2015; Domingo et al. 2012;
Lauring and Andino 2010; Holmes 2010).

One particularly unexpected consequence of the qua-
sispecies nature of viral populations is deeply connected
to the informational nature of RNA viruses. This is
known as the error catastrophe problem (Eigen 1971;
Eigen et al. 1987; Schuster 1994; Domingo and Holland
1994) and is tightly related with second-order phase tran-
sitions. It was originally defined within the context of
an abstract population of mutating molecular replicators
competing for limited resources. More precisely, Eigen
and Schuster considered a large population of genomes
where each sequence could replicate at some fix rate.
Replication rate will be sequence-dependent and the re-
lation between sequence and growth rate should be ex-
pected to be complex. Additionally, it is assumed that
every time a string replicates, mutations can occur at a
given rate µ.

Eigen (1971) predicted that there is a critical mutation
rate, µc, that decays as µc ∼ 1/ν beyond which no Dar-
winian selection can occur, and thus no viable sequences
would be observable for mutations higher than µ > µc.
In that case, random drift would be observed. Instead,
below the threshold, information can be maintained in
stable ways. Experimental data confirms this inverse re-
lationship. and thus mutation rates decrease as an in-
verse power law of genome length (Fig. 8). RNA viruses
exhibit the highest rates, orders of magnitude larger than
DNA viruses. At this point, two questions emerge: what
is the origin of such relationship? And what are the limits
(if any) of mutation rates in RNA viruses?

Eigen-Schuster quasispecies model (Eigen 1971) con-
siders a set of populations {xi} representing the abun-
dance of different genomes, changing in time by the fol-
lowing set of dynamical equations:

dxi
dt

=

n∑

j=1

fj µ(j → i)xj − Φ(x, t)xi, (50)

where xi indicates the fraction of the population asso-
ciated to the i−th mutant genome equipped with a M -
letter alphabet (here i = 1, ...n, where n = Mν is very
large, ν being the length of the genome) so that a normal-
ization condition applies, namely:

∑n
j=1 xj = 1. Here fj

is the growth rate of the j-th mutant, µ(j → i) is the
probability of having a mutation from sequence j to se-
quence i and Φ(x)c is the average fitness associated to

c Φ(x) is usually termed as the dilution outflow, which ensures a
constant population (

∑n
i=1 xi = constant and

∑n
i=1 ẋi = 0) also

introducing competition between replicating genomes
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the population vector x = (x1, ...xn), i.e.,

Φ(x, t) =

n∑

j=1

fjxj

(
n∑

i=1

µ(j → i)

)
=

n∑

j=1

fjxj = 〈f〉.

(51)
This model can sometimes be treated analytically under a
number of well defined set of conditions, showing that the
population structure corresponds to a cloud of sequences
(Eigen 1971; Eigen et al. 1988, 1989; Schuster 1994).

In this section we consider a specific case that will il-
lustrate how mutation can sharply limit the length of
genomes and thus the amount of information stored in a
quasispecies.Many possible extensions are not considered
here, such as the introduction of spatial degrees of free-
dom (Altmeyer et al 2001; Pastor-Satorras and Solé 2001;
Aguirre and Manrubia 2008; Sardanyes and Elena 2011),
secondary RNA structure (Stitch et al. 2007) or more
complex fitness landscapes (Saakian et al 2006; Saakian
2018).

The problem considered here can be mapped into a
high-dimensional sequence hyper-cube (Fig. 9) , where
each string is a digital genome, connected to nearest
neighbors in the cube that differ by one bit (single muta-
tion), considering binary genomes i.e. M = 2. Without
loss of generality, the general model described above can
be collapsed into only two fitness classes, namely fm for
the master and f for any other sequence of the mutant
spectrum (i.e., f1 = f2 = ... = fn = f) where n is very
large (n � 1). Hereafter it is assumed that fm > f ,
i.e., the master sequence replicates more efficiently than
any other sequence (Swetina and Schuster 1982). As-
suming that i.e., µ(i → j) = µ, we can split our system
of equations into two sets: the master sequence and the
mutant sequences. The system presented below is only
a simplified approximation to the space connecting dif-
ferent genomes. A more accurate picture is provided by
Fig. 9(b): from a given population xj , mutation will not
lead back to the master sequence or will be difficult to
occur. In this case, we will have xm + x = 1 where we
use x =

∑
j xj . For the master sequence we get:

dxm
dt

= fm(1− µ)xm +

n∑

j=1

fj
µ

n
xj − xmΦ(t), (52)

whereas the set of equations for the mutant sequences
reads:

dxi
dt

=
fmµ

n
xm +

n∑

j=1

fj
µ

n
xj − xiΦ(t). (53)

It is easy to show, after some algebra, that the first equa-
tion can be simplified to

dxm
dt

=≈ fm(1− µ)xm − xmΦ(t), (54)

where we have used µ/n� 1. For the equation describ-

ing the mutant class, we have:

dxi
dt

=
fm µ

n
xm + f(1− µ)xi +

n∑

j 6=i

fµ

n
xj − xiΦ(t). (55)

Since the ultimate goal is to describe the dynamics of
all these populations together, so we made the sum over
all possible mutant genomes, i.e.,

n∑

i=1

dxi
dt

=

n∑

i=1

fmµ

n
xm +

n∑

i=1

f(1− µ)xi

+

n∑

i=1

fµ

n




n∑

j 6=i
xj


−

n∑

i=1

xiΦ(t)

= µfmxm + f(1− µ)x+ fµ(x− xi)− xΦ(t). (56)

Given the homogeneous mutation rates, a stationary dis-
tribution will lead to xi ≈ x/n and thus the approxima-
tion x− xi ≈ x is guaranteed, leading to

dx

dt
≈ µfmxm + fx− xΦ(t), (57)

and as a result of these approximations, the two-
compartment model (Fig. 9(a)) can be collapsed into a
one-dimensional system (Swetina and Schuster 1982):

dxm
dt

= fm(1− µ)xm − xmΦ(xm, x), (58)

dx

dt
= fm µxm + fx− xΦ(xm, x). (59)

As we did above for the replicator model, the condition
xm+x = 1 leads to Φ(t) = 〈f〉 = fmxm+ fx. Using this
function, and since x = 1− xm, it can be obtained after
some algebra an equation for the master sequence:

dxm
dt

= xm [(1− xm)(fm − f)− µfm] . (60)

Two alternative equilibria are possible. The first one
being xm = 0, that corresponds to the extinction of the
master sequence and the full dominance of the pool of
mutants, and a nontrivial equilibrium

xm = 1− µfm
fm − f

, (61)

allowing the coexistence of both master and mutant se-
quences. The later solution will be positive (and the
master sequence will be present) provided that xm > 0
and this will occur if the mutation rate is lower than the
critical value:

µ < µc = 1− f/fm. (62)

This expression defines the boundary separating two well
defined phases, shown in Fig. 10(a). Within the qua-
sispecies phase, master genomes will be present, along
with a tail of mutants. Once the boundary is crossed, all
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mains dominant regardless the replication mode. As expected,
strong-effect mutations accumulate less than those causing
mild effects, irrespective of the mode of replication. However,
GR is more sensitive to the accumulation of mild mutations
than SMR (Fig. 4a), as indicated by the steeper slope for the
positive master strands. A similar situation occurs at interme-
diate mutation rates (! " 0.25) (Fig. 4b): both replication
modes accumulate more mild- than strong-effect mutations but
the GR accumulates proportionally more mild mutations. At
higher mutation rates (! " 0.6) (Fig. 4c) results change for
SMR in an important way, that is, positive master genomes are
not dominant anymore for the entire range of mutation sever-
ities and, instead, the mutant ones become the most abundant
class, although it is still possible to recover the master genome
along all the range of mutational severities at #10% popula-
tion frequency. Mild mutations are still the most commonly
fixed ones. However, GR collapses at intermediate mutational
severities ($% & 0.45), and all genotypes get extinguished due
to the accumulation of small-effect mutations.

Another difference between SMR and GR schemes is that at
low mutation rates the second-most-abundant genotype for
SMR is the antigenomic master strand, irrespective of the
severity of mutations, whereas antigenomic mutants are the
second-most-abundant class for GR. At intermediate mutation
rates, the genomic mutants become the second-most-abundant
class when replication occurs via SMR, and their frequency
rises as mutation rate increases. These results are in agreement
with those presented in the previous section and support the
notion that the SMR model of virus replication is not only
compatible with higher mutation rates but also more robust to
the severity of mutations.

In general, strong-effect mutations will have very low impact
on the fitness of populations, with the extreme case being
lethal mutations, which do not contribute to the next genera-
tion. By contrast, mutations of mild effect will accumulate in
the populations since selection is poorly efficient at removing

them. We have shown here that viral populations replicating
according to SMR accumulate less mild-effect mutations than
those whose replication was according to GR and that, there-
fore, selection will be more efficient in keeping the population
free of deleterious alleles (19).

Digital genomes. To incorporate the stochastic characteris-
tics inherent to viral infection and replication as well as to be
able to analyze different fitness landscapes, in the following
three sections we move from deterministic models based on
differential equations to stochastic models of simulation with
digital genomes.

(i) The equilibrium genotypic distributions differ between
SMR and GR and show different dynamics for the loss of the
master sequence. We begin our study of the stochastic model
by analyzing the effect of mutations across four different fitness
landscapes for both replication modes. The variable we are
measuring in this section is the equilibrium concentration for
the master genomic sequences and its mutant spectrum using
the per-bit mutation probability, !b, and an initial population
size [N(0)] of 50 genomes. For the epistatic landscapes (Fig.
1d), the epistasis coefficients (') were set to 1.4 and 0.6 for the
synergistic and antagonistic cases, respectively. The critical
mutation probability per bit, !b

c, is defined as the lowest mu-
tation value for which the master genomic strand (Si

%) con-
centration is (10)4 (the assumed concentration at which ex-
tinction takes place). The results of these simulations are
shown in Fig. 5. In the case of the Swetina-Schuster single-
sharp-peak landscape (Fig. 1d), the extinction of the master
sequence occurs when !b

c is &0.156 for the SMR model and
&0.070 for the GR model. Moreover, the composition of the
mutant spectrum is shown to differ according to the replication
strategy. It is well known that for the combination of a Swetina-
Schuster landscape and GR the mutant spectrum suffers a
sharp phase transition at !b

c and each mutant genome reaches
a steady-state concentration that depends only on its muta-
tional coupling (13). However, we show that this is not the case

FIG. 5. Average equilibrium concentration of genomic strands in the bit string model for the four fitness landscapes studied as a function of
the per-bit mutation rate. ' values for antagonistic, additive, and synergistic epistasis were 0.6, 1, and 1.4, respectively. For the Swetina-Schuster
landscape, ε was 0.01, and ε was 0.001 for all other landscapes. In all the diagrams we show the normalized population numbers (averaging over
200 independent replicates when * " 20,000) for genomic master strands (thick line) and their mutant spectrum (thin lines). N(0) was 50 in all
simulations.
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Using a string description of the population structure
(Solé et al., 1998), we can measure the expected effects of
changing replication rates on the distribution of mutants
and their frequencies. Here each string Sk ðk ¼ 1; . . . ;NÞ is
a small genome of size n, i.e.

Si ¼ ðS1
i ;S

2
i ; . . . ;S

n
i Þ; i ¼ 1; 2; . . . ;N, (11)

where Si
k 2 f0; 1g represents a vertex Sk 2Hn of a n-

dimensional hypercube (see Fig. 3). The algorithm starts
with an initial population of master sequences and repeats,
at each generation, N times the following set of rules:

1. We take a string Si at random from the population and
replicate it with probability f ðSiÞ. Here two replication
probabilities are also defined, one for the master
sequence (where Sk ¼ 1 for all k ¼ 1; . . . ; n) and the
other for the rest of strings, to be indicated as f 1 and f 2,
respectively.

2. Replication takes place by replacing one of the strings in
the population (also chosen at random) say SjaSi by a
copy of Si. The copy mechanisms present error

(mutation rate mb) per bit and replication cycle,
respectively.

Using digital genomes of size n ¼ 32 we represent, in Fig.
4, the evolution of the master sequence frequency at
decreasing fitness values for such sequence. For this
particular run, we have used mb ¼ 0:04 and f 2 ¼ 0:05 in a
population of N ¼ 500 strings. Using Eq. (8), we have a
theoretical estimate for a replication threshold of
f c
1 ¼ 0:184, which fits well the simulation results. As

expected, beyond the critical rate f c
1 the master sequence

(thick line) is not found at all in the population, whereas
the other sets drift at random through sequence space. In
Fig. 4, we also display the frequencies for the sequences
with 1; 2; 3; . . . ; n different bits from the master one (narrow
lines). Beyond such replication threshold the whole
population consists of a wide spectrum of mutants with
different sequences and thus a larger population diversity,
as seen in the HCV cases with low viral load. The time
evolution of the master sequence is represented in Fig. 5.
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Fig. 3. Sequence space for a small-sized, four-bit ðn ¼ 4Þ strings. All but
one of the sequences have the same fitness f 2. The bottom left node has a
fitness f 1. The replication rates thus define a fitness landscape. Two
situations are indicated here, namely: low (a) and high (b) master sequence
replication rates. At low replication of the master sequence, other
sequences are equally able to occupy the space, whereas for higher master
replication it shows a localized quasispecies centred around the master.
The lower drawings indicate what should be expected to observe in terms
of the abundances of each string. Here the master sequence frequency is
indicated with a black bar.
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Fig. 4. Phase transition in the bit string model (here linear (a) and log–log
(b) plots) with mb ¼ 0:04 and f 2 ¼ 0:05 in a population consisting of N ¼
500 strings of length n ¼ 32. Frequencies for the master sequence (thick
line) and for sequences with 1; 2; . . . ; n different bits from the master
sequence (narrow lines) are computed from the mean taken over T ¼ 500
generations (averaged over 50 replicas) after t ¼ 4500 generations are
discarded.
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FIG. 7: The error catastrophe on a four-dimensional hyper-
cube. Here we show three population occupation patterns
(the size of spheres is proportional to population size) for a 4-
bit strings. Here 1111 strings have a large fitness fm, whereas
all s1s2s3s4 6= 1111 have the same, smaller fitness f . Strings
replicate with a mutation rate µ per bit. Starting with all 1111
strings, very small µ (a) leads to a large majority of strings
located at 1111. Large mutation gives a randomly moving
population. A critical mutation rate (c) allows to preserve a
cloud of strings that preserve the information. .

This model can sometimes be treated analytically under a
number of well defined set of conditions, showing that the
population structure corresponds to a cloud of sequences
(Eigen 1971; Eigen et al. 1987; Schuster 1994). Let us
consider a specific case that will illustrate how mutation
can sharply limit the length of genomes and thus the
amount of information stored in a quasispecies.

The general problem considered here can be maped
into a high-dimensional sequence space, with the struc-
ture of a hyper-cube (fig, 5) where each string is a digi-
tal genome, connected to nearest neighbours in the cube
that di↵er by one bit (single mutation). Without loss
of generality, the general model described above can be
collapsed into only two fitness classes, namely fm for the
master and f for any other sequence of the mutant spec-
trum (i.e., f1 = f2 = ... = fn = f) where n is very
large (n � 1). Hereafter it is assumed that fm > f , i.e.,
the master sequence replicates more e�ciently than any
other member of the mutant cloud. Let’s asume for now
that all mutation rates are the same, i.e., µ(i ! j) = µ.
In this case we can split our system of equations into two
sets: the master sequence and the rest. The system pre-
sented below is only a simplified approximation to the
space connecting di↵erent genomes. A more accurate
picture is provided by Fig. 7b: from a given population
xj , mutation will not lead back to the master sequence
or will be di�cult to occur. In this case, we will have
xm + x = 1 where we use x =

P
j xj . For the master

sequence we get:

dxm

dt
= fm(1 � µ)xm +

nX

j=1

fj
µ

n
xj � xm�(t), (40)

whereas the set of equations for the mutant sequences
reads:

dxi

dt
=

fmµ

n
xm +

nX

j=1

fj
µ

n
xj � xi�(t). (41)

It is easy to show that the first equation can be simplified
to

dxm

dt
= fm(1 � µ)xm +

fµ

n
(1 � xm) � xm�(t) (42)

⇡ fm(1 � µ)xm � xm�(t), (43)

where we have used µ/n ⌧ 1. For the equation describ-
ing the mutant classs, we have:

dxi

dt
=

fmµ

n
xm + f(1 � µ)xi +

nX

j 6=i

fµ

n
xj � xi�(t). (44)

Since the ultimate goal is to describe the dynamics of all
these populations together, so we made the sum over all
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FIG. 7: The error catastrophe on a four-dimensional hyper-
cube. Here we show three population occupation patterns
(the size of spheres is proportional to population size) for a 4-
bit strings. Here 1111 strings have a large fitness fm, whereas
all s1s2s3s4 6= 1111 have the same, smaller fitness f . Strings
replicate with a mutation rate µ per bit. Starting with all 1111
strings, very small µ (a) leads to a large majority of strings
located at 1111. Large mutation gives a randomly moving
population. A critical mutation rate (c) allows to preserve a
cloud of strings that preserve the information. .

This model can sometimes be treated analytically under a
number of well defined set of conditions, showing that the
population structure corresponds to a cloud of sequences
(Eigen 1971; Eigen et al. 1987; Schuster 1994). Let us
consider a specific case that will illustrate how mutation
can sharply limit the length of genomes and thus the
amount of information stored in a quasispecies.

The general problem considered here can be maped
into a high-dimensional sequence space, with the struc-
ture of a hyper-cube (fig, 5) where each string is a digi-
tal genome, connected to nearest neighbours in the cube
that di↵er by one bit (single mutation). Without loss
of generality, the general model described above can be
collapsed into only two fitness classes, namely fm for the
master and f for any other sequence of the mutant spec-
trum (i.e., f1 = f2 = ... = fn = f) where n is very
large (n � 1). Hereafter it is assumed that fm > f , i.e.,
the master sequence replicates more e�ciently than any
other member of the mutant cloud. Let’s asume for now
that all mutation rates are the same, i.e., µ(i ! j) = µ.
In this case we can split our system of equations into two
sets: the master sequence and the rest. The system pre-
sented below is only a simplified approximation to the
space connecting di↵erent genomes. A more accurate
picture is provided by Fig. 7b: from a given population
xj , mutation will not lead back to the master sequence
or will be di�cult to occur. In this case, we will have
xm + x = 1 where we use x =

P
j xj . For the master

sequence we get:

dxm

dt
= fm(1 � µ)xm +

nX

j=1

fj
µ

n
xj � xm�(t), (40)

whereas the set of equations for the mutant sequences
reads:

dxi

dt
=

fmµ

n
xm +

nX

j=1

fj
µ

n
xj � xi�(t). (41)

It is easy to show that the first equation can be simplified
to

dxm

dt
= fm(1 � µ)xm +

fµ

n
(1 � xm) � xm�(t) (42)

⇡ fm(1 � µ)xm � xm�(t), (43)

where we have used µ/n ⌧ 1. For the equation describ-
ing the mutant classs, we have:

dxi

dt
=

fmµ

n
xm + f(1 � µ)xi +

nX

j 6=i

fµ

n
xj � xi�(t). (44)

Since the ultimate goal is to describe the dynamics of all
these populations together, so we made the sum over all
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FIG. 10: The error catastrophe as a continuous phase transi-
tion: by plugging all non-master sequences into a single class,
the mean field model (a) predicts two phases separated by
a critical curve given by Eq. (62). The quasispecies distri-
butions can be also studied with in silico bit-strings simula-
tion models (the small numbers denote the sequences with 0
(master) and 1, 2, 3, 4 mutations). Two examples are shown
in panels (b) and (c). As Eq. (62) predicts, the error thresh-
old can be achieved by either tuning mutation and replication
rates.

master sequences disappear, despite their higher repli-
cating efficiency, and only mutant genotypes remain in
the population (gray area in panels (a-c) in Fig. 10).
This boundary actually corresponds to a transcritical bi-
furcation (Sardanyés 2009, see also Bull et al. 2005).
The phase transition tied to the error threshold can be
obtained with in silico evolutionary models (Sardanyés
et al. 2009, Elena et al. 2010, Sardanyés and Elena
2011). Panels (b) and (c) in Fig. 10 display results using
bit-string simulations, respectively (see the next para-
graph for the meaning of mutation in bit-string systems).
Specifically, they show how the stationary distribution of
sequences change at increasing mutation rate (solid ar-
row in Fig. 10(a)) and decreasing the replication rate of
the master sequence (dashed arrow in Fig. 10(a), see also
Solé et al. (2006)).

As discussed above, a scaling law seems to connect the
mutation rate of a given genome and its length (Fig. 8).
We are now in the position of mathematically deriving
this remarkable dependence. In the previous calculations,
µ defines the mutation rate per genome, but the accurate
definition of mutation is to express it as changes per nu-
cleotide site (i.e., relative to the string of length ν). If
µb is the mutation rate per site (per-bit mutation), it is
not difficult to see that it is related to µ by:

µ = 1− (1− µb)ν . (63)

Here p = (1−µb)ν is the probability that none of the units
are mutated, the difference 1 − p is just the probability
that some unit (and thus the genome) does mutate. Since
µb is typically very small, we have: µ ≈ 1 − e−µbν ≈
1− µb ν.

If we return to the previous critical condition for mu-
tation rates and write it down as a function of µb it turns
out

µcb =
α

ν
, (64)

of where α > 0 is a scaling factor. The last expression
actually corresponds to the observed inverse decay of mu-
tation rates as an inverse of their genome size, as shown
in Fig. 8.

This work has inspired the suggestion that deep con-
nections exist between the critical threshold in RNA
viruses and other transition phenomena such as cancer
relapse when genomic instability grows beyond a (still to
be tested) critical threshold (Solé 2003; Solé and Deis-
boeck 2004; Solé 2012; Castillo et al. 2017). Recent
mathematical and computational investigations on can-
cer phenotypic quasispecies (Sardanyés et al. 2017, 2018;
Sardanyés and Alarcón 2018) have also confirmed this
prediction of a critical threshold involving cancer cells
extinction under genomic instability.

As a final point, it is worth mentioning that the sim-
ilarity between the quasispecies as described by Eigen’s
theory and the physics of phase transitions goes beyond
the analogy. It is actually possible to show that there
is actually a mapping between this theory and the dy-
namics of the two-dimensional Ising model (Leuthäusser
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1986, 1987; Tarazona 1992). Specifically, it is possible
to establish a parametrization connecting mutation rate
with a temperature parameter and the existence of a uni-
versal theory that pervades both classes of models. These
results have been successfully applied to the development
of a statistical physics of quasispecies (Di Collobiano et
al. 2003; Saakian et al. 2006; Park et al. 2007; Saakian
2018).

B. The double-edge sword of recombination

The quasispecies model presented above defines a mini-
mal approach to a largely complex problem, where other
phenomena can play an important role. An important
phenomenon, pervasive among RNA viruses, and that
contributes to generate genetic variability along with mu-
tation is recombination. To explore whether recombina-
tion also generates informational phase transitions, let us
consider, once again, our simplified model where a two-
species (master and non-master) are used, but now we
also introduce the possibility of recombination between
individual genomes. This process implies an additional
form of diversity generation as genomes not only display
mutations but also get scrambled in many ways through
recombination. How does the existence of genome recom-
bination affect the presence of error thresholds?

One approximation involves the same minimal model
just described in the previous section. Consider the pre-
vious landscape and a new phenomenon that affects the
generation of new sequences. Now two strings can expe-
rience cross-over thus generating, at a given rate r, new
strings from the old ones. The likelihood that such event
takes place grows with the amount of sequences. It can
be shown (Boerlijst et al. 1996) that the two-dimensional
model with a single peak with recombination now reads:

dxm
dt

= fm(1− µ)xm − r x xm ψ(xm)− xmΦ (65)

dx

dt
= fm µxm + fx− r x xm ψ(xm)− xΦ. (66)

The second term in the right-hand side of the first equa-
tion accounts for recombination by means of interactions
between master and non-master strings taking place at
rate r. The additional term ψ(xm) weights recombina-
tion in terms of the frequency xm. The simplest choice
here is to assume a linear function, namely

ψ(xm) = (1− xm). (67)

To see the logic of this choice, consider the following ar-
gument. For small values of xm, most sequences will be
non-master, and thus recombination probability 1 − xm
will be high. This makes sense since a whole repertoire of
strings can recombine. This is the case shown schemat-
ically in Fig. 10a, where a three-dimensional landscape
considering the recombination of the sequences 111 (mas-
ter) and 000 (non-master) is shown. The event is indi-
cated by the open circle with letter ψ.
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FIG. 11: Transitions in quasispecies with recombination. (a)
Simple picture of a 3-dimensional sequence space. When the
master sequence abundance is small, recombination between
the master string 111 and another non-master one (here we
use 000) gives new non-master strings. The two recombined
sequences are highlighted with a circle and their interaction is
indicated by the open circle with ψ (the recombination func-
tion) at its center. The four possible outcomes of this event
are indicated with grey arrows. (b) Transition diagrams ob-
tained plotting x∗m against recombination rate with f = 10−2.
Here the first order transitions are indicated with discontinu-
ous lines.

A simple recombination event can generate several
non-master strings (gray arrows). Instead, when the mas-
ter sequence dominates (and 1 − xm will be small) re-
combination events will take place with the one-bit (sin-
gle mutation) distance strings, essentially returning the
same strings as a result.

Using our previous definitions, the equation describing
the master sequence dynamics now reads:

dxm
dt

= (1− µ)xm − rxmxψ(xm)− [xm + f(1− xm)] ,

(68)
where x = 1−xm and, for simplicity, we have set fm = 1
(and thus 0 < f < 1). With these choices, one obtains
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(after some simple algebra)

dxm
dt

= xm(1− xm)[1− f − r(1− xm)]− µxm. (69)

These one-dimensional equation has a trivial equilibrium
point x∗m = 0 and two potential extra equilibria x∗m ∈
{Γ−,Γ+} given by:

Γ± =
1

2r

[
−(φ− r)±

(
(φ+ r)2 − 4rµ

)1/2]
. (70)

where we use φ = 1−f−r. In order to have real, positive
solutions, it is not difficult to show that the following
inequality for recombination rate is required:

r ≤ 1

4µ
(1− f)2 = rc. (71)

The critical value marks the domain where extinction is
expected to occur (when r = rc). However, the nature
of the transition is different for smaller mutation rates,
as summarized in Fig. 10b. For higher mutation rates,
the decay of the master sequence involves a continuous
phase transition. By contrast, for smaller mutation rates
the dominant role of recombination changes the nature
of the transition, that becomes of first-order. This is a
typical outcome (a rather universal one) that is observed
in a wide class of dynamical systems exhibiting cubic
terms (Weissmann and Shnerb 2014; Fontich and Sar-
danyés 2008; Sardanyés et al. 2019). The introduction
of a higher-order term that requires a density-dependent
pairwise exchange is responsible for this phenomenon.

C. Diversity thresholds in AIDS progression

A final example of our list of viral transitions involves a
theoretical model that was used to explain a paradoxical
behavior displayed by the long-term progression of HIV-1
infected patients. An intriguing question that emerged in
the early times of the pandemic was the presence of an
asymptomatic period: before the symptoms associated
with AIDS were detectable, measured viral load appeared
very low. This was a paradox: if HIV-1 is responsible for
the development of AIDS by efficiently killing their target
CD4+ T cells, one should expect to see a growth in the
number of viruses along with a constant suppression of
CD4+ T cells until collapse is achieved. Instead, a very
small virus load suggests that it is kept under control by
the immune system. Perhaps AIDS had to do with other
factors?

The solution for this conundrum was provided, to a
large extent, by a mathematical model including the het-
erogenous nature of these populations and the arms race
between the immune system. Such arms race creates the
selection pressure required for the generation of HIV-
1 antigenic escape mutants. During the asymptomatic
phase of infection, error-prone replication of HIV-1 gen-
erates increasing numbers of antigenic variants. The im-
mune system would keep fighting with novel variants as

it gets undermined by the interaction and more strains
accumulate. The theory predicts that there is a thresh-
old value in antigenic diversity above which the immune
system cannot control the viral population, triggering im-
mune system’s collapse (Nowak et al. 1991; Nowak et al.
1996).

To understand this antigenic diversity threshold, in-
stead of lumping together all viral strains into a single
phenotypic class, viral diversity was introduced by mod-
eling the underlying fitness landscape of HIV-1: different
viral strains lead to a different phenotype. The model
here developed will be narrowed to a very simple inter-
action scheme where specific HIV-1 strains interact only
with some specific lineage of CD4+ T cells capable of
clearing the virus but also being damaged by its infec-
tion. The specific nature of the response is introduced in
a minimal model with 2n equations (Nowak et al. 1991)
defined as:

dvi
dt

= vi(r − pxi), (72)

dxi
dt

= kvi − uvxi. (73)

Here xi and vi indicate populations associated to the
i−th virus strain and its corresponding CD4+ T cell part-
ner. For simplicity it is assumed that all viruses replicate
with the same rate r and the immune response given
by the term p xivi is also homogeneous. Similarly, the
growth and clearance terms in the second equation use
identical parameters for all strains. The interactions out-
lined above are graphically summarized in Fig. 12a-b.
Figure 12a displays the network of interactions between
the two compartments, including both specific and non-
specific interactions. This diagram is made more explicit
in Fig. 12b by using one of the pairs of strains (xi and
vi) with all the assumed interactions.

Summing over all the previous equations, we obtain
the following expressions for the total viral population,

dv

dt
= v

(
r − p

n∑

i=1

xi
vi
v

)
, (74)

and the corresponding immune cell response:

∑

i

dxi
dt

= kv − uv
∑

i

xi. (75)

The virus population will be under control of the immune
response, i. e. dv/dt < 0 provided that the following
inequality holds:

r

p
<

n∑

i=1

xi
vi
v
. (76)

From the equation for xi, we can see that the immune
response leads to a stationary state, i. e. xi = kvi/(uv).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 February 2020                   doi:10.20944/preprints202002.0261.v1

https://doi.org/10.20944/preprints202002.0261.v1


20

AIDS develops

Assymptomatic phase

DsDc
s

Ds < Dc
s Ds > Dc

s

✓
dv

dt

◆

v

a b c

v

r

k

...
...

...
... xi

vi

?
p

xn

x1

xi

x

p

u

v

v1

vn

vi

u

x
}{ v

FIG. 12: Antigenic diversity model of HIV-immune system evolution. The model assumes two interacting virus-cell populations
involving n strains. Both specific (black lines) and non-specific (gray lines) interactions are possible, revealing the presence of
a deep asymmetry. A more detailed graph is shown in (b) where all the basic interactions and their associated parameters are
indicated. The set v of all viruses (bottom) indicates that a non-specific interaction is at work. (c) Transition from contained
to non-contained (gray area) phase of viral growth.

Using this result and applying it to the total viral popu-
lation, we obtain an equation for the overall virus popu-
lation that depends on the actual diversity:

dv

dt
= v

(
r − pk

u
(1−Ds)

)
, (77)

where Ds stands for Simpson’s diversity index

Ds = 1−
n∑

i=1

(vi
v

)2

, (78)

used in theoretical ecology as a measure of diversity. This
measure is maximal for a totally homogeneous population
with all strains equally represented, i. e. Ds = 1 − 1/n
and minimal when all viruses belong to the same strain,
and Ds = 0.

The previous equation for the viral load can be re-
written as follows

dv

dt
=
pk

u
v

(
Ds −Dc

s

)
, (79)

with Dc
s = 1 − ru/(pk). From this definition, we have

a threshold condition separating a phase with no (o
very low) viral growth from the escape phase where vi-
ral load grows. This is summarized in Fig. 12c, where
we schematically indicate the qualitative change from no
increasing diversity to the second phase (here there is
an evolutionary dynamics over time) highlighted in gray
where antigenic diversity starts growing.

This model thus provides an elegant explanation of
what is taking place throughout the latency phase in
terms of a continuous phase transition. It also allows
to understand this transition in terms of a virus-immune
system arms race and makes a well-defined prediction.
The model suggests (as it seems to be the case) that

the long and apparently calm interval of low viremia and
slow decay of CD4+ T cells hides a rapid turnover of
constantly emerging viral escape mutants while a pro-
gressive damage to immune responses takes place. This
would explain the apparent dormancy of the virus: in re-
ality, there is a constant battle between host defenses and
the new variants being created through mutation. This
battle keeps the viral load at low levels, but also involves
a high cost due to the constant turnover of CD4+ T cells.

The virus-host dynamics described above has been de-
veloped under an extremely simplified model, which lacks
several layers of realism. However, a proper implemen-
tation using a quasispecies description including muta-
tion rates and other relevant features essentially confirms
the presence of the diversity threshold (Nowak and May
1991). Other authors have also addressed the nonlinear
dynamics of HIV, showing how simple models can help
understanding the tempo and mode of the process (Perel-
son and Nelson 1999; dos Santos 2001; Funk et al. 2005)
and some of them inspired optimization models to max-
imize the immune response against the virus (Culshaw
et al. 2004). Other studies connect the phase transition
phenomena described for quasispecies within the context
of viruses infecting cells (Alonso and Fort 2010). Finally,
some potential connections with phase transitions in per-
colation theory (Kamp and Bornholdt 2002) have also
been put forward.

V. DISCUSSION

To build a viral capsid, a concentration threshold
of capsomers needs to be surpassed. Afterwards, self-
assembly processes take control and allow building a new
supramolecular structure required to complete the virus
life cycle. The difference between the two regimes (sub-
critical and super-critical) is not of quantitative nature.
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There are system-level processes that are unleashed in
the second phase that have a deep biological meaning
that cannot occur in the first phase, where the outcome
is disconnected from biological function. The same can
be said in a much larger scale, when infection by already
well-formed viruses is mediated by intra-host, cell-virus
interactions or (at the epidemic spreading level) to the
organisms carrying them.

At this levels of description, a novel phenomenon
occurs: epidemic spreading. On this scale, the self-
assembly example becomes irrelevant as part of the de-
scription on the higher scale. However, we have again
an interesting mathematical similarity associated to the
fundamental nature of the critical condition: success and
failure of infection are separated by a marked threshold.
Against our intuition, there is no continuous increase
in the number of infected agents (either cells or indi-
viduals) as infection efficiently increases. Instead, non-
linearities allow or suppress infection. In other examples,
such as the multipartite virus dynamics case study or
the recombination model, the transition can be sharp,
described as a discontinuity. A very small parameter
change translates into a catastrophic shift. Either way, a
minor changes in key features can end in major changes
in the qualitative behavior of the entire system. This is
a very important point, well known within epidemiology
but perhaps no so well appreciated in other areas.

The consequences of transition thresholds are consid-
erable, since they affect the persistence of multipartite
viruses in metapopulation landscape or allow design-
ing ways of enhancing immune responses against retro-
viruses. The implications are no less relevant. One in
particular needs to be highlighted; because of the in-
evitable occurrence of transition phenomena, punctuated
change should be expected to occur frequently. Small
changes in parameters, if they cross transition points,
trigger qualitative changes with potentially major eco-
logical or functional impacts. Since RNA viruses have
high mutation rates, such events are likely to provide a
source of innovation. In that case, it would be possible to

approach major evolutionary transitions under the um-
brella of critical phenomena.

Two important venues will need further theoretical ex-
ploration in the future. One is the development of evolu-
tionary theories of change where phase transition points
are reached through coevolutionary dynamics. The error
catastrophe (Eigen 1971) is a potential example: RNA
viruses have coevolved with immune selection barriers to
a critical mutation rate. In this view, evolution pushed
viral quasispecies to criticality in a self-organized fash-
ion. The evolutionary as well as the ecological dimen-
sions should be integrated to show how particular life
forms, such as multipartite viruses, can emerge. Such
studies are likely to require the introduction of genomes
in some explicit form. Finally, the diverse dynamical and
spatial scales considered in each example naturally sug-
gest the minimal requirements for each level and why
parameters and features relevant at the lower scale can
be ignored. Does it mean they are disconnected? Prob-
ably not, and the right answers will need an explicit de-
scription of complexity that includes several simultane-
ous complexity layers.
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Sardanyés J, Solé RV, Elena SF (2009) Replication mode and
landscape topology differentially affect RNA virus mutational
load and robustness. Journal of Virology 83, 12579-12589.

Sardanyés J, Elena SF (2011) Quasispecies spatial models
for RNA virus with different replication modes and infection
strategies. PLoS ONE 6, e24884.

Sardanyés J, Mart́ınez R, Simó C, Solé R (2017) Abrupt tran-
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Solé, R. and Deisboeck, T.S. (2004) An error catastrophe in
cancer? Journal of Theoretical Biology 228, 47-54.
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Solé R, Elena SF (2019) Virus as Complex Adaptive Systems.
Princeton University Press. Princeton: USA.

Stanley, H.E. Amaral, L.A. Buldyrev, S.V. et al. (1996) Scal-
ing and universality in animate and inanimate systems. Phys-
ica A 231, 20-48.

Stich, M., Briones, C. and Manrubia, S.C. (2007). Collective
properties of evolving molecular quasispecies. BMC Evolu-
tionary Biology 7, 110.

Stollenwerk, N. and Jansen, V. (2011) Population Biology
and Criticality: From critical birth-death processes to self-
organized criticality in mutation pathogen systems. World Sci-
entific.

Strogatz, S., (1994) Nonlinear dynamics and chaos: with
applications to physics, biology, chemistry, and engineering.
Addison-Wesley, Reading, MA.

Swetina J, Schuster P (1982) Self-replication with errors. A
model for polynucleotide replication. Biophysal Chemistry 16,
329

Tarazona, P. 1992. Error thresholds for molecular quasispecies
as phase transitions: From simple landscapes to spin-glass
models. Physical Review A 45, 6038.

Valdano, E., Manrubia, S., Gómez, S. and Arenas, A. (2019)
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