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Abstract: In recent years, the field of deep learning achieved considerable success in pattern 

recognition, image segmentation and may other classification fields. There are a lot of studies and 

practical applications of deep learning on images, video or text classification. In this study, we 

suggest a method for changing the architecture of the most performing CNN models with the aim 

of designing new models to be used as stand-alone networks or as a component of an ensemble. We 

propose to replace each activation layer of a CNN (usually a ReLu layer) by a different activation 

function stochastically drawn from a set of activation functions: in this way the resulting CNN has 

a different set of activation function layers. 

The code developed for this work will be available at https://github.com/LorisNanni 

Keywords: Convolutional Neural Networks; ensemble of classifiers; activation functions; image 

classification; skin detection. 

 

1. Introduction 

Deep neural networks have become extremely popular as they achieve state-of-the-art 

performance on a variety of important applications including image classification, image 

segmentation, language processing and computer vision [1]. Deep neural networks typically have a 

set of linear components whose parameters are usually learned to fit the data, and a set of 

nonlinearities, which are pre-specified, typically in the form of a sigmoid, a tanh function, a rectified 

linear unit, or a max-pooling function. The presence of non-linear activation functions at each neuron 

is essential to give the network the ability of approximate arbitrarily complex functions [2], and its 

choice affects both the speed of training and net accuracy.  The design of new activation functions 

in order that improve training speed and network accuracy is an active area of research [3][4]. 

Recently, the sigmoid and hyperbolic tangent, which were the most widely used activations functions, 

have been replaced by Rectified Linear Units (ReLU) to train deep networks [5]: ReLU is a piecewise 

linear function equivalent to the identity for positive inputs and zero for negative ones. Thanks to the 

good performance of ReLU and the fact that it is fast, effective, and simple to evaluate, several 

alternatives to the standard ReLu function have been proposed in the literature. The most known 

“fixed” activation function are: Leaky ReLU [6] an activation function equal to ReLU for positive 

inputs but having a very small slope α > 0 for negative ones, ELU [4] which exponentially decreases 

to a limit point α in the negative space, SELU [7], a scaled version of ELU (by a constant λ). Together 

with “fixed” activation functions, several “learnable” activation functions have been proposed as: 

Parametric ReLU (PReLU) [8] which is a Leaky ReLU where the amount of α is learned during 

training, Adaptive Piecewise Linear Unit (APLU) [3] which is a piecewise linear activation with 

learnable parameters, Swish, one of the best performing functions according to [9], which is the 

combination of a sigmoid function and a trainable parameter, and the recent Mexican ReLU (MeLU) 

[10] which is a piecewise linear activation function that is the sum of PReLU and multiple Mexican 

hat functions.  
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In this paper, we perform a largescale empirical comparison of different activation function 

across a variety of image classification task and for an image segmentation problem. Starting form 

two of the best performing models, i.e. ResNet50 [11] for the classification task and DeepLab-v3 [12] 

for the segmentation task, we compare different approaches for replacing ReLu layers and different 

methods for building ensembles of CNNs obtained by varying the activation function layers.  

After comparing several activation functions, we propose to design a new model based on the 

combination of different activation functions at different levels of the graph: to this aim, we propose 

a method for stochastic selection of activation functions to replace each ReLu layer of the starting 

network. The activation functions are randomly selected from a set of 9 approaches, including the 

most effective ones. After training the new models on the target problem, they are fused together to 

build an ensemble of CNNs.  

The proposed framework for ensemble creation is evaluated on two different applications: 

image classification and image segmentation. In the image classification field, we deal with several 

medical problems including in our benchmark 13 image classification datasets. CNNs have already 

been used on several medical datasets reaching very high performance, including keratinocyte 

carcinomas and malignant melanomas detection [13], thyroid nodules classification [14] from 

ultrasound images or breast cancer recognition [15]. Our testing protocol include a fine-tuning of 

each model in each dataset and a testing evaluation and comparison: our experiments show that the 

proposed method works well in all the tested problems gaining state-of-the-art classification 

performance [16].  

 In the image segmentation field we deal with the skin segmentation problem: the 

discrimination of skin and non-skin regions in a digital image has a wide range of applications 

including face detection [17], body tracking [18], gesture recognition [19], objectionable content 

filtering [20]. Skin detection has great relevance also in the medical field, where it is employed as a 

component of face detection or body tracking: for example in the remote photoplethysmography 

(rPPG) problem [21] it is a component of a system based at solving the problem of estimating the 

heart rate of a subject given a video stream of his/her face. In our experiment, we carry out a 

comparison of several approaches performing a single training on a small dataset including only 2000 

labeled images, while testing is performed on 11 different datasets including images from very 

different applications. The reported results show that the proposed method is able to reach state of 

the art performance [22] in most of the benchmark datasets even without ad-hoc tuning.    

2. Materials and Methods 

In this section we describe both the starting models and the stochastic method proposes to 

design a new CNN models. CNNs are deep neural networks designed to work similarly to the human 

brain in visually perceiving the world. They are made of several type of “layers” on neurons: i.e. 

convolutional layers, activation layers, subsampling layers, fully connected layers [23]. In particular, 

activation layers are aimed at deciding if a neuron would fire or not according to a nonlinear 

transformation of the input signal. Since activation functions play a vital role in the training of CNN, 

several activation functions have been proposed: in this work we evaluate some variant of the 

standard ReLU function, which will be discussed in the next section. 

In the literature several CNN architecture have been proposed both for the image classification 

(i.e. AlexNet [24], GoogleNet [25], InceptionV3 [26], VGGNet [27], ResNet [11], DenseNet [28]) and 

segmentation problems (i.e. SegNet [29], U-Net [30], Deeplabv3+ [12]). In our experiments, we select 

two of the most performing models: i.e. ResNet50 [11] for image classification and Deeplabv3+ [12] 

for segmentation. ResNet50 is a 50-layer network, which introduces a new “network-in-network” 

architecture using residual layers. ResNet50, which was the winner of ILSVRC 2015, is one of the 

most performing and popular architecture used for image classification. In our experiments, all the 

models for image classification have been fine-tuned on the training set of each classification problem 

according to the following options: batch size 32, learning rate 0.0001, max epoch 30 (data 

augmentation based random reflection on both axes and two independent random rescales of both 

axes by two factors uniformly sampled in [1,2] has been used in all the epochs).  
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For image segmentation purposes we select Deeplabv3+ [12], a recent architecture based on 

atrous convolution, in which the filter is not applied to all adjacent pixels of an image but rather a 

spaced-out lattice of pixels. Deeplabv3+ uses four parallel atrous convolutions (each with differing 

atrous rates) followed by a “Pyramid Pooling” method. Since DeepLabv3+ is based on encoder-

decoder structure, it can be built on top of a powerful pretrained CNN architecture: in this work, we 

selected again ResNet50 for this task, anyway our internal evaluation showed that ResNet101 and 

ResNet 34 gained similar performance. All the models for skin segmentation have been trained on a 

small dataset of 2000 images using the same options: batch size 32, learning rate 0.001, max epoch 50 

(data augmentation has been used only in the first 30 epochs), class weighting. 

 

This study considers 10 different activation functions (more details, and specific reference for each 

function, are given in [10]), namely the widely used ReLU and several variants. The functions used 

are summarized in the following, together with their derivatives. 

The well-known ReLU activation function is defined as: 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
0, 𝑥𝑖 < 0

𝑥𝑖 , 𝑥𝑖 ≥ 0,
 

and its derivative is easily evaluated as: 

𝑑𝑦𝑖

𝑑𝑥𝑖

=  𝑓′(𝑥𝑖) = {
0, 𝑥𝑖 < 0
1, 𝑥𝑖 ≥ 0.

 

This work also considers several variants of the original ReLU function. The first variant is the Leaky 

ReLU function, defined as: 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
𝑎𝑥𝑖 , 𝑥𝑖 < 0

𝑥𝑖 , 𝑥𝑖 ≥ 0
, 

where 𝑎 is a small real number (0.01 in this study). The main advantage of Leaky ReLU is that the 

gradient is always positive (no point has a zero gradient): 

𝑑𝑦𝑖

𝑑𝑥𝑖
=  𝑓′(𝑥𝑖) = {

𝑎, 𝑥𝑖 < 0
1, 𝑥𝑖 ≥ 0

. 

The second variant of the ReLU function considered in this work is the Exponential Linear Unit (ELU), 

which is defined as: 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
𝑎(exp(𝑥𝑖) − 1), 𝑥𝑖 < 0

𝑥𝑖 , 𝑥𝑖 ≥ 0
, 

where 𝑎 is a real number (1 in this study). ELU has a gradient that is always positive: 

𝑑𝑦𝑖

𝑑𝑥𝑖
=  𝑓′(𝑥𝑖) = {

𝑎 exp (𝑥𝑖), 𝑥𝑖 < 0
1, 𝑥𝑖 ≥ 0

. 

The third variant of ReLU is the Scaled Exponential Linear Unit (SELU). This is defined as: 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
𝑠𝑎(exp 𝑥𝑖 − 1), 𝑥𝑖 < 0

𝑠𝑥𝑖 , 𝑥𝑖 ≥ 0
, 

where 𝑎 and 𝑠 are real numbers – in our case 𝑎 = 1.6733 and 𝑠 = 1.0507. SELU is very similar to 

ELU with the additional scaling parameter s, which can be used to correct the gradient when it is 

exploding or vanishing. The gradient in this case is given by: 

𝑑𝑦𝑖

𝑑𝑥𝑖
=  𝑓′(𝑥𝑖) = {

𝑠𝑎 exp (𝑥𝑖), 𝑥𝑖 < 0
𝑠, 𝑥𝑖 ≥ 0

. 

The Parametric ReLU (PReLU) is the fourth variant that is considered here. It is defined by: 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
𝑎𝑐𝑥𝑖 , 𝑥𝑖 < 0

𝑥𝑖 , 𝑥𝑖 ≥ 0
, 

where ac is a set of real numbers, one for each input channel. PReLU is similar to Leaky ReLU, the 

only difference being that the 𝑎𝑐 parameters are learned. The gradient of PReLU is: 

𝑑𝑦𝑖

𝑑𝑥𝑖
=  𝑓′(𝑥𝑖) = {

𝑎𝑐 , 𝑥𝑖 < 0
1, 𝑥𝑖 ≥ 0

 and 
𝑑𝑦𝑖

𝑑𝑎𝑐
= {

𝑥𝑖 , 𝑥𝑖 < 0
0, 𝑥𝑖 ≥ 0

. 
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S-Shaped ReLU (SReLU) is the fifth variant. It is defined as a piecewise linear function: 

𝑦𝑖 =  𝑓(𝑥𝑖) = {

𝑡𝑙 + 𝑎 
𝑙(𝑥𝑖 − 𝑡𝑙), 𝑥𝑖 < 𝑡𝑙

𝑥𝑖 , 𝑡𝑙 ≤ 𝑥𝑖 ≤ 𝑡𝑟

𝑡𝑟 + 𝑎 
𝑟(𝑥𝑖 − 𝑡𝑟), 𝑥𝑖 > 𝑡𝑟

. 

In this case four learnable parameters are used, 𝑡𝑙 , 𝑡𝑟 , 𝑎𝑙 , and 𝑎𝑟 , expressed as real numbers. They 

are initialized to 𝑎𝑙 = 0, 𝑡𝑙 = 0, 𝑡𝑟 = 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 , where 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡  is a hyperparameter. SReLU is 

highly flexible thanks to the rather large number of tunable parameters. The gradients are given by: 

𝑑𝑦𝑖

𝑑𝑥𝑖
=  𝑓′(𝑥𝑖) = {

𝑎 
𝑙 , 𝑥𝑖 < 𝑡𝑙

1, 𝑡𝑙 ≤ 𝑥𝑖 ≤ 𝑡𝑟

𝑎 
𝑟 , 𝑥𝑖 > 𝑡𝑟

, 

𝑑𝑦𝑖

𝑑𝑎𝑙 = {
𝑥𝑖 − 𝑡𝑙 , 𝑥𝑖 < 𝑡𝑙

0, 𝑥𝑖 ≥ 𝑡𝑙, and 

𝑑𝑦𝑖

𝑑𝑡𝑙 = {
−𝑎𝑙 , 𝑥𝑖 < 𝑡𝑙

0, 𝑥𝑖 ≥ 𝑡𝑙. 

The sixth variant is APLU, namely the Adaptive Piecewise Linear Unit. As the name suggests, it is a 

linear piecewise function. It is defined as: 

𝑦𝑖 =  ReLU(𝑥𝑖) + ∑ 𝑎𝑐min (0, −𝑥𝑖 + 𝑏𝑐)𝑛
𝑐=1 , 

where 𝑎𝑐 and 𝑏𝑐 are real numbers, one for each input channel. The gradients are evaluated as: 

𝑑𝑓(𝑥,𝑎)

𝑑𝑎𝑐
= {

−𝑥 + 𝑏𝑐 , 𝑥 < 𝑏𝑐

0, 𝑥 ≥ 𝑏𝑐
  and 

𝑑𝑓(𝑥,𝑎)

𝑑𝑏𝑐
= {

−𝑎𝑐 , 𝑥 < 𝑏𝑐

0, 𝑥 ≥ 𝑏𝑐
 . 

In our tests the parameters 𝑎𝑐 are initialized to 0, and the points are randomly chosen. We also added 

an 𝐿2-penalty of 0.001 to the norm of the parameters 𝑎𝑐 . 

An interesting variant is the MeLU, that is, the Mexican ReLU, derived from the Mexican hat 

functions. These are defined as: 

𝜙𝑎,𝜆(𝑥) = max(𝜆 − |𝑥 − 𝑎|, 0), 

where 𝑎 and 𝜆 are real numbers. These functions are used to define the MeLU function: 

𝑦𝑖 =  𝑀𝑒𝐿𝑈(𝑥𝑖) = 𝑃𝑅𝑒𝐿𝑈𝑐0(𝑥𝑖) + ∑ 𝑐𝑗  𝜙𝑎𝑗,𝜆𝑗(𝑥𝑖)
𝑘−1

𝑗=1
. 

The parameter 𝑘 represents the number of learnable parameters for each input channel, 𝑐𝑗 are the 

learnable parameters, 𝑐0  is the parameter vector in PReLU, and 𝑎𝑗  and 𝜆𝑗  are fixed parameters 

chosen recursively. The MeLU activation function has interesting properties, inherited from the 

Mexican hat functions, that are continuous and piecewise differentiable. ReLU can be seen as a special 

case of MeLU, when all the 𝑐𝑖 parameters are set to 0. This is important because pre-trained networks 

based on the ReLU function can be enhanced in a simple way using MeLU. Similar substitutions can 

be made when the source network is based on Leaky ReLU and PReLU. 

As previously observed, MeLU is based on a set of learnable parameters. The number of parameters 

is sensibly higher with respect to SReLU and APLU, making MeLU more adaptable and with a higher 

representation power but more likely to overfit. The gradient is given by the Mexican hat functions. 

The MeLU activation function also has a positive impact on the optimization stage. 

In our work the learnable parameters are initialized to 0, meaning that the MeLU starts as a plain 

ReLU function; the peculiar properties of the MeLU function come into play at a later stage of the 

training. 

The Gaussian ReLU, also called GaLU, is the last activation function considered in our work. Its 

definition is based on the gaussian type functions: 

𝜙𝑔
𝑎,𝜆(𝑥) = max (𝜆 − |𝑥 − 𝑎|, 0)+min (|𝑥 − 𝑎 − 2𝜆| − 𝜆, 0), 

where 𝑎 and 𝜆 are real numbers. The GaLU activation function is defined as: 

𝑦𝑖 =  𝐺𝑎𝐿𝑈(𝑥𝑖) = 𝑃𝑅𝑒𝐿𝑈𝑐0(𝑥𝑖) + ∑ 𝑐𝑗 𝜙𝑔
𝑎𝑗,𝜆𝑗(𝑥𝑖)

𝑘−1

𝑗=1
, 
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which is a formulation similar to the one provided for MeLU, which again depends on the parameters 

𝑎𝑗 and 𝜆𝑗. Again, the function is defined in this way to provide a good approximation of nonlinear 

functions. 

3. Results 

In order to evaluate the different activation functions detailed in section 2 and to validate the 

stochastic method for ensemble creation, we performed experiments on 13 well-known medical 

datasets for image classification and 11 datasets for skin segmentation. Table 1 summarizes the 13 

datasets including a short abbreviation, the dataset name, the number of samples and classes and the 

testing protocol. We used in 12 out 13 datasets five-fold cross-validation (5CV), while we maintain a 

three fold division for the Laryngeal dataset (same protocol of [31]). Table 2 summarizes the 11 

datasets used for skin segmentation. All the models have been trained only on the first 2000 images 

of the ECU dataset [32], therefore all the other skin dataset are used only for testing (for ECU only 

the last 2000 images not included in the training set have been used for testing). 

The evaluation and comparison of the proposed approaches is performed according to two of 

the most used performance indicators in image classification and skin segmentation: accuracy and 

F1-measure, respectively. Accuracy is the ratio between the number of true predictions and the total 

number of samples, while the F1-measure is the harmonic mean of precision and recall and it is 

calculated according to the following formula F1 = 2𝑡𝑝/(2𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝) , where tn, fn,tp, fp are the 

number of true negatives, false negatives, true positives and false positives evaluated at pixel-level. 

According to other works in skin detection, F1 is calculated at pixel-level instead of at image-level to 

be independent on the image size in the different databases. Finally to validate the experiments the 

Wilcoxon signed rank test [33] has been used.  

 

Table 1. Summary of the Medical Datasets for image classification: Short Name (ShortN), Name, number of 

classes (#C), number of samples (#S), testing protocol, URL for downloading, Reference. 

 

ShortN Name #C #S Protocol URL for Download Ref 

CH 
Chinese hamster 

ovary cells 
5 327 5CV http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html#cho [34] 

HE 2D HELA 10 862 5CV http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html [34] 

LO 
Locate 

Endogenous 
10 502 5CV http://locate.imb.uq.edu.au/downloads.shtml [35] 

TR 
Locate 

Transfected 
11 553 5CV http://locate.imb.uq.edu.au/downloads.shtml [35] 

RN Fly Cell 10 200 5CV http://ome.grc.nia.nih.gov/iicbu2008/rnai/index.html [36] 

TB 
Terminal bulb 

aging 
7 970 5CV https://ome.grc.nia.nih.gov/iicbu2008 [36] 

LY Lymphoma 3 375 5CV https://ome.grc.nia.nih.gov/iicbu2008 [36] 

MA Muscle aging 4 237 5CV https://ome.grc.nia.nih.gov/iicbu2008 [36] 

LG Liver gender 2 265 5CV https://ome.grc.nia.nih.gov/iicbu2008 [36] 

LA Liver aging 4 529 5CV https://ome.grc.nia.nih.gov/iicbu2008 [36] 

CO 
Human colorectal 

cancer 
8 5000 5CV https://zenodo.org/record/53169#.WaXjW8hJaUm [37] 

BGR 
Breast grading 

carcinoma 
3 300 5CV https://zenodo.org/record/834910#.Wp1bQ-jOWUl [38] 

LAR Laryngeal dataset 3 1320 Tr-Te https://zenodo.org/record/1003200#.WdeQcnBx0nQ [31] 

 

Table 2. Summary of the Skin detection datasets with ground truth used for image segmentation: Short Name 

(ShortN), Name, number of images (#S), URL for downloading, Reference. 
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ShortN Name #S URL for Download Ref 

CMQ Compaq 4675 ask to the authors [39] 

UC UChile DB-skin 103  http://agami.die.uchile.cl/skindiff/ (currently not 

available) 

[40] 

ECU ECU Face and 

Skin Detection 

4000 http://www.uow.edu.au/~phung/download.html 

(currently not available) 

[32] 

Sch Schmugge 

dataset 

845 https://www.researchgate.net/publication/257620282

_skin_image_Data_set_with_ground_truth 

[41] 

FV Feeval Skin 

video DB 

8991 http://www.feeval.org/Data-sets/Skin_Colors.html [42] 

MCG MCG-skin 1000 http://mcg.ict.ac.cn/result_data_02mcg_skin.html 

(ask to the authors ) 

[43] 

Prat Pratheepan  78 http://web.fsktm.um.edu.my/~cschan/downloads_sk

in_dataset.html 

[44] 

VMD 5 datasets for 

human activity 

recognition 

285 http://www-

vpu.eps.uam.es/publications/SkinDetDM/ 

[45] 

SFA SFA 1118 http://www1.sel.eesc.usp.br/sfa/ [46] 

HGR Hand Gesture 

Recognition 

1558 http://sun.aei.polsl.pl/~mkawulok/gestures/ [47] 

VT VT-AAST 66 http://abdoaast.wixsite.com/abdallahabdallah/the-

vt-mena-benchmarking-datas 

[48] 

 

In the first experiment, we evaluate the proposed methods for image classification on the 

datasets listed above: in Table 3 the performance, in terms of accuracy, of several variant of ResNet50 

obtained by varying the activation function and some the following ensembles are reported:  

• The method named ReLu is our baseline, since it corresponds to the standard implementation of 

ResNet50. ReLu performs very well, but it is not the best performing activation function: many 

activation functions with INPUT parameter 255 work better than ReLu on average. 

• It is a very valuable result the methods as wMelu(255), MeLu(255) and some other stand-alone 

approaches outperform ReLu in a large selection of classification problems. Starting from a 

model pretrained with ReLu and changing its activation layers, we obtained a sensible error 

reduction.  

• It is difficult to select a function that win in all problems, therefore a good method to improve 

performance is to create an ensemble of different models: both FusAct10 and FusAct10(255) work 

better than each of their single components. 

• Designing the model by means of stochastic activation functions (i.e. Random or Random(255)) 

gives valuable results above all in the creation of ensembles: indeed both FusRan10 and 

FusRan10(255) performs very well when compared to all stand-alone models and also to the 

ensembles above. FusRan10(255) is the first ranked method tested in these experiments.  

• The two lightweight ensembles FusAct3 and FusRan3 strongly outperform stand-alone 

approaches and gain performance comparable with other heavier ensembles (composed by 10 

or 20 models).  
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Table 3. Performance of the proposed approaches in the medical image datasets (accuracy). 

 

 Dataset 
Avg Rank 

Method CH HE LO TR RN TB LY MA LG LA CO BG LAR 

ReLu 93.5 89.9 95.6 90.0 55.0 58.5 77.9 90.0 93.0 85.1 94.9 88.7 87.1 84.55 14 

leakyReLu 89.2 87.1 92.8 84.2 34.0 57.1 70.9 79.2 93.7 82.5 95.7 90.3 87.3 80.30 21 

SeLu 90.2 86.7 94.0 85.8 48.0 60.8 65.3 85.0 96.0 90.1 95.1 89.3 89.9 82.80 20 

SReLu 91.4 85.6 92.6 83.3 30.0 55.9 69.3 75.0 88.0 82.1 95.7 89.0 89.5 79.02 23 

APLu 92.3 87.1 93.2 80.9 25.0 54.1 67.2 76.7 93.0 82.7 95.5 90.3 88.9 78.99 24 

GaLu 92.9 88.4 92.2 90.4 41.5 57.8 73.6 89.2 92.7 88.8 94.9 90.3 90.0 83.28 19 

sGaLu 92.3 87.9 93.2 91.1 52.0 60.0 72.5 90.0 95.3 87.4 95.4 87.7 88.8 84.13 16 

preLu 92.0 85.4 91.4 81.6 33.5 57.1 68.8 76.3 88.3 82.1 95.7 88.7 89.6 79.26 22 

MeLu 91.1 85.4 92.8 84.9 27.5 55.4 68.5 77.1 90.0 79.4 95.3 89.3 87.2 78.76 26 

wMeLu 92.9 86.4 91.8 82.9 25.5 56.3 67.5 76.3 91.0 82.5 94.8 89.7 88.8 78.95 25 

SReLu(255) 92.3 89.4 93.0 90.7 56.5 59.7 73.3 91.7 98.3 89.0 95.5 89.7 87.9 85.15 12 

APLu(255) 95.1 89.2 93.6 90.7 47.5 56.9 75.2 89.2 97.3 87.1 95.7 89.7 89.5 84.35 15 

GaLu(255) 92.9 87.2 92.0 91.3 47.5 60.1 74.1 87.9 96.0 86.9 95.6 89.3 87.7 83.73 18 

sGaLu(255) 93.5 87.8 95.6 89.8 55.0 63.1 76.0 90.4 95.0 85.3 95.1 89.7 89.8 85.09 13 

MeLu(255) 92.9 90.2 95.0 91.8 57.0 59.8 78.4 87.5 97.3 85.1 95.7 89.3 88.3 85.26 10 

wMeLu(255) 94.5 89.3 94.2 92.2 54.0 61.9 75.7 89.2 97.0 88.6 95.6 87.7 88.7 85.27 9 

Random 90.2 90.0 94.2 91.6 54.5 62.0 77.3 90.8 95.7 90.5 95.1 89.0 87.1 85.23 11 

Random(255) 93.2 88.5 94.4 91.6 51.5 59.1 73.9 88.3 94.0 89.1 95.1 86.7 88.0 84.11 17 

FusAct10 93.5 90.7 97.2 92.7 56.0 63.9 77.6 90.8 96.3 91.4 96.4 90.0 90.0 86.67 7 

FusAct10(255) 95.1 91.3 96.2 94.2 63.0 64.9 78.7 92.5 97.7 87.6 96.5 89.7 89.8 87.46 5 

FusRan10 95.4 91.3 95.8 95.1 63.0 64.2 78.9 93.8 98.7 91.1 96.5 90.3 90.2 88.02 4 

FusRan10(255) 96.9 91.2 96.8 96.2 58.5 66.6 79.7 92.5 98.3 91.6 96.6 89.7 91.1 88.13 1 

Fus20 95.7 90.8 97.0 94.4 61.5 64.1 79.5 93.8 98.3 91.4 96.6 91.0 90.5 88.04 3 

Fus20(255) 96.3 91.2 96.6 95.3 62.0 64.9 79.5 93.8 98.3 90.1 96.6 90.3 90.8 88.12 2 

FusAct3(255) 93.9 91.5 94.8 93.1 58.5 63.5 77.6 91.3 98.3 88.0 96.3 89.0 89.4 86.55 8 

FusRan3(255) 96.3 90.9 95.6 95.1 54.0 62.9 78.7 92.5 98.7 90.9 96.2 90.0 90.5 87.10 6 

 

From the results in Table 3 we can draw the following conclusions:  

• The method named ReLu is our baseline, since it corresponds to the standard implementation of 

ResNet50. ReLu performs very well, but it is not the best performing activation function: many 

activation functions with INPUT parameter 255 work better than ReLu on average. 

• It is a very valuable result the methods as wMelu(255), MeLu(255) and some other stand-alone 

approaches strongly outperform ReLu in a large selection of classification problems. Starting 

from a model pretrained with ReLu and changing its activation layers, we obtained a sensible 

error reduction. This mean that our approaches permit to boost the performance of the original 

ResNet50 in a large set of problems.  

• It is difficult to select a function that win in all problems, therefore a good method to improve 

performance is to create an ensemble of different models: both FusAct and FusAct(255) work 

better than each of their single components. 

• Designing the model by means of stochastic activation functions (i.e. Random or Random(255)) 

gives valuable results above all in the creation of ensembles: indeed both FusRan10 and 

FusRan10(255) performs very well compared to all stand-alone models and also the ensembles 

above. FusRan10(255) is the first ranked method tested in these experiments.  
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• The two small ensemble FusAct3(255) and FusRan3(255) performs very well strongly outperform 

stand-alone approaches and gain performance comparable with other heavier ensembles 

(composed by 10 or 20 models).  

In the second experiment, we evaluate the proposed methods for skin segmentation on the 11 

datasets listed above: in Table 4 the performance of several variant of ResNet50 and some the 

following method/ensembles are reported in terms of F1-measure:  

• ReLu is the standard DeepLabv3+ segmentation CNN based on ResNet50 encoder. This net has 

shown state-of-the-art performance for skin segmentation [22].  

• leakyReLu, SeLu, SReLu, APLu, GaLu, sGaLu, preLu, MeLu, wMeLu are the 9 activation functions 

used in the ResNet50 architecture. Some of them depends on a parameter MAXINPUT which 

has been set to 1 if not explicitly indicated in parenthesis (255). 

• FusAct10 and FusAct10(255) are the ensembles obtained by the fusion of all the 10 models listed 

above (fixing MAXINPUT=1 or 255) 

• FusAct3 is a lightweight ensemble obtained by the fusion of the best 3 stand-alone models 

(evaluated on the training set), i.e. FusAct3= wMeLu + MeLu + preLu  

• Random and Random(255) are two stand-alone models designed according to stochastic selection 

method of activation functions described in section 2. 

• FusRan10 and FusRan10(255) are two ensembles obtained by the fusion of 10 stochastic models 

as Random or Random(255)  

• FusRan3 is the ensemble obtained by the fusion of 3 stochastic models as Random 

• Fus20 = FusAct10 + FusRan10  

• Fus20(255) = FusAct10(255) + FusRan10(255)  

For each dataset, the best result is highlighted and in the last two columns report the average F1-

measure and the rank (calculated on the average F1). 

 

Table 4. Performance of the proposed approaches in the skin datasets (F1-measure). 

 

 Dataset Avg Rank 

Method FV Prat MCG UC CMQ SFA HGR Sch VMD ECU VT   

ReLu 0.759 0.831 0.872 0.881 0.799 0.946 0.950 0.763 0.592 0.917 0.745 0.823 17 

leakyReLu 0.753 0.853 0.876 0.875 0.804 0.944 0.955 0.762 0.606 0.921 0.716 0.824 13 

SeLu 0.682 0.838 0.870 0.834 0.791 0.941 0.944 0.763 0.540 0.918 0.677 0.800 26 

SReLu 0.722 0.839 0.867 0.860 0.807 0.950 0.958 0.743 0.610 0.919 0.709 0.817 24 

APLu 0.774 0.840 0.874 0.880 0.796 0.942 0.945 0.761 0.593 0.914 0.745 0.824 15 

GaLu 0.759 0.827 0.867 0.872 0.795 0.941 0.933 0.755 0.562 0.913 0.731 0.814 25 

sGaLu 0.779 0.834 0.872 0.867 0.798 0.946 0.951 0.766 0.597 0.915 0.739 0.824 14 

preLu 0.785 0.852 0.878 0.886 0.809 0.947 0.953 0.770 0.633 0.924 0.740 0.834 9 

MeLu 0.768 0.861 0.878 0.879 0.819 0.947 0.953 0.768 0.643 0.927 0.725 0.834 10 

wMeLu 0.768 0.869 0.878 0.888 0.821 0.945 0.956 0.771 0.616 0.929 0.706 0.832 11 

SReLu(255) 0.758 0.831 0.872 0.879 0.797 0.946 0.949 0.764 0.592 0.916 0.744 0.823 18 

APLu(255) 0.755 0.839 0.873 0.873 0.797 0.940 0.947 0.760 0.584 0.909 0.744 0.820 21 

GaLu(255) 0.776 0.832 0.870 0.869 0.790 0.938 0.940 0.758 0.566 0.911 0.756 0.819 23 

sGaLu(255) 0.769 0.845 0.876 0.886 0.797 0.944 0.951 0.764 0.617 0.919 0.741 0.828 12 

MeLu(255) 0.757 0.836 0.874 0.872 0.792 0.943 0.944 0.767 0.570 0.913 0.744 0.819 22 

wMeLu(255) 0.759 0.832 0.873 0.880 0.799 0.946 0.950 0.763 0.599 0.917 0.742 0.824 16 

Random 0.757 0.852 0.876 0.889 0.804 0.937 0.947 0.764 0.569 0.920 0.730 0.822 19 

Random(255) 0.732 0.844 0.873 0.878 0.797 0.944 0.937 0.758 0.595 0.914 0.751 0.820 20 

FusAct10 0.796 0.864 0.884 0.899 0.821 0.951 0.959 0.776 0.671 0.929 0.748 0.845 2 

FusAct10(255) 0.791 0.854 0.881 0.897 0.813 0.949 0.955 0.774 0.654 0.925 0.761 0.841 7 

FusRan10 0.795 0.864 0.883 0.901 0.818 0.949 0.958 0.775 0.667 0.927 0.752 0.844 6 

FusRan10(255) 0.800 0.867 0.884 0.906 0.819 0.950 0.958 0.779 0.655 0.927 0.749 0.845 4 

Fus20 0.799 0.865 0.884 0.901 0.820 0.951 0.959 0.776 0.673 0.929 0.751 0.846 1 
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Fus20(255) 0.798 0.862 0.883 0.903 0.817 0.950 0.957 0.777 0.660 0.927 0.758 0.845 5 

FusAct3 0.790 0.874 0.884 0.896 0.825 0.951 0.961 0.776 0.669 0.933 0.737 0.845 3 

FusRan3 0.783 0.870 0.883 0.902 0.818 0.951 0.959 0.778 0.635 0.930 0.717 0.839 8 

 

From the results in Table 4 it is clear that:  

• In this problem the activation functions with INPUT parameter 1 work better than those 

initialized by 255, therefore we fixed to 1 the INPUT for the ensembles with 3 models (FusAct3 

and FusRan3.  

• Similarly, to the image classification experiment, the ensembles work better than stand-alone 

approaches: Fus20 is the best ranked method in our experiments, but two “lighter” ensembles as 

FusAct3 and FusAct10 gain very high performance. 

• As in the classification problem, our approaches outperform ReLu, i.e. the standard DeepLabv3+ 

based on ResNet50, a state of the art approach for image segmentation.  

• The reported results show that the proposed ensemble methods are able to reach state of the art 

performance [22] in most of the benchmark datasets.    

 

Finally, we report some comparisons considering the Wilcoxon signed rank test, see Table 5 and 

Table 6. Notice that we report different approaches in Table 5 and Table 6, in each table we report 

performance of the most interesting approach for classification and segmentation (one approach for 

each size of ensembles). The reported p-values confirm the conclusions drawn from Tables 3 and 4.  

 

Table 5. P-value of the comparison among some tested approaches in the medical image 

classification experiment ( < denotes that the method in row wins, ^ denotes that the method in 

column wins, = denotes that there are were no statistically significant differences). 

 

Classification ReLu wMeLu(255) FusRan3(255) FusRan10(255) Fus20(255) 

ReLu --- ^0.0046 ^0.0210 ^0.002 ^0.002 

wMeLu(255)  --- ^0.0024 ^0.004 ^0.002 

FusRan3(255)   --- ^0.004 ^0.004 

FusRan10(255)    --- =0.5684 

Fus20(255)     --- 

 

Table 6. P-value of the comparison among some tested approaches in the skin segmentation 

experiment. 

 

Skin segmentation ReLu preLu FusAct3 FusAct10 Fus20 

ReLu --- ^0.0059 ^0.0029 ^0.001 ^0.001 

preLu  --- ^0.0020 ^0.001 ^0.001 

FusAct3   --- =0.9844 =0.6797 

FusAct10    --- ^0.0938 

Fus20     --- 

 

 

Finally, notice that using a GTX1080 the classification time of ResNet is 0.024 seconds / image; 

this mean that also using an ensemble of 20 CNNs it is possible to classify two images each second 

using a single GTX1080.  

 

4. Conclusions 
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In this study, we proposed a method for CNN model design based on changing the architecture 

of the most performing CNN models by stochastic layer replacement. We proposed to replace each 

activation layer of a CNN by a different activation function stochastically drawn from a given set: in 

such a way that the resulting model has different activation function layers. This generation process 

introduces diversity among models making them suitable for ensemble creation. Interestingly, this 

design approach has gained very strong performance for ensemble creation: a set of ResNet50-like 

models designed using stochastic replacement of ReLu layers and combined by sum rule strongly 

outperforms both standard ResNet50 and a single stochastic ResNet50 in our experiments. A large 

experimental evaluation, carried out in a wide set of benchmark problems both for image 

classification and image segmentation, showed that our idea can be used for building a high 

performance ensemble of CNNs.     

Even if these first results are limited to a single, although performing model, we plan as a future 

work to evaluate the proposed method on a large class of models including lighter architectures 

suitable for mobile devices. The difficulty of studies involving ensembles of CNNs lies in the 

enormous speed and memory resources required to conduct such experiments.  

Another research direction is related to the selection of the initial set of activation function 

according to their performance.  
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