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Abstract: Rubble stone masonry walls are widely diffused in most of the cultural and architectural 
heritage of historical cities. The mechanical response of such material is rather complicated to 
predict due to their composite nature. Vertical compression tests, diagonal compression tests, 
and shear-compression tests are usually adopted to experimentally investigate the mechanical 
properties of stone masonries. However, further tests are needed for the safety assessment of 
these ancient structures. Since the relation between normal and shear stresses plays a major role 
in the shear behavior of masonry joints, governing the failure mode, triplet test configuration was 
here investigated. First, the experimental tests carried out at the laboratory (LPMS) of the University 
of L’Aquila on stone masonry specimens were presented. Then, the triplet test was simulated by 
using the Total Strain Crack Model, which reflects all the ultimate states of quasi-brittle material 
such as cracking, crushing and shear failure. The goal of the numerical investigation was to evaluate 
the shear mechanical parameters of the masonry sample, including strength, dilatancy, normal and 
shear deformations. Furthermore, the effect of (i) confinement pressure and (ii) bond behavior at the 
sample-plates interfaces were investigated, showing that they can strongly influence the mechanical 
response of the walls.

Keywords: unreinforced masonry; quasi-brittle material; in-plane behavior; shear-compression; 
triplet test; dilatancy; bond behavior; confinement; finite element model; macro-model

1. Introduction

In the past, the traditional architecture of Mediterranean countries extensively used the stone,
especially limestone, giving rise to one of the most important parts of the historical heritage, despite
the serious damage inflicted by recurring earthquakes [1–5].

The extreme vulnerability of stone masonry buildings is mainly due to the mortar joints which
represent the weak zone in masonry systems [6]. The weakness of the mortar joints is particularly
relevant in the case of strong units combined with weak mortar joints that is the typical condition in
the case of ancient stone masonries [7].

Although in the last decades several laboratory and in situ tests were performed on stone masonry
walls, the mechanical behavior of stone masonries is still not completely characterized due to a lack
of experimental data [8]. Indeed, due to the composite nature of the ancient masonry structures, the
high irregularity of elements and the complex distributions of mortar joints, the mechanical response
of irregular stone walls are difficult to be reproduced both in experimental tests and in numerical
simulations. Here, it is worth highlighting the great effort made in some recent studies [9,10] to
correlate the quality of the masonry walls to their mechanical properties. It is common practice employ
vertical compression [11–14], diagonal compression [8,11,15–17] and shear-compression [18,19] tests to
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experimentally investigate the mechanical properties of stone masonries. However, further tests are
needed to obtain useful data for safety assessment studies of ancient masonry structures [8].

Several experimental studies have been carried out on the bond shear strength of unit–mortar
interfaces [20,21] and natural rock joints [7,22,23], but limited research is available on the shear behavior
of stone masonry joints. The knowledge gathered can be partly extended to the present study knowing
that the surface roughness plays an important role in the shear behavior of stone masonries.

One can find few experimental campaigns carried out by using the triplet test for rubble stone
masonries (see [8,24]), in which reliable experimental evaluation of shear parameters is difficult to
perform since results may be scattered because the mortar joints are not regularly arranged. However,
the triplet test may be considered as a valid alternative to the other destructive tests due to the smaller
size of the specimen required. The smaller specimen size, the easier operation and the smaller costs
(and the invasiveness in case of existing building) are. Indeed, the size of the specimen tested under
the triplet test can be assumed equal to about 50 mm in length and 50 mm in height (see [8,24]) and is
more than two times smaller than the other tests. Thus, the triplet test may overcome the limitations of
the other destructive tests that not allow an extensive characterization.

The goal of the study carried out in the present work was to investigate the most important
mechanical parameters governing the shear behavior of the traditional rubble stone masonry walls.
In particular, first, the paper presents results from triplet tests carried out at the laboratory LDPM of
the University of L’Aquila (Italy). Then, numerical simulations are presented to better understand
the mechanical behavior of stone masonry under the triplet test, also investigating the effect of the
confinement pressure and the bond behavior at the masonry-plates interface. The conclusions of the
present study offer the possibility to improve the experimental mechanical characterization of stone
masonry structures and the modeling of them.

2. Description of the triplet test

The triplet test allows the evaluation of the shear strength parameters of the bed joints of the
masonry. That test can be effective to generate shear failure, through the mortar of the masonry
specimen, especially in case of strong units combined to weak mortar joints, which represent the most
frequent condition in ancient stone masonries. Indeed, for this masonry type, the mechanism failure
mainly regards the mortar joints, which represent the weak zone in masonry systems [6,7]. Triplet test
relies on a particular constraint system that creates a shear box [24]. Usually, a couple of "L-shape"
rigid steel plates are mounted on the upper and lower parts of the wall specimen (see Figure 1a).
Then, a combined application of vertical pressure on the upper plate and a horizontal force on the
unconstrained lateral edge of the specimen causes the slide of the central zone of the sample on two
horizontal surfaces (see Figure 1b).

An important issue related to the experimental characterization of joint shear behavior concerns
The testing setup is an important issue to comprehend the experimental characterization of

the shear behavior of mortar joint of masonry walls [25]. Indeed, as highlighted in [26], results are
sensitive to the support conditions used. Although distinct loading arrangements have been used, it is
difficult to provide uniform shear and normal stresses distribution along the joint so that failure occurs
simultaneously at all points of the mortar joint [27]. That condition can be obtained by reducing the
eccentricity of the reactions that may develop as close as possible to the unit-mortar interfaces [25].
The standard shear test method, also called the triplet test (EN1052-3 [28]), provides the best testing
setup for the evaluation of the shear parameters of masonry walls. However, differently from brick
masonries, such test is difficult to perform for stone masonry because the rocking phenomenon caused
by the irregularity of the stone arrangement may preclude the shear sliding.

An important aspect regarding shear tests is the dilatancy ψ, which represents the relation between
the normal and the shear displacements of the wall (ψ =arctan ∆n/∆s) and assumes a significant
role in numerical modeling of rubble stone masonry [25]. Indeed, an increase in the volume of stone
specimens can be observed during the test because, after cracking and sliding, the two sides of the
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cracks do not match. For this reason, the dilatancy of stone masonry is mostly controlled by the joint
roughness, as already observed for rock joints [29]. Indeed, the dilatancy increases with the irregularity
of the crack surfaces and tends to be stronger in rubble stone masonry than in brick masonry [8]. As
pointed out by [30], dilatancy in masonry panels causes a significant increase in the shear strength
when they are subjected to confinement loads.

To quantify the shear strength parameters of horizontal bed joints in rubble stone masonry, triplet
tests were performed at the laboratory LPMS of the University of L’Aquila on two stone masonry
samples measuring about 0.50 m in length, 0.50 m in height and 0.30 m in thickness. Samples were
prepared using the original limestone units and the ancient constructive technique recognized in
most of the monumental buildings of L’Aquila. Irregular stone elements of calcareous nature and
with a characteristic size ranging from 80 mm to 150 mm were taken from the debris of buildings
collapsed under the L’Aquila 2009 earthquake. The original mortar features of the historical masonry
(characterized by a very friable behavior and a low compressive strength of about 2 MPa) were
reproduced several attempts. In particular, the mortar was prepared by mixing commercial natural
hydraulic lime mortars, local crushed limestone sand and local natural clay with a respective ratio of
1:2:1. Water was added to the mortar mixture until a plastic consistency was reached. The addition
of natural clay to the mortar mixture produced a hydraulic lime similar to the ancient lime [31].
Wall samples were consolidated by mortar injections to preserve their integrity during the delicate
movement operations.

a) b)
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c)

Figure 1. (a) Testing apparatus employed for the triplet tests carried out at the laboratory LPMS of the
University of L’Aquila. (b) Specimen failure. (c) Experimental details of the test.

Here, it is relevant to say that test equipment consisted of a pair of rigid steel plates (measuring
30 mm in thickness) mounted around the masonry wall panels to simulate a shear box (see items 1 in
Figure 1c). The bottom plate was placed on a rigid steel basement (see item 2 in Figure 1c). Both the
top and bottom steel plates were anchored by steel bars (see item 3 in Figure 1c), which did not allow
horizontal translations of the plates.

As far as the load system is concerned, first, a vertical actuator was used to impose an axial load
to the sample (see item 4 in Figure 1c), reaching the average compression stress of -0.18 MPa (equal to
about 1/3 of the failure stress experimentally obtained from the compression of a sample), which was
kept constant for all the duration of the tests. Second, a horizontal actuator (see item 5 in Figure 1c)
was used to introduce a shear force H at the half-height of the sample by using a lateral steel plate (see
item 6 in Figure 1c).

Due to the boundary and loading conditions designed in the experiments, the central zone of the
sample was forced to slide on the upper and lower specimen parts through two distinct shear surfaces.

Further details about the manufacture of the masonry samples, the test equipment, and the test
execution are provided in [24].

Figure 1b shows the crack propagation occurred during the experimental test. In particular, one
can clearly observe a crack concentration at the horizontal layers between the lateral plate and the two
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L-shape plates. Lower amount cracks also occurred at the bottom and upper parts of the specimens. It
is worth noting that a rotation of the upper part of the specimen was observed during the tests.

The mechanical response of the specimens carried out by experimental tests is described in the
Section 4.

In the absence of specific standards for the testing of irregular stone masonry walls, the described
test configuration aimed to reproduce the triplet test usually performed on brick masonry samples
(EN1052-3, [28]). In particular, the shear stress of the specimen fv is obtained from the equation:

fv = H/(2A) (1)

where H is the shear load and A is the cross-sectional area of the shear surface equal to 0.12 m2

(0.40×0.30 m). Since H was applied to the central part of the specimen and transferred to the upper
and lower parts through the two contact surfaces, the computation of fv considers the total area of
shear surfaces equal to 2A (EN1052-3, [28]). For H=Hmax, Eq. 1 provides the maximum shear stress.

When moderate normal stress is applied on the masonry panel, the friction resistance assumes the
most important role for the shear characterization of the masonries also due to the negligible resistance
of the mortar [21,32]. In that condition, the Coulomb criterion can be assumed for the evaluation of
the shear strength of masonry walls, accurately describing only their local failure [21,33,34], by the
equation:

fv = fv0 + µ σ (2)

where fv0 is the cohesion, which represents the shear stress at zero vertical load stress, and µ is the
friction coefficient.

By combining the Eq. 1 and Eq. 2, one can compute the fv0 value, which represents the intrinsic
mechanical property of the masonry specimen.

Reliable evaluation of the fv0 and µ parameters are difficult to perform in case of stone masonry
because they strongly depend on the asperity of the stones and may not be considered representative
for all the entire masonry structure [35]. For stone units coupled with hydraulic lime mortar, fv0 values
ranging from about 0.08 to 0.3 were experimentally measured [8,36].

In national [37] and international codes [38], µ is considered as constant and independent from the
wall type and assumed equal to 0.4. Instead, experimental values of such coefficient were measured, in
case of stone units coupled with hydraulic lime mortar, ranging from about 0.3 to 1.2 [8,36,39].

3. Description of the numerical model

Extensive researches on advanced numerical modeling and analysis of historic masonry structures
have been carried out since some decades [40–42]. However, reliable prediction of the mechanical
response of such material is still a challenge for engineers [43].

Different modeling approaches are available for the numerical simulation of the mechanical
behavior of masonry structures. Actually, both the macro-models, also called continuous models,
[44–48] and micro-modelling, also called discontinuous models, [30,49–51] may be adopted on the
base of the different detail to which the material heterogeneity are required to be represented.

The discontinuous approach can give better results, especially when the geometry is known, but
is computationally expensive for the analysis of large masonry structures since the failure zones are
placed in pre-assigned weak zones, such as the mortar joints for brick masonries [52]. Instead, the
continuum approach performs well in case of damage zones spread over the wall [53].

Previous researches showed that the response of masonry structures up to failure can be
successfully modeled using techniques applied to concrete mechanics because both are characterized
by brittle behavior [54–56].

In the present work, the in-plane compressive behavior of UnReinforced Masonry (URM) walls
was investigated by using a macro-modeling approach, where the heterogeneous material is substituted
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with an equivalent homogeneous material. In particular, the experimental tests described in Section
2 were simulated by using Midas FEA [57]. This FE code can be used for simulating the behavior
of quasi-brittle materials, such as the stone masonries, by employing the Total Strain Crack Model
- TSCM [58]. The TSCM is often used for macro-modelling of masonry [45–47]. It is based on the
Modified Compression Field Theory originally proposed in the multi-direction fixed crack model [59]
and extended to 3D by [60]. The model is based on a smeared crack approach, where the process
of cracking is obtained by “smearing” the damage on the adjacent finite element, introducing a
degradation of the relevant mechanical properties [61]. The model also offers a variety of possibilities
to consider the orientation of the crack, ranging from fixed single to fixed multi-directional and rotating
crack approaches [62,63]. Since smeared crack modeling approaches do not require remeshing of the
FE model after the occurrence of cracks or a priori definition of possible locations of cracks, they have
been widely used in FE modeling [64]. The smeared crack models are practice-oriented due to the
limited data required in input and, for example, was successfully adopted for brick masonry and
adobe walls [65,66] and debonding problems [64,67,68].

In the present work, under the TSCM hypotheses, the fixed stress-strain concept was used, so that
the axes of crack remain unchanged once the crack is activated. Furthermore, both the lateral crack
and the confinement effect were considered. The system of non-linear equations used a secant stiffness
matrix and was solved by the Initial stiffness incremental method.

The compression behavior of the masonry was modeled by the constitutive law suggested in [69],
characterized by a parabolic hardening path and a parabolic exponential softening branch after the
peak of resistance (Figure 2a). The tensile behavior was instead modeled by the Thorenfeldt’s law [70]
characterized by a linear hardening branch followed by a nonlinear softening branch (Figure 2b).

Figure 2. Stress-strain constitutive relations: (a) masonry uniaxial compression. (b) masonry uniaxial
tension

The stone masonry panel was modeled by the FE macro-model M1 illustrated in Figure 3a. The
M1 consists of a single block of homogeneous material characterized by a hexahedral mesh with a size
of 50 mm. In particular, in a continuum modeling approach, the mesh size should be larger than the
size of the aggregates and other dominant micro-structure features. However, authors decided to use a
mesh size which was as close as possible to the real stone size. This because of the convergence issues
of the analyses that would lead to lower reliability of the numerical results.

The two L-shape plates, placed at the lower and the upper parts of the specimen (see items
1 and 2 in Figure 3a), were modeled as tetrahedral elements and were assumed to be elastic. The
same assumption was adopted also for the lateral plate (see item 3 in Figure 3a) used to transfer the
horizontal displacement to the central zone of the sample.

As far as the load is concerned, two different loading steps were applied to the panel aiming to
reproduce the same condition of the experimental tests: (i) a constant vertical compression stress of
0.18 MPa on the upper L-shape plate (see item 2 in Figure 3a) to have a uniform distribution of the
vertical load and (ii) a horizontal displacement, gradually increasing from 0 mm to 20 mm, transferred
by the lateral plate to have the sliding of the central zone of the sample.
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As far as the constraint system is concerned, the vertical translations together with the rotations
perpendicular to the normal plate directions were fixed for all the bottom mesh nodes. Furthermore,
only horizontal translations were fixed for the outermost mesh points of the two L-shape plates. The
top of the sample was left free to move in the vertical direction like in the experimental tests. That
constraint system allowed to reproduce the same boundary of the experimental tests. Details of the
constraint system adopted in the simulation are illustrated in Figure 3b.

Since small numbers of iterations and steps used for the numerical analyses may affect the quality
of the calculated responses, a huge number of iterations and steps were assumed for the analyses. In
particular, 150 iterations and 200 steps, which correspond to an increment of 0.1 mm per step, were
assumed to solve the nonlinear equation system by using the incremental Newton-Raphson method.

4. Simulating the experimental tests

4.1. Calibration of the material parameters

The composite nature of the masonry makes it difficult to assign material properties, which
depend on many factors as described above. For this reason, the first important part of the work
consisted of calibrating the mechanical parameters in order to reproduce the mechanical behavior
observed during experimental tests.

The masonry mechanical properties required by the model were the normal elasticity modulus
E, the shear modulus G, the compressive strength fc, the tensile strength ft and the compressive and
tensile energy fractures, G fc and G f , respectively. The values of fc and ft were assumed equal to those
ones obtained experimentally in [24]. The normal elasticity modulus E and the shear modulus G
were defined by the best fitting of both the H-dx and fv-εv experimental curves recorded during the
tests performed in [24]. On the other hand, it was necessary to calibrate the values for G fc and G f
to model the inelastic behaviour of the URM. In particular, the G fc /h and G f /h ratios represent the
the area under the stress-strain (σ − ε) diagrams of Figure 2, where h represents the crack bandwidth
and it can be assumed equal to the average mesh size adopted in the FE model [57,71]. However,
any experimental investigation presents in the literature allows a reliable characterization of both the
G fc and G f I for stone masonries. Empirical formulations can be applied for the estimation of such
parameters:

G fc = 15 + 0.43 fc − 0.0036 f 2
c (3)

G f I = 0.025 (2 ft)
0.7 (4)

One compute a value of 15.2 N/mm for G fc by using the Eq. 3 and a value of 0.0075 N/mm for
G fc by using the Eq. 4. Such values were computed with the fc and ft values listed in Table 1. However,
such equations were proposed for brick masonries [72] by modifying the formulation originally
proposed for the concrete material [73]. In case of stone masonries, Eq. 3 tends to overestimate the
G fc value. Indeed, for example, the value assumed for G fc in the numerical analyses carried out for
the Camponeschi Palace [64], which is an historical stone masonry building located in L’Aquila, was
assumed equal to 9 N/mm. Values of 3 N/mm were instead estimated for G fc in case of tuff masonry
material [61,74,75].

On the contrary, the G f I value obtained by the Eq. 4 slightly underestimates the values presented
in the literature [52,64]. Sensitivity analyses on such mechanical parameters would deserve a deeper
investigation and should be considered in future studies.

Table 1 shows the masonry parameters obtained by the described calibration procedure. It should
be noted that the ratio E/G = 2.2 is close to the value provided by the Italian Building Code [37] for
irregular stone masonries assumed equal to 3.
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Table 1. Mechanical parameters calibrated for the masonry panel under shear-compression.

E G fc G f c ft G f I
[MPa] [MPa] [MPa] [N/mm] [MPa] [N/mm]

100 45 0.7 15.2 0.09 0.0075

Figure 3c shows the best fitting of the experimental curves. In particular, the grey area represents
the dispersion between the lower and the upper response curves measured in the two experimental
tests, whereas the black curve concerns the numerical simulation. No extensive literature reports
regard triplet test on stone masonry specimens, since the test is commonly employed only for brick
masonries. However, the results of both the experiment and simulation presented in this paper are in
line with the literature results obtained for the same masonry type and same materials [8,76]. Here, the
maximum shear stress fv was almost equal to 0.26 MPa, whereas the shear stresses fv computed in
[8,76] were ranging from 0.33 MPa to 0.44 MPa, obtained for vertical compression stress similar to the
one applied for the present case. The slight difference is related to the classic scattering issue that is
typical for stone masonry, as described in Section 1.

In the rest of the paper, the numerical curve of Figure 3c is taken as the reference curve for the
H-dx plots.
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Figure 3. (a) Visualization of the M1 macro-model. (b) Scheme adopted in the test. (c) Best fitting of
the H-dx experimental response.

4.2. Numerical assessment of the shear mechanic parameters

The experimental tests carried out in [24] measured the relation H-dx (Figure 3c) up to the failure
of the URM sample, whereas the relation fv-εv was evaluated only in the elastic phase (up to 1/3 of
the shear strength). However, to better investigate the mechanical behavior of the URM specimen
under triplet test, it is important to measure also other parameters. In this work, the displacement of
eight points (from P1 to P8) placed on the face of the panel (see Figure 3b) were monitored during the
simulation aiming to compute the shear displacement ∆s, the normal displacement ∆n, the horizontal
strain εh and the vertical strain εv. In particular, εh and εv were computed for both the middle and
lateral parts (left, right, top and bottom) of the sample, as follows:

εh,middle = −(dx,P4 − dxP5)/` (5)

εh,top = −(dx,P1 − dxP3)/` (6)

εh,bottom = −(dx,P6 − dxP8)/` (7)
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εv,middle = (dz,P2 − dzP7)/` (8)

εv,right = (dz,P3 − dzP8)/` (9)

εv,le f t = (dz,P1 − dzP6)/` (10)

∆s = dx,P5 − (dx,P3 + dx,P8)/2 (11)

∆n = dz,P3 (12)

were ` is the length between two points, equal to 500 mm, dx and dz are the horizontal and the vertical
displacements of the eight points placed on the face of the panel.

Results of the numerical simulations are illustrated in Figures 4a − f . Plots indicate the
achievement of the maximum shear stress fv,MAX by the "x" marker and called MSP label (Maximum
Stress Point) in the following. Instead, when the achievement of the maximum normal and shear
displacements occur at the same point, ∆n,MAX ≡ ∆s,MAX, the "o" marker and the MDP label
(Maximum Displacement Point) are used in the paper.

a) b) c)

d) e) f)

m =27.5°

m 

Figure 4. Numerical results obtained for the M1 model.

In detail, Figure 4a shows the relation between fv and the horizontal strains εh computed for the
three parts of the sample: middle, top, and bottom. In particular, one can see that the strain values
computed for the top and the bottom parts of the specimen assume a constant value almost equal to
zero because of the nearness of the L-shape plates that constrain the horizontal displacement of the
specimen. For the middle part of the sample, an initial, almost linear branch is first recognized up to
the MSP, then the mechanical response of the masonry is characterized by a gradual reduction in fv up
to MDP, after which a large increase in εh is observed for constant residual value of fv. In the rest of
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0 MPa 0.09 MPa

Figure 5. Masonry specimen for incremental values of the displacement dx corresponding to the elastic
phase (1 mm), maximum shear stress (4.5 mm), maximum shear and normal displacement (6.9 mm)
and the end of the test (20mm) and illustrated in terms of: (a) displacement field (Dxyz plots). (b) Stress
field (Von Mises plots). (c) Evolution of the cracking pattern.

the paper, the numerical curve of the middle part of the sample represented in Figure 4a is taken as the
reference curve for the fv-εh plots.

Figure 4b shows the vertical strains εv computed for three parts of the sample: middle, right
and left. In particular, for all three curves, one can observe compressive values (negative) equal
to -0.002 MPa for fv = 0 Mpa. This is due to the compressive load applied to the upper L-shape
plate in the first loading step. Then, one can see a gradual increase in εv for all three curves up to
the MSP, after which a large increase in εv is observed for a constant residual value of fv up the
MDP. After the achievement of the MDP, one can observe that fv continues to decrease because the
specimen is gradually damaged now allowing the transmission of the force H to the masonry specimen,
Furthermore, after the achievement of the MDP, one can also observe a decrease in the εv value because,
at that point, the specimen is almost completely collapsed and cannot longer resist to the vertical
compression pressure σ applied on the upper plate. Hence, the specimen tends to return to the initial
configuration of the uncompressed statement.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 February 2020                   doi:10.20944/preprints202002.0226.v1

https://doi.org/10.20944/preprints202002.0226.v1


10 of 18

Analyzing the differences between three curves of Figure 4b, one can see that the right and left
parts of the specimen are characterized by different values of εv as compared to the middle part. This
is due to the rotation of the specimen that also occurred in the experimental test.

Figure 4c shows the correlation between shear stress fv and both normal and shear displacements,
∆n and ∆s. In general, the trends and the comments of Figure 4b are transferable for the Figure 4c.

Figure 4d shows the variation of both ∆n and ∆n as function of the displacement of the lateral
plate dx. In particular, one can observe a gradual decrease of both ∆n and ∆n when the MSP is reached.

As discussed in the Section 2, it is known from the literature that quasi-brittle materials show
an increase in volume when undergoing inelastic shear deformations. This phenomenon depends
on both the confinement pressure and the dilatancy angle ψ. The dilatancy ψ represents the relation
between the vertical and the horizontal displacement of the wall (ψ =arctan ∆n/∆s). Figure 4e shows
the relation between ∆s and ∆n computed for the specimen, allowing to graphically estimate the mean
dilatancy angle, equal to 27.5 o. That curve is taken as the reference curve for the ∆n-∆s plots in the rest
of the paper.

Finally, Figure 4 f shows the relation between tan ψ and the displacement of the lateral plate dx.
One can observe that the tan ψ assumes high value during the compressive loading phase (dx=0) and
an almost constant value equal to 0.48 during the application of the lateral displacement dx. Results are
in line with the results of Van der Pluijm [77], who experimentally established values of tan ψ, ranging
from 0.2 to 0.7 for low confinement pressures, highlighting the strong influence of the confinement on
the estimation of ψ.

To better understand the variation of both the displacement and stress fields during the triplet
test, Figures 5a, b show the plots corresponding to incremental values of the displacement dx imposed
at the lateral plate. In particular, plots of Figures 5a, b are referred to dx equal to 1 mm, 4.5 mm, 6.9 mm,
and 20 mm, ensuring to observe the mechanical behavior at the elastic phase (pre-peak), maximum
shear stress, maximum shear and normal displacements, and the end of the test. Displacement field
are illustrated in Figure 5a, whereas the stress field (Von Mises plots) is illustrated in Figure 5b.

Furthermore, Figure 5c shows the evolution of the cracking pattern of the masonry sample for
incremental values of dx in terms of Gauss point-occurrence, indicating whether a tension cut-off limit
is exceeded at an integration point. In particular, one can see that the upper and lower parts of the
specimen are characterized by larger damage level as compared to the central part of the specimen. In
detail, crack concentration occurs at the horizontal layer between the lateral plate and the two L-shape
plates and the corners places. Definitely, the cracking pattern observed in Figure 5c highlights that
the simplified numerical modeling which considers all nonlinear behaviour of the masonry sample
concentrated on the sliding surfaces, while keeping the three parts of the specimen as elastic, may
produce incorrect results.

4.2.1. Confinement effect

The confinement effect, which can take place between two contact surfaces, was considered in
the analyses by assuming the Selby-Vecchio law [60] in the material properties, as discussed in the
Section 2. Results presented in the follows (Figures 6 and 7) describe the variation of the mechanical
properties of the masonry sample by varying the value of the confinement pressure, assumed equal to
-0.18 MPa (σ0 case), -0.09 MPa (0.5 σ0 case) and -0.36 MPa (2 σ0 case).

Results of Figure 6 highlight that the confinement level affects the strength of the specimen.
Moreover, for the case of low confinement pressure (0.5 σ0 case), one can observe a hardening behavior
of the response, whereas for the other two cases a softening behavior is observed. Furthermore, it is
worth noting that, for the case of 0.5 σ0, the shear displacement and the normal displacement occur at
the same value of dx, as already observed for the σ0 case. On the contrary, for the case of 2 σ0, one can
observe that ∆n,MAX and ∆s,MAX occur in two different phases. In particular, in 2 σ0 case, ∆n,MAX and
∆n,MAX occur before and after the achievement of the MSP, respectively.
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Figure 6. Confinement effect in the horizontal displacement-horizontal force plot.

Figure 7a shows the relation between the normal displacement ∆n and the shear stress fv. It
is worth noting that no considerable lifting of the masonry sample can be observed in case of high
confinement pressure (2 σ0 case). Indeed, after the initial compressive phase that leads to normal
displacement equal to -2 mm, a slight lifting of the sample is observed up to fv = 0.22 MPa, for
which is computed the maximum value of ∆n. After that point, the sample continues to be compressed,
showing a decrease in ∆n. For the case of low confinement pressure (0.5 σ0 case) one can see that the
MSP coincides with the MDP and they occur at the end of the test.

a) b) c)

f)

f cf c

d) e) f)

fv=-0.109-0.846σ

Figure 7. Investigation of the shear mechanical properties of the masonry sample by varying the
confinement pressure respect to the central value σ0 equal to -0.18 MPa.

Figure 7b shows the relation between the shear displacement ∆s and the shear stress fv. For all
the three curves, the achievement of the maximum value of the shear displacement ∆s,MAX is observed
after the achievement of the MSP. Moreover, ∆s,MAX occur at the end of the test only for the case of
high confinement pressure, as already clearly observed in Figure 6.

Figure 7c shows the relation between ∆s and ∆n computed for the specimen allowing to graphically
estimate the mean dilatancy angle ψm. Values of tan ψ are analysed in Figure 7d as function of the
lateral displacement dx. In that figure, one can see that, after the initial phase (dx almost equal to 0),
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the dilatancy tends to be constant. Moreover, the higher confinement pressure, the higher tan ψ value
is, with a null value of tan ψ in the 2 σ0 case.

Additional analyses (Figure 7d, e) were carried out also assuming values of σ equal to 0 MPa,
-0.54 MPa and -0.7 MPa to better understand the variation of both tan ψ and fv,MAX as function of the
confinement pressure. In particular, the results of Figure 7d show that tan ψ is ranging from 0 to 2.25
following an exponential law. Figure 7 f allows to define the limit strength domain of masonry and
to estimate values of the cohesion fv0 and the coefficient of friction µ. In particular, fv0 and µ were
computed equal to -0.109 MPa and -0.846 MPa, respectively, by assuming a linear regression of the
results obtained for σ0 equal to 0 MPa, -0.18 MPa and -0.36 MPa.

4.2.2. Bond effect at the masonry-plates interface

Analyses carried out in Sections 4.2 and 4.2.1 regarded the hypotheses of perfect bond (PB)
behavior at the specimen-plate interfaces. However, in the experimental tests, the masonry specimens
could move along the horizontal direction, whereas only the horizontal displacement of the L-shape
plates was constrained. Here, to lies a sliding at the specimen-plates interface, a weak bond (WB)
hypotheses was assumed in the FE model. In particular, contact plane elements were introduced by
assuming the Coulomb friction nonlinear law [57] with values of 0.05 MPa for the cohesion c, 30o for
the internal friction angle φ, 80 N/mm3 and 35 N/mm3 for the normal and the tangential stiffness kn

and kt, respectively.
Results presented in the following (Figures 8) describe the variation of the mechanical properties

of the masonry sample by varying the bond behavior at the sample-plates interfaces.

a) b) c)

f)d) e) f)

Figure 8. Comparison of the numerical results between the cases of two different bond behaviors at
the masonry-plates interfaces: perfect bond (PB) and weak bond (WB) behavior.

Figure 8a shows that the bond behavior has no effect in the first branch of the H-dx plot and has a
slight effect on the maximum shear load (about 2%). On the contrary, a larger difference in terms of
load-bearing capacity for large displacement dx is observed between the WB and the PB cases. Indeed,
by measuring H at dx=20 mm one can compute a load decrease of 17 % by comparing the PB (71 kN)
and WB (59 kN) cases. Moreover, in the WB case, one can observe, after the achievement of about 60
kN of the horizontal force, a higher decrease in the slope of the response curve as compared to the
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PB case. This difference means that the WB hypothesis leads to an early non-linear phase of the wall
material. It is worth noting that the experimental response shows the same decrease in the slope of the
mechanical response, even more pronounced.

Figure 8b shows the relation between both the normal and shear displacements with the shear
stress fv. In particular, strong differences can be observed in terms of the MDP value, which is higher
in the WB case as compared to the PB case.

Figure 8c shows the variation of both ∆n and ∆n as function of the lateral displacement dx. The
plot clearly highlights the higher deformation capacity of the masonry sample in the WB case as
compared to the PB case. Indeed, for the PB case, one can see that ∆n and ∆n assume constant values
after a certain value of dx (almost equal to 6 mm), whereas a gradual increasing in both ∆n and ∆n up
to the end of the test is observed for the WB case.

Figure 8d shows the relation between ∆s and ∆n computed for the specimen. In particular, one
can see that the dilatancy angle is higher for the PB case as compared to the WB case.

Results of Figure 8e show the particular variation of the trend of tan ψm function of the normal
stress σ by assuming PB and WB hypotheses.

A further analysis is carried out to investigate the effect of the boundary condition on the
mechanical response of the masonry subjected to high confinement pressure. Figure 8 f shows the
fv − dx plot for high confinement pressure (2 σ0 case). In particular, one can compute a decrease in
the shear strength of about 11 % by comparing the PB case (0.350 MPa) and the WB case (0.312 MPa).
Moreover, one can note a total decay of the shear stress for the WB case, whereas a good bearing-load
can be observed for the PB case, which is characterized by a decrease in fv of about 20 % as compared
to the peak value. Definitively, by comparing the response of Figure 8a and Figure 8 f , one can say
that the higher the confinement pressure, the higher the influence of bond behavior on the mechanical
response.

Finally, Figure 9 shows the effect of the bond behavior at the masonry-plate interfaces on the
displacement and stress fields, and the fracture propagation in case of high confinement pressure (2
σ0). Plots concern different values of the displacement dx, equal to 4 mm and 16 mm. In particular, one
can see clear differences in the sample deformation by assuming the PB hypothesis (Figure 9a) and the
WB hypothesis (Figure 9b). Differences in terms of the Von Mises stress for the PB and WB hypotheses
are investigated in Figures 9c, d. As far as the fracture propagation is concerned, first, one can see that
the WB case (Figure 9e) leads to a higher cracking amount as compared to the PB case (Figure 9 f ).
Second, it is worth noting that one can observe different cracking patterns by assuming different
confinement pressure and the same bond behavior hypothesis. Indeed, under the PB hypothesis, the
damage pattern on the sample for the 2 σ0 case (Figure 9e) concerns its lateral parts, whereas one can
see cracks concentration at the lower and bottom parts of the sample for the σ0 case (Figure 5c).

Definitely, by comparing both the mechanical response and the propagation failure on the masonry
walls of the experimental test presented in this paper, the WB case can be considered most realistic
respect to the PB case.

5. Conclusions

The numerical assessment of the shear mechanical parameters on unreinforced stone masonry
walls under triplet test configuration was carried out in the present work.

First, the paper introduces experimental tests carried out at the laboratory LPMS of the University
of L’Aquila on several stone masonry samples prepared by using the original limestone units and the
ancient constructive technique recognized in most of the monumental buildings of L’Aquila.

Second, the tests were numerically simulated by using a macro-model under the Total Strain
Crack assumption, in order to determine the dilatancy, displacement, deformation, and strength of the
sample. The results showed a good agreement between experiments and numerical simulations in
both the mechanical behavior and the damage evolution on the masonry sample. Then, the effect of the
confinement pressure and the bond behavior at the masonry-plate interfaces were also investigated.
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Figure 9. Results obtained for high confinement pressure (2 σ0 case) and plotted for two different steps
(dx=4.5 mm and dx=16 mm) by varying the the bond behavior at the masonry-plate interfaces (Perfect
Bond (PB) and Weak Bond (WB) hypothesis). Imagines are illustrated in terms of: (a,b) displacement
field (Dxyz plots). (c,d) Stress field (Von Mises plots). (e,f) Evolution of the cracking pattern.

In particular, as far as the confinement pressure is concerned, simulations showed that it highly
affects the shear strength and the dilatancy of the sample. In addition, it was found that the shear and
normal maximum displacements do not occur at the same time when a high level of the confinement
pressure is applied, unlike the lower confinement pressure cases.

As far as the bond behavior is concerned, simulations showed that it has a strong effect on the
load-bearing capacity for large lateral displacements imposed at the masonry sample. Moreover, the
bond behavior has a slight effect in terms of the maximum shear stress and also affect the begin of the
non-linear phase of the wall material.

no influence on the first part of the test (elastic field). These effects are even more evident by
increasing the confinement pressure on the masonry sample.

The damage evolution on the unreinforced stone masonry sample depends to both the
confinement pressure and the bond behavior, as highlighted by observing the evolution of the cracking
pattern. In case of a moderate level of confinement pressure, possible failure can occur at the upper
and the lower parts of the sample, and not only at the horizontal layer between the lateral plate and
the two L-shape plates. Instead, in case of high confinement pressure, the cracking mainly occurs at
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the lateral part of the sample (close to the lateral plate used to apply the shear force to the sample).
Finally, the weak bond behavior leads to a more uniform cracking as compared to the perfect bond
behavior case. These results highlight that a simplified numerical model, which considers all nonlinear
behavior of the masonry sample concentrated on the sliding surfaces (while keeping the three parts of
the specimen as elastic) may produce incorrect results.
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