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Abstract 

 

Users of meteorological forecasts are often faced with the question of whether to make a 

decision now based on the current forecast or wait for the next and hopefully more accurate 

forecast before making the decision. One would imagine that the answer to this question should 

depend on the extent to which there is a benefit in making the decision now rather than later, 

combined with an understanding of how the skill of the forecast improves, and information 

about the possible size and nature of forecast changes. We extend the well-known cost-loss 

model for forecast-based decision making to capture an idealized version of this situation. We 

find that within this extended cost-loss model, the question of whether to decide now or wait 

depends on two specific aspects of the forecast, both of which involve probabilities of 

probabilities. We derive an algorithm for calculating these two probabilities for the case of 

normally distributed weather or climate forecasts and apply it to a series of synthetic weather 

forecasts of temperature. We find that the algorithm leads to better decisions relative to three 

simpler alternative decision-making schemes. 
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1. Introduction 

 

Meteorological forecasts such as weather forecasts, seasonal forecasts and climate forecasts 

can be used to inform decision-making in various ways (Stewart (1997), Palmer (2002), Fundel 

et al. (2019)). For all except the simplest situations, decision-making requires information 

about the probabilities of different future weather or climate outcomes, and this has led to the 

development of forecast systems that provide estimates of such probabilities. For example for 

weather forecasts of large-scale conditions, probabilities can be derived from the rates of 

occurrence of different situations among the members of an ensemble forecast, such as those 

produced by ECMWF (Molteni, et al., 1996), NCEP (Kalnay & Toth, 1993) and others. For 

site-specific weather forecasting, probabilities can be created from single numerical model 

forecasts, or from an ensemble mean forecast, by using linear regression with a specified 

distribution of errors as part of the calibration to observed values (Glahn & Lowry, 1972). More 

recently, improved site-specific probabilistic weather forecasts have been created from 

ensembles of numerical model forecasts using extensions of linear regression that incorporate 

information from the ensemble spread (Jewson, et al., (2004), Gneiting, et al., (2005)). In 

climate prediction, probabilities have been created from single model ensembles (Stainforth, 

et al., 2005) and multi model ensembles (Taylor, et al., 2012), via various different algorithms 

(Chen, et al., 2019). 

 

The use of probabilities from forecasts to make decisions has been studied by Murphy (1969, 

1985), using the cost-loss model. This model has been analysed, applied and extended by 

various authors (Kernan (1975), Buizza (2001), Richardson (2001), Roulin (2007), Matte 

(2017)). The cost-loss model is an idealized model for making types of decisions that are 

analogous in terms of logical structure to the binary decision of whether or not to cancel an 

event based on a forecast. In this simple model there are just two possible weather outcomes 

(which we will refer to as good or bad weather), with predicted probabilities, and a single 

binary decision that needs to be taken based on those probabilities (which we will refer to as 

cancel or go ahead). The four combinations resulting from the two weather outcomes and the 

two possible choices lead to different levels of benefit or harm, measured in the model using 

the concept of utility. Choosing the decision that maximises the expected utility leads to the 

conclusion that the event organizer should cancel if the predicted probability of bad weather is 

above a certain threshold, where the threshold depends in a simple way on the parameters that 

define the utilities of the different outcomes.  

 

However, knowing probabilities of future weather and climate outcomes may not always be 

enough information to make logical decisions. In particular in this article we investigate 

situations in which, in addition to probabilities of future outcomes, the decision maker requires 

information about the skill of subsequent forecasts and/or information about the likely sizes 

and nature of future forecast changes.  This information is needed to inform the choice of 

whether to decide now or wait for the next forecast. 

 

An industry-specific example in which knowledge of the distribution of possible forecast 

changes is necessary for decision making was described in Jewson and Ziehmann (2004). More 

generally, consider the following idealized examples of situations where information about 

forecast skill and/or the size of forecast changes would seem to be relevant, from a purely 

intuitive perspective: 

a) An event is planned for Saturday. If the weather conditions at the start of the event are 

unsuitable then the event will have to be cancelled, leading to various expenses, known 

as the ‘loss’ in the cost-loss framework.  Daily weather forecasts are available in the 
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run-up to the event and are used by the event organizer to decide whether to cancel in 

advance or not. Cancelling on Thursday leads to only small cancellation charges, while 

cancelling on Friday leads to larger charges. Both sets of cancellation charges are lower 

than the potential loss due to last-minute cancellation on Saturday, and this leads to a 

nuanced set of decisions around whether to cancel on Thursday, Friday or not at all. On 

Thursday, the organizer needs to decide whether to cancel (and take advantage of the 

lower cancellation charges) or wait for Friday’s presumably more skilful forecast. If 

they wait then on Friday they need to decide whether to cancel (and suffer higher 

cancellation charges) or go ahead and take the risk of the loss if the weather is bad. 

b) A farmer is deciding which crop to plant in April. Seasonal forecasts for April are 

available in February and March and can be used to support the decision. There is an 

advantage to making a decision in February because the price of seed will be lower. 

But a decision in February instead of March has a greater risk of being the wrong 

decision, since the forecast is less skilful. Should they decide in February or wait until 

March? 

c) A local government is deciding whether to build a coastal flood defence that will 

provide a certain standard of protection until 2100. Building now, based on current sea 

level rise projections, has the benefit of providing protection sooner but increases the 

risk that the sea level rise projections will change in the future and lead to the defence 

falling below the standard desired. Waiting for later sea level rise projections takes the 

risk of waiting for a longer period without defences but has the advantage of being able 

to use later, and presumably better, estimates of future climate. Should they build the 

defence now, or wait? 

 

In all these examples logical decision making requires not only an estimate of the probabilities 

of future outcomes, but also an understanding of how those estimates, and their skill, might 

change with subsequent forecasts. These examples are idealised, and one could imagine factors 

that complicate the real-world decision-making situation, such as: 

a) In reality, there may be forecasts available at greater frequency than daily, that allow a 

further option of cancellation late on Friday or early on Saturday, or the organizer may 

have the option to take out weather insurance to mitigate the loss if it occurs 

b) In reality, buying seed early incurs a risk of spoilage, that should be factored in.  

c) In reality, it may be possible to design a flood defence that can be built now and 

improved later if the projections worsen, although this is likely to be more expensive. 

 

In fact, for real-world decisions, it is seldom possible to write down every factor that influences 

the decision, let alone code them all into a mathematical framework, and practically all actual 

decisions are ultimately made using a subjective evaluation based on multiple inputs. As a 

result, these examples should not be taken too literally. They nevertheless illustrate that the 

decide now or wait for the next forecast dilemma is an essential part of many decision-making 

situations. 

 

In section 2 we describe the basic cost-loss model in more detail, in the context of the first 

illustrative example given above (that of an event organised for Saturday), within which the 

decision to make is whether to cancel the event or not. We then describe how this basic cost-

loss model, which depends on a single forecast, can be extended to include the case of two 

forecasts. The extended cost-loss model is used to explore how to make a logical decision as 

to whether to cancel based on the first forecast or wait for the second forecast. We will show 

that the decision that maximises the expected utility is based on two probabilities derived from 
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the forecast and its properties. To estimate these two probabilities for any given forecast one 

needs to know the skill of the forecast and the distribution of possible forecast changes.  

In section 3, we consider the case in which the forecasts are normally distributed and well 

calibrated, which allows certain simplifications in the modelling of the two probabilities and 

leads to a straightforward implementation algorithm by which the two probabilities can be 

calculated and used to make the cancel-or-wait decision.  

In section 4 we test the implementation algorithm from section 3 using a long series of synthetic 

weather forecast data. The synthetic data is created in such a way as to capture the relevant 

statistical structure of real forecasts. We find that, for this synthetic data, the average utility 

from applying the decision algorithm is clearly better than that from various alternative simpler 

decision strategies, as expected. 

Finally, in section 5 we summarize the results and discuss the implications for weather and 

climate forecasting. We also present some preliminary results from applying the method to real 

forecast data and discuss some of the additional challenges this creates. 

 

2. Cost-Loss Modelling 

 

2.1 The Basic Cost-Loss Model 

 

The basic cost-loss model (Murphy, 1969) assumes that a probabilistic forecast is available 

which gives the probability of the two possible weather outcomes: 𝑝 for bad weather and 1 −
𝑝 for good weather. The forecast probabilities are assumed to be well calibrated (i.e., we 

assume they have been adjusted based on what can be learnt from past performance of the 

forecast system) and so can be taken as the best estimate probabilities we have, and do not 

require further adjustment.  

To analyse the model, one has to consider the different possible outcomes as a function of the 

choices that could be made by the event organizer. Each outcome has a probability, based on 

the forecast, and a utility, based on the definition of the problem. The probabilities and the 

utilities can be combined to calculate the expected utility for each of the organizer’s possible 

choices, and the assumption is that the organizer will opt for the choice with the higher expected 

utility. The utilities for each outcome are given in Table 1 and discussed below. 

We first consider the choice in which the organizer goes ahead with the event. In this case there 

are two possible outcomes, depending on the weather, which are given different utilities in the 

model: good weather (probability 1 − 𝑝) leads to no cost and no loss, and so is given a utility 

of zero, while bad weather (probability 𝑝) leads to a loss, and so is given a utility of −𝐿, where 

𝐿 is positive. The expected utility of going ahead with the event (𝐸𝑔𝑜 𝑎ℎ𝑒𝑎𝑑) is the sum of each 

probability multiplied by the corresponding utility, giving 𝐸𝑔𝑜 𝑎ℎ𝑒𝑎𝑑 = (1 − 𝑝) (0)  +

 (𝑝)(−𝐿)  =  −𝑝𝐿. 
Now we consider the choice in which the organizer cancels the event. In this case there are 

again two possible outcomes but this time both are given the same utility of −𝐶, the cost of 

cancellation. The expected utility for cancellation ( 𝐸𝑐𝑎𝑛𝑐𝑒𝑙 ) is therefore  𝐸𝑐𝑎𝑛𝑐𝑒𝑙 = (1 −
𝑝) (−𝐶) + (𝑝)(−𝐶)  = −𝐶.  

Going ahead, and experiencing good weather, is given a utility of zero rather than a positive 

value that captures the benefit of running the event in order to reduce the number of parameters 

in the model. Instead, the loss of benefit caused by not running the event is implicitly included 

in the cost and the loss parameters 𝐶  and 𝐿 . This does not compromise the mathematical 

analysis. 

If the organizer seeks to maximise their expected utility, then the decision to cancel would be 

taken if the expected utility of cancelling is greater than the expected utility of going ahead,  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 February 2020                   doi:10.20944/preprints202002.0217.v1

https://doi.org/10.20944/preprints202002.0217.v1


𝐸𝑐𝑎𝑛𝑐𝑒𝑙  >   𝐸𝑔𝑜 𝑎ℎ𝑒𝑎𝑑, which gives −𝐶 >  −𝑝𝐿. Rearranging this expression leads to 𝑝 > 𝐶/𝐿. 

The conclusion is that for the organizer to maximise their expected utility they should cancel 

if the probability of bad weather is greater than a critical probability given by 𝑝𝑐𝑟𝑖𝑡 = 𝐶/𝐿.  

If 𝐶 is greater than 𝐿, then 𝑝𝑐𝑟𝑖𝑡  is greater than one, and the event will never be cancelled 

because cancellation always has a lower utility than bad weather on the day. The interesting 

cases arise when 𝐶 < 𝐿 and there is a tradeoff between cancelling and incurring the cost of 

cancellation, on the one hand, and not cancelling and incurring the risk bad weather and 

associated loss, on the other. The cost-loss model is not particularly designed to be realistic, 

but rather to be the simplest possible mathematical formulation of a decision situation that 

captures the essence of this trade-off. 

 

2.2 Extending the Cost-Loss Model 

 

We can extend the basic cost-loss model as follows. To make the explanation as readily 

understood as possible, we will continue to use our illustrative example based on an event 

organized for Saturday.  We now assume that two weather forecasts are available for Saturday, 

one on Thursday and one on Friday. The utilities for each outcome are given in Table 2 and 

discussed below. The decision framework we derive below applies equally well to other types 

of forecast and other time periods, such as weather forecasts from Monday and Friday for 

Saturday, or climate forecasts for 2050 produced in 2020 and 2035. 

 

On Friday, the organizer faces the same decision as is described in the basic cost-loss model: 

whether to cancel Saturday’s event or not. We will now write the utility of cancellation on 

Friday as −𝐶1, where the subscript 1 indicates cancellation 1 day in advance of the event, or, 

more generally, 1 forecast step in advance. The critical probability then becomes 𝑝𝑐𝑟𝑖𝑡 = 𝐶1/𝐿, 

and the organizer should cancel the event on Friday if the probability of bad weather exceeds 

𝑝𝑐𝑟𝑖𝑡 as before.  

We now, additionally, imagine the organizer considering a weather forecast on Thursday, at 

which point they have the choice to either cancel there and then, or wait for Friday’s forecast. 

This is the decision that we will now analyse in detail. Cancelling on Thursday leads to a 

cancellation utility of −𝐶2 and the interesting cases arise in this problem when cancellation on 

Thursday is cheaper than cancellation on Friday which is in turn cheaper than last minute 

cancellation on Saturday (𝐶2  <  𝐶1 <  𝐿). 𝐶2  <  𝐶1 leads to a dilemma for the organizer, 

particularly when the weather forecast on Thursday is looking bad, since there is now a trade-

off for them between either cancelling on Thursday and benefitting from Thursday’s cheaper 

cancellation fee or waiting for Friday to make a more informed decision. Waiting until Friday 

might, however, lead to cancelling on Friday and paying a higher cancellation fee than would 

have been paid on Thursday, or, worse still, might lead to going ahead with the event and 

suffering bad weather, and an even higher loss.  

From a mathematical point of view the decision on Thursday is complex because it may lead 

to another decision having to be made on Friday, and that second decision would be based on 

information (Friday’s forecast for Saturday) that is not available on Thursday.  

 

To analyse the trade-off involved in Thursday’s decision using expected utility, we first define 

four probabilities, 𝑝1, 𝑝2, 𝑝’ and 𝑝̂. In the basic cost-loss model described above 𝑝 is used to 

represent the forecast probability of bad weather on Saturday, as evaluated on Friday. In the 

extended cost-loss model, we will now write the same probability as 𝑝1 to indicate a 1 day 

forecast. We will also define the forecast probability of bad weather on Saturday, as evaluated 

on Thursday, as 𝑝2.  
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From the point of view of Thursday 𝑝1 is now not a single probability but is a random variable 

and has a range of possible probability values which are all the possible values that Friday’s 

forecast might take, given what we know on Thursday. For instance, if the forecast for Saturday, 

created on Thursday, is already saying that bad weather is very likely then 𝑝2 will be known, 

and high, and we would already be able to predict that 𝑝1will likely have high values, even 

though we would not know exactly the value it would take until Friday. Similarly if the forecast 

for Saturday, created on Thursday, is saying that bad weather is very unlikely, then 𝑝2 will be 

low and we would already be able to predict that 𝑝1will likely have low values, although again 

we would not know the exact value until Friday. 

In this sense one could imagine creating a probabilistic forecast on Thursday for the range of 

values that 𝑝1might have on Friday, and indeed the implementation algorithm described in 

section 3 below and applied in section 4 involves making just such a probabilistic forecast. 

This probabilistic forecast would capture how we think the probability of bad weather on 

Saturday will change from what we are predicting on Thursday, to what we might predict on 

Friday. From this probabilistic forecast for 𝑝1, we could then evaluate the probability that 𝑝1 

will exceed the critical value 𝑝𝑐𝑟𝑖𝑡, and we will call this new probability 𝑝’. Since exceeding 

the critical value leads to cancellation of the event on Friday, 𝑝’ is the probability that we would 

cancel the event on Friday, as assessed on Thursday. 

 

In the basic cost-loss model, if the event organizer chooses to go ahead, because 𝑝 <  𝑝𝑐𝑟𝑖𝑡, 

then there is still the chance that the weather will turn out bad during the event. This happens 

with probability 𝑝  in that model. In the extended cost-loss model, we will again need to 

consider the chance that the organizer goes ahead but the weather turns out bad during the 

event, but we now need to evaluate it on Thursday so that it can form part of the basis for the 

decision to be made on Thursday. We will call this probability 𝑝̂. From Thursday’s point of 

view, going ahead, yet having bad weather, can arise from a range of values of 𝑝1. For instance, 

we can imagine one case (on Friday) in which 𝑝1 turns out only just below the threshold 𝑝𝑐𝑟𝑖𝑡. 

In this case, the organizer would go ahead, but bad weather on Saturday is not that unlikely, 

since 𝑝1is still fairly high. On the other hand, we can imagine another case in which 𝑝1 may be 

turn out far below the threshold 𝑝𝑐𝑟𝑖𝑡, in which case bad weather on Saturday is more unlikely. 

𝑝̂ is the mean of the probability of bad weather over all such cases, conditional on going ahead, 

for different levels of 𝑝1in the range [0, 𝑝𝑐𝑟𝑖𝑡). In summary, 𝑝̂ is the probability, evaluated on 

Thursday, that if on Friday 𝑝1does not exceed 𝑝𝑐𝑟𝑖𝑡, the weather on Saturday will nevertheless 

be bad.  

Table 3 summarizes the definitions of 𝑝1, 𝑝2, 𝑝’ and 𝑝̂ for reference. The meanings of 𝑝’ and 𝑝̂ 

will become clearer in the context of the normal distribution example, discussed in section 3 

below. 

 

2.3 Expected Utility Analysis 

 

Given the definitions of 𝑝1, 𝑝2, 𝑝’ and 𝑝̂ we can now derive an expression for the expected 

utility of the two possible choices in the extended cost-loss model. The decision to be analysed 

in this case is the decision taken on Thursday as to whether to cancel or wait for Friday’s 

forecast.  

First, we consider the choice of cancelling on Thursday. This leads to a 100% chance of a utility 

of −𝐶2 , and hence an expected utility of cancellation on Thursday (𝐸𝑐𝑎𝑛𝑐𝑒𝑙 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 ) of 

𝐸𝑐𝑎𝑛𝑐𝑒𝑙 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 = −𝐶2.  

Second, we consider the choice of waiting for Friday’s forecast. Having waited to Friday, there 

are two outcomes: cancel on Friday, or decide to go ahead. These occur with different 
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probabilities, which must be evaluated from the point of view of Thursday in order to feed into 

Thursday’s decision. The first of these outcomes, cancelling on Friday, occurs if 𝑝1  >  𝑝𝑐𝑟𝑖𝑡, 

and incurs a utility of −𝐶1 . From Thursday’s point of view the probability of 𝑝1  >  𝑝𝑐𝑟𝑖𝑡 

occurring is 𝑝′ (by the definition of 𝑝′ given above), and so the contribution of cancelling on 

Friday to the expected utility for waiting on Thursday is −𝑝′𝐶1.  

The second of these outcomes on Friday, deciding to go ahead, is more complicated since the 

utility is then affected by the weather outcome. Deciding to go ahead on Friday will only occur 

if 𝑝1  <  𝑝𝑐𝑟𝑖𝑡, which occurs with probability 1 − 𝑝′. If the weather is good, the utility outcome 

is then zero, and the contribution to the expected utility is zero. If the weather is bad, which 

occurs with probability 𝑝̂ (by definition of 𝑝̂ given above) then the utility outcome is −𝐿. The 

contribution to the expected utility of waiting on Thursday from going ahead on Friday is 

therefore −(1 −  𝑝’) 𝑝̂ 𝐿. The probabilities in this expression can also be understood using the 

definition of conditional probability, which states that 𝑝(𝑎 𝐴𝑁𝐷 𝑏) = 𝑝(𝑎) 𝑝(𝑏|𝑎), and which 

we can apply here to say that the probability of going ahead AND having bad weather is equal 

to the probability of going ahead (1 −  𝑝’) multiplied by the probability of having bad weather, 

given that we have gone ahead (𝑝̂). 
Based on the above considerations the overall expected utility of waiting on Thursday is made 

up of three contributions from the three possible outcomes that waiting on Thursday may lead 

to. These are: cancelling on Friday (−𝑝′𝐶1), going ahead and having good weather (0) and 

going ahead and having bad weather (−(1 −  𝑝’) 𝑝̂ 𝐿). Combining the three contributions to 

the expected utility of waiting (and noting that one of them is zero) gives a total expected utility 

of waiting (𝐸𝑤𝑎𝑖𝑡𝑖𝑛𝑔) of 𝐸𝑤𝑎𝑖𝑡𝑖𝑛𝑔 = −𝑝′𝐶1 − (1 −  𝑝’) 𝑝̂ 𝐿.  

 

We have now derived expressions for the expected utility for both of the choices that present 

themselves on Thursday, and hence can proceed to the final step in the analysis, which is to 

compare the expected utilities of the two choices. If the organizer seeks to maximise their 

expected utility, then the decision on Thursday to cancel would be taken if the expected utility 

of cancelling is greater than the expected utility of waiting, in which case  𝐸𝑐𝑎𝑛𝑐𝑒𝑙 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 >

𝐸𝑤𝑎𝑖𝑡𝑖𝑛𝑔, implying  

 

−𝐶2 >  −𝑝′𝐶1 − (1 −  𝑝’) 𝑝̂ 𝐿     (1) 

 

If we fully understand our forecasting system, the forecast skill and how forecasts can change 

in time then we can calculate 𝑝′ and  𝑝̂ since they are just properties of the forecast. This 

inequality then determines whether to cancel or not, as a function of 𝐿, 𝐶1  and the new 

parameter 𝐶2 . If we decide to wait, then come Friday the complexity of the decision on 

Thursday can be forgotten, and the decision on Friday can be made using the basic cost-loss 

model. 

 

In the basic cost-loss model the decision to cancel depends on only one aspect of the forecast, 

the probability 𝑝 (the probability of bad weather on Saturday). As a result, the decision can be 

expressed in the simple expression 𝑝 >  𝑝𝑐𝑟𝑖𝑡 = 𝐶/𝐿. In the extended cost-loss model the 

decision to cancel or wait on Thursday depends on two aspects of the forecast, the probabilities 

𝑝′ and  𝑝̂.  As a result, it is not possible to write the decision to cancel on Thursday in such a 

simple form. We can, however, derive some insight by rearranging equation 1 to give: 

 

𝑝′ >
𝐶2 −   𝑝̂ 𝐿

𝐶1 −  𝑝̂ 𝐿
=  𝑝𝑐𝑟𝑖𝑡2 
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The right-hand side (RHS) of this expression can be thought of as a new critical probability, 

𝑝𝑐𝑟𝑖𝑡2. Unlike the critical probability in the basic cost-loss problem, however, it depends not 

only on the parameters of the problem (𝐿, 𝐶1, 𝐶2) but also on knowledge of the forecast and the 

forecast system (via 𝑝̂). 

Curiously, 𝑝2  (Thursday’s forecast for Saturday) does not appear explicitly in these two 

expressions. However, Thursday’s forecast is in fact highly relevant, since 𝑝′ and 𝑝̂ can only 

be calculated given knowledge of Thursday’s forecast. This will become more apparent in the 

normal distribution example given in section 3 below.  

The above inequality for  𝑝′ matches intuition in various ways: for instance if 𝐶2  =  𝐶1, then 

the RHS is 1, and we will never cancel on Thursday: we see that cancellation on Thursday is 

only logical if 𝐶2  <  𝐶1, which is when there is some early cancellation benefit. Also if 𝐶1 is 

very large, then the RHS is small, and cancellation on Thursday is more likely, to avoid the 

possibility of high cancellation costs on Friday. 

In summary, we have derived an expression that solves the extended cost-loss problem of 

whether to cancel on Thursday or wait for another forecast on Friday. It depends on the 

calculation of two forecast quantities that are extensions of what is normally included in a 

probabilistic forecast. The first is 𝑝′ , the probability (evaluated on Thursday) that the 

probability (evaluated on Friday) of bad weather (on Saturday) exceeds a critical threshold. 

The second is 𝑝̂, the conditional probability (evaluated on Thursday) of bad weather (on 

Saturday), given that the probability (on Friday) of bad weather (on Saturday) does not exceed 

the critical threshold. 

 

𝑝′ and 𝑝̂ can be considered as properties of a probabilistic forecast and forecast system. They 

are both functions of two dimensions: these dimensions are the threshold level (of e.g., rainfall, 

temperature or wind) that defines bad weather, and the threshold probability from the basic 

cost-loss problem applied to Friday’s decision. In principal one could imagine routinely 

calculating numerical approximations to these two-dimensional functions every time a forecast 

is created. Values could then be read off to solve specific extended cost-loss problems as they 

arise.  

 

Given a full understanding of the behaviour of a forecast system, 𝑝′ and 𝑝̂ could be calculated: 

the obvious practical way to do that would be via statistical modelling of past forecasts and 

their errors. In the next section we will consider the special case of normally distributed 

forecasts in which the calculation of 𝑝′ and 𝑝̂ becomes somewhat straightforward. 

 

3. The Normal Distribution Case 

 

To illustrate the extended cost-loss model derived above in the simplest possible context, we 

will now consider a forecast system consisting of normally distributed forecasts made on 

Thursday and Friday for Saturday. We will first discuss the statistical properties of these 

forecasts in some detail before presenting an algorithm for applying the decision-making 

framework. 

 

3.1 Forecast Properties 

 

Since they are normally distributed, both Thursday’s and Friday’s forecast can be described as 

a mean and a standard deviation: the mean represents the best single forecast, and the standard 

deviation represents the uncertainty around that forecast. For the forecast made on Thursday 

we write the mean and standard deviation as 𝑚2 and 𝑠2, and for the forecast made on Friday 
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we write the mean and standard deviation as 𝑚1 and 𝑠1. We write the observation for Saturday 

as 𝑎 (for ‘actual’) and define the forecast errors as 𝑒2 = 𝑚2 −  𝑎  and 𝑒1 = 𝑚1 −  𝑎. 

 

We will assume that the forecasts are well calibrated, by which we mean that they cannot easily 

be improved by further statistical processing based on past forecasts and past forecast errors. 

This leads us to make 3 calibration assumptions about the statistical properties of the forecast.  

The first calibration assumption is that the means of the forecasts are unbiased, and so 𝐸(𝑚1 −
 𝑎 ) = 0 , 𝐸(𝑚2 − 𝑎) = 0  and hence 𝐸(𝑚1 − 𝑚2) = 0  and 𝐸(𝑒1 − 𝑒2) = 0. The second 

calibration assumption is that the standard deviations match the standard deviations of the 

actual forecast errors. 

 

The third calibration assumption is slightly more complex. To introduce it, we first define the 

change in the mean forecast from Thursday to Friday as 𝛿 = 𝑚1 − 𝑚2. Using the assumptions 

given above, 𝐸(𝛿) = 𝐸(𝑚1 − 𝑚2) = 0. We also note that 

 

𝛿 = 𝑚1 − 𝑚2 = (𝑚1 −  𝑎)  − ( 𝑚2 −  𝑎 ) = 𝑒1 − 𝑒2. 
 

At the point in time that the decision is being made on Thursday, Thursday’s forecast, and 

hence 𝑚2 and 𝑠2, are known. The details of how 𝑚2 and 𝑠2 are created are not relevant, as long 

as they satisfy the assumptions given above. For instance, 𝑠2 could have been estimated simply 

from analysis of past forecast errors or could have been derived from a statistical calibration 

scheme that merges information from past forecast errors with information from the ensemble 

spread (Jewson, et al., (2004), Gneiting, et al., (2005)). 

 

Friday’s forecast, however, will not be known on Thursday. We do nevertheless need to be 

able to estimate 𝑠1 already on Thursday in order to estimate the variance of  𝛿, 𝑉(𝛿), since 

𝑉(𝛿) is required for the algorithm described below. The simplest method for estimating 𝑠1 on 

Thursday would be to use past forecast errors. Alternatively, one could investigate whether 

there might be information in Thursday’s ensemble spread to help predict 𝑠1 (i.e., to predict 

the uncertainty around the next forecast, given the current ensemble spread), although this has 

never, to our knowledge, been explored. Another approach would be to estimate 𝑉(𝛿) directly 

from the ensemble spread: this approach has been considered in Jewson and Ziehmann (2004). 

  

In order to derive an expression for 𝑉(𝛿) we will assume, as the third calibration assumption, 

that the forecast error 𝑒1 must be independent of the change in the forecast 𝛿. The justification 

for this assumption is that if this were not the case then, on Friday, having observed the change 

from 𝑚2 to 𝑚1 (and hence the value of 𝛿) one would have information about 𝑒1 that would 

then allow one to improve the forecast 𝑚1. We are assuming that any such improvements have 

already been made as part of the forecast calibration process, and hence that there is no longer 

any information about 𝑒1 contained in 𝛿, and hence that 𝛿 and 𝑒1 are independent. Writing  

 

𝑒2 = 𝑒1 −  𝛿 

 

we can take variances of both sides. Since 𝑒1 and 𝛿 are independent, by the argument above, 

there are no correlation terms on the RHS, giving: 

 

𝑉(𝑒2) = 𝑉(𝑒1) + 𝑉(𝛿) 

 

and hence 

𝑉(𝛿) = 𝑉(𝑒2) − 𝑉(𝑒1) =  𝑠2
2 − 𝑠1

2                              (2) 
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and in this way we are now able to calculate the variance of the change 𝛿 from the variances 

of the forecast errors. This variance is used in the algorithm described below. 

 

3.2 Algorithm for 𝑝’ and 𝑝̂ 

 

Given the above forecasts we now describe an algorithm that can be run on Thursday for 

calculating 𝑝’ and 𝑝̂ for this forecast system, which can then be used to make the cancel-or-

wait decision. The algorithm estimates 𝑝’ and 𝑝̂  in a conceptually straightforward way by 

simulating many possible versions of Friday’s forecast, given the information available on 

Thursday, and calculating 𝑝’ and 𝑝̂ from these many simulated forecasts.   

 

To define good and bad weather we will assume there is a given threshold value θ of the 

forecast variable that separates bad weather from good weather, with values higher than θ 

giving bad weather. An example would be temperature, where values above a given high 

threshold (i.e. a heatwave) may lead to the cancellation of the event. We then consider the 

forecast mean on Thursday, 𝑚2, and, in the first part of the algorithm model how the forecast 

mean might change from Thursday to Friday as 𝑚2 changes to 𝑚1.  

Since we know that 𝐸(𝑚1 − 𝑚2) = 0 , we have 𝐸(𝑚1) = 𝐸(𝑚2) =  𝑚2  (this latter step 

because on Thursday 𝑚2 is no longer random but is fixed by Thursday’s forecast) and we see 

that the distribution of possible values for 𝑚1 will be centred around 𝑚2. 

We also know 𝑉(𝛿), the variance of the change in the forecast means, from equation 2 above, 

and hence we can model the distribution of values that 𝑚1might take on Friday as a normal 

distribution with mean 𝑚2 and variance 𝑉(𝛿), which we write as  𝑁(𝑚2, 𝑉(𝛿)).  Each possible 

value of  𝑚1  in this distribution corresponds to a possible probability forecast on Friday 

consisting of a normal distribution centred around that value of 𝑚1 with standard deviation 𝑠1. 
We are modelling a distribution of possible distributions for Friday’s forecasts.  

 

This leads to an algorithm that can be used on Thursday for the calculation of 𝑝’ and 𝑝̂, as 

follows: 

1) Derive 𝑠1 and 𝑠2, either from analysis of past forecast errors, or from the ensemble 

spread 

2) Calculate 𝑉(𝛿) using 𝑉(𝛿) =  𝑠2
2 − 𝑠1

2 

3) Given 𝑚2, 𝑠imulate 𝑄 values for 𝑚1, using 𝑁(𝑚2, 𝑉(𝛿)), where 𝑄 should be chosen 

large enough for good convergence of the results of the algorithm 

4) For each of the 𝑄 simulated values of 𝑚1, use the corresponding forecast 𝑁(𝑚1, 𝑠1
2) to 

calculate a value of 𝑝1  (the probability of exceeding θ), using the Cumulative 

Distribution Function (CDF) for the normal distribution 

5) Count how many of the 𝑄 values of 𝑝1 exceed 𝑝𝑐𝑟𝑖𝑡, to give 𝑅  

6) Estimate 𝑝’ as 𝑅/𝑄 

7) For each of the 𝑄  − 𝑅   forecasts for which 𝑝1  does not exceed  𝑝𝑐𝑟𝑖𝑡 , calculate the 

probability that the forecast variable exceeds θ, using the CDF for the normal 

distribution 

8) Estimate 𝑝̂ as the mean of these 𝑄 −𝑅 probabilities 

 

In this normally distributed case we see that 𝑝1 and 𝑝̂ are easily derived from the modelling of 

the distribution of possible future forecast distributions, which in turn is derived from an 

understanding of possible changes in the mean forecast, which in turn is derived from 

knowledge of the properties of the forecast errors. 
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4. A Synthetic Forecast Example 

 

We now test the extended cost-loss decision algorithm using synthetic randomly generated 

forecasts and observations with appropriate statistical properties. There are two reasons for 

using synthetic, rather than real, forecast data. First, by using synthetic data we can test the 

logic of the extended cost-loss decision framework and the normal distribution implementation 

algorithm without also having to test whether any particular real forecast dataset fits the 

assumptions made in the derivation of the implementation algorithm. Second, by using 

synthetic forecasts we can derive results which are presumably as good as the results from the 

decision framework could ever be, because the data can be constructed so that the assumptions 

will be satisfied perfectly. These results can then be used as a benchmark against which to 

compare results from real forecast data. 

 

The synthetic data needs to satisfy various statistical properties in order to represent real 

forecasts sufficiently realistically. There are four conditions the synthetic data needs to meet: 

the synthetic forecasts and forecast errors need to be normally distributed, the forecasts need 

to be unbiased, the mean squared error (MSE) values have to be realistic in the sense that the 

one day forecast should on average be more accurate than the two day forecast, and finally 𝑒1 

and 𝛿 need to be uncorrelated, following the discussion in section 3.1 above. 

 

To achieve these properties the synthetic forecasts and observations are created using the 

following steps, which work by first simulating Thursday’s forecast, then Friday’s forecast 

conditional on Thursday’s forecast, and then the observations conditional on Friday’s forecast. 

Simulating in this order makes it straightforward to create synthetic forecast data with the 

properties required. 

1) Assign values to 𝑠1 and 𝑠2, the forecast error standard deviations, with  𝑠1  <  𝑠2 

2) Calculate 𝑉(𝛿) using 𝑉(𝛿) =  𝑠2
2 − 𝑠1

2 

3) Simulate 𝐷 values for Thursday’s forecast mean 𝑚2 using 𝑁(0, 𝑠2
2) 

4) For each value of 𝑚2, simulate a corresponding value of Friday’s forecast mean 𝑚1 

using 𝑚1 = 𝑚2 + 𝛿 where 𝛿 is simulated using 𝑁(0, 𝑉(𝛿)) 

5) For each value of 𝑚1, simulate a corresponding value of the observation 𝑎 using 𝑎 =
𝑚1  −  𝑒1 where 𝑒1is simulated using 𝑁(0, 𝑠1

2) 

 

That the synthetic forecasts generated in this way have the required statistical properties can 

be demonstrated as follows: 

1) Friday’s forecast is unbiased because 𝐸(𝑚1 − 𝑎) = 𝐸(𝑒1), and 𝑒1 is simulated with 

mean zero 

2) Thursday’s forecast is unbiased because 𝐸(𝑚2 − 𝑎) = 𝐸(𝑚1 − 𝛿 − 𝑎) = 𝐸(𝑒1) −
𝐸(𝛿), and both 𝑒1 and 𝛿 are simulated with mean zero 

3) 𝑒1  and 𝛿   are uncorrelated because they are simulated from independent normal 

distributions 

4) The MSE of Friday’s forecast is 𝑠1
2 because 𝑒1 is simulated with variance 𝑠1

2 

5) The MSE of Thursday’s forecast is 𝑠2
2  because 𝑉(𝑚2 − 𝑎) = 𝑉(𝑚1 − 𝛿 − 𝑎) =

𝑉(𝑒1) − 𝑉(𝛿) = 𝑠2
2 

 

We use the above algorithm to simulate 𝐷 = 2500 sets of two forecasts and one observation 

and we define ‘bad weather’ to be temperatures over a threshold defined by the 95th percentile. 

To give a practical interpretation of this definition, one could imagine an event for which high 

temperatures on the day of the event might lead to immediate cancellation for health and safety 
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reasons and would incur a loss in terms of refunds to paying participants. As a real-world 

example, the 2019 New York city triathlon, due to be held on the 28th July 2019, was cancelled 

at the last minute due to a prediction of a heat wave, and all participants were refunded their 

entry fees.  

We use values of 𝑠1 = 1  and 𝑠2 = 2 , giving 𝑉(𝛿) = 3.  These values are chosen to be 

illustrative. For real one- and two-day temperature forecasts, the values of 𝑠1  and 𝑠2  are 

typically much closer. Using closer values gives qualitatively the same results, but longer 

simulations are required to demonstrate the benefits of the extended cost-loss algorithm. The 

actual values of 𝑠1  and 𝑠2  could be very different for different forecast variables, and for 

different weather, seasonal and climate forecast applications. 

 

4.1 Base Case Results 

 

To test the extended cost-loss decision framework we now specify the parameters of a number 

of decision problems, and for each set of two forecasts and one observation simulated above 

we calculate the decision implied by the framework. We also calculate the decisions that would 

be made by some simpler decision-making strategies, which the extended framework should 

beat if it is working as intended. We evaluate and compare the quality of the decisions from 

the different methods by calculating the average utility for each method over the entire set of 

forecasts and observations. 

 

As a starting point we define a base case in which we define the parameters of the decision 

problem as 𝐿 = 1, 𝐶2 = 0.05 and 𝐶1 = 0.1 , giving 𝑝𝑐𝑟𝑖𝑡 = 𝐶1/𝐿 =  0.2.  Of the 2500 

situations tested, the number of occurrences of each of the different possible outcomes from 

the decision algorithm are recorded in table 4.  

 

To illustrate in more detail the functioning of the algorithm, we pick examples of each of the 4 

utility outcomes from the 2500 situations and show them in table 5. In case 1 𝑚2 is high. This 

leads to a high value of 𝑝’, which leads to cancellation on Thursday when the extended cost-

loss decision formula is applied. In case 2 𝑚2 is high, but not as high as in case 1, and the event 

is not cancelled on Thursday. However, come Friday 𝑚1 is higher than 𝑚2, and high enough 

to lead to probabilities that lead to cancellation of the event when the basic cost-loss model is 

applied. In case 3 𝑚2 is low, and 𝑚1 is still low. The event is not cancelled, and the final 

temperatures also turn out low. In case 4 𝑚2 is low and 𝑚1 is high, but not high enough to lead 

to cancellation. However, the final temperatures turn out even higher, and a loss is incurred. 

 

We now compare the average utility from applying the extended cost-loss model over the 2500 

cases with that from three less sophisticated strategies, which are: always ignore Thursday’s 

forecast and wait until Friday before making a decision using the basic cost-loss model (which 

we label as always-fc1); always decide on Thursday using the basic cost-loss decision model 

and then ignore Friday’s forecast (which we label as always-fc2); and the more subtle strategy 

of using the basic cost-loss decision model on Thursday and then again on Friday if the event 

has not already been cancelled (which we label as basic-twice). The basic-twice method is the 

most similar to the extended cost-loss decision model that we have derived, but, from a 

theoretical point of view, neglects to take into account a proper analysis of the potential value 

of waiting for the next forecast when making Thursday’s decision. This is taken into account 

in the extended model. 

 

Results from this comparison are shown in Figure 1 for the base case parameter settings, as 

both the values of average utility from each of the 4 methods, and as differences in the average 
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utility between the 3 simpler methods and the extended cost-loss decision algorithm (which we 

label as extended). Statistical significance bars for 5% and 95% levels were generated using a 

bootstrap. We see that, for these particular values of the parameters 𝐿, 𝐶1 and 𝐶2, extended 

performs better than all the other methods (i.e., has less negative average utilities) and the 

differences versus the three simpler methods are each statistically significant. 

 

4.2 General Results 

 

We now consider a range of parameter values.  Results for 𝐶1 = 0.1 , 𝐶1 = 0.5  and 𝐶1 =
0.8 are shown in the three panels in figure 2, and in each case 𝐶2  is varied such that the ratio 

𝐶1/𝐶2 takes values from 1 to 4. 𝐿  is always fixed at 1. For 𝐶1 = 0.1, extended gives the best 

results by a clear margin. The relative performance of the other methods varies with the value 

𝐶1/𝐶2, and no method is consistently in second place. For 𝐶1 = 0.5 extended and basic-twice 

give joint best results. For 𝐶1 = 0.8 extended, basic-twice and always-fc2 give joint best results.  

 

The results in Figure 2 can be interpreted in more detail as follows. 𝐶1 = 0.1 corresponds to 

cancelling on Friday being cheap relative to the loss that might be incurred on Saturday, which 

makes cancelling on Friday potentially attractive.  When 𝐶1/𝐶2 is very close to 1 (left hand end 

of the horizontal axis) cancellation on Thursday is not much cheaper than cancelling on Friday, 

and so the decision to wait to Friday is often a good one. As a result, always waiting to Friday 

to make the decision (always-fc1) is a good decision method, and the extended decision method 

does not add much relative to that. At the other end of the horizontal axis, when 𝐶1/𝐶2 is large, 

cancellation on Thursday is now much cheaper than cancellation on Friday and cancelling on 

Thursday becomes much more attractive as an option. As a result, all methods do well except 

for never cancelling on Thursday (always-fc1).  For intermediate values of 𝐶1/𝐶2, cancellation 

on Thursday is cheaper than cancellation on Friday, but not so much as to dominate the decision. 

All the factors now come into play: the various costs, the skill of the forecasts, and the logic 

by which any decision made on Thursday needs to take into account how the forecast might 

change between Thursday and Friday and what decision that might lead to on Friday. The 

decision becomes a complicated trade-off. Extended takes all the factors into account, while 

the other 3 methods all neglect one or more aspects of the trade-off. As a result, extended gives 

significantly better results than any other method in this range. 

 

𝐶1 = 0.5 corresponds to cancelling on Friday being somewhat expensive. When 𝐶1/𝐶2 is close 

to one and cancellation on Thursday is also expensive then cancelling on Thursday is generally 

not a good option and so making the final decision on Thursday (always-fc2) does not do well. 

Extended does scarcely better than the other two simple methods, however, because the subtle 

logic that it adds to Thursday’s decision is not particularly relevant in a situation where 

Thursday’s decision is almost guaranteed to be ‘wait’ because of the high cost of cancellation 

on Thursday. When 𝐶1/𝐶2  is large, and cancellation on Thursday is cheap, then always 

deciding on Thursday does well because cancellation on Friday is unlikely anyway because of 

the high costs on Friday. For intermediate values of 𝐶1/𝐶2 extended does not perform better 

than basic-twice because the subtle logic that extended adds to the decision is not particularly 

relevant when deciding on Friday is unlikely because it is expensive.  

 

𝐶1 = 0.8 corresponds to cancelling on Friday being almost as expensive as the loss that might 

be incurred on Saturday. That makes cancelling on Friday an unlikely decision.  When 𝐶1/𝐶2 

is close to one and cancellation on Thursday is also expensive then cancelling on Thursday is 

also not a good option: except for the most extreme forecasts cancellation on either day is 

unlikely. The four methods work equally well because they all lead to the decision not to cancel 
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on either day in most cases. When 𝐶1/𝐶2 takes intermediate or large values, and cancellation 

on Thursday is relatively cheap then, because cancellation on Friday is expensive, we are close 

to the limiting case where Friday’s forecast is irrelevant, and we are making a final decision on 

Thursday. As a result, the two simple methods that involve deciding on Thursday (always-fc2 

and simple-twice) both perform well, as well as extended. 

 

Overall, we see from these results that extended always does well, but has the most impact in 

the situations in which all the options are potentially reasonable and the decisions on Thursday 

and Friday are both trade-offs. In the various limiting cases in which cancelling on Thursday 

or Friday is either cheap or expensive then the results from one or other of the simple methods 

are nearly as good as extended. In a real situation, without detailed analysis, one would not 

know whether the parameters are in a limiting case or not and hence always using extended 

would make the most sense because it is the only method that works well in all cases.  

 

5 Discussion and conclusions 

 

Probabilistic weather and climate forecasts can be used as input to decisions in various 

situations. The basic cost-loss model is an idealized representation of a class of decisions which 

can be represented by the situation in which an event organizer has to make a forecast-based 

decision by considering the trade-off between the cost of cancellation of an event one day in 

advance, and the risk of going ahead with the event and the weather turning out bad and causing 

a loss. Analogous situations, with the same logical structure, appear in many aspects of forecast 

based decision making, whether using weather forecasts, seasonal forecasts or climate 

projections.  

We have generalized the basic cost-loss model by adding a previous day of forecast. The first 

decision is then whether to cancel 2 days in advance or wait for the 1-day ahead forecast. If a 

decision is made to wait, the second decision is then the same as that in the basic cost-loss 

model.  

We have analysed the cancel-or-wait decision that needs to be made 2 days in advance using 

expected utility. The logical process of using a forecast to make this decision turns out to be 

different to that involved in the basic cost-loss model. In particular it requires the calculation 

of two new forecast quantities. One is 𝑝’, the probability (evaluated 2 days in advance of the 

event) that the probability (evaluated 1 day in advance of the event) of bad weather will exceed 

a critical probably 𝑝𝑐𝑟𝑖𝑡 derived from the utilities of the different outcomes. The second is 𝑝̂, 

the probability (evaluated two days in advance of the event) that, if (one day in advance of the 

event) we decide to go ahead with the event, the weather at the event will turn out bad. 

These two quantities are non-trivial to calculate in general and require detailed analysis of the 

statistical properties of the forecast system. However, we have derived an implementation 

framework for the case in which forecasts are normally distributed. In this case the error 

statistics of the forecasts can be used to derive the variance of forecast changes, and the 

variance of forecast changes can be used, 2 days in advance of the event, to run simulations of 

the possible distribution of probabilistic forecasts that will be available 1 day in advance. Based 

on this distribution of distributions, 𝑝’ and 𝑝̂ can easily be calculated.  

We have tested our extended cost-loss decision algorithm on synthetic forecast data. The 

algorithm worked as expected and gave decisions that are at least as good as and for some 

parameter ranges clearly better than simple alternatives. This validates the logic behind the 

method and also validates the effectiveness of the implementation algorithm for the case where 

the forecast errors are genuinely normally distributed and well calibrated. 

The theory derived in section 2 above applies to any type of forecast variable with any 

distribution, although we have only derived an implementation algorithm for forecasts with 
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normally distributed errors. For non-normal forecasts, such as forecasts for daily rainfall, 

careful statistical analysis and modelling of the behaviour of forecast changes, and the 

development of an alternative implementation algorithm, would be required.  

We have not considered including more than two steps of forecast in the analysis. In fact the 

theoretical framework extends straightforwardly to many stages of forecast. The challenge is 

that each additional day of forecasting adds a new level of probabilities of probabilities. While 

using two days of forecasts requires probabilities of probabilities, using three days of forecasts 

requires probabilities of probabilities of probabilities, and so on. This becomes hard to 

understand, and the simulations required, even for the normally distributed case, become more 

and more elaborate. However, some simplification may be possible. 

 

An obvious next step is to test the extended cost-loss decision model using real forecast data. 

We have performed a preliminary investigation using 20 years of daily forecasts of ERA-

interim JJA temperatures for Stockholm, Sweden. The forecasts were calibrated using a simple 

homogeneous linear regression scheme with constant coefficients and predictors from the 

current and previous forecast.  The decision model was implemented using the normal 

distribution implementation algorithm presented above. Bad weather was defined as 

temperature exceeding the 95th quantile of the ERA-interim data. The results, however, were 

inconclusive, and the extended method did not clearly dominate the other decision-making 

methodologies as it had for the synthetic data. See for example Figure 3, which shows results 

for one particular range of parameters, in which 3 out of 4 of the decision methods give 

essentially the same average utility values. For the same range of parameters, the synthetic 

forecast data gave very different results. There are several possible reasons for the different 

results from the synthetic and real forecast data. For the real forecast data, the skill of the one 

and two day forecasts is very close, which may be making it difficult to detect the subtle 

benefits of the decision algorithm. Also, the real forecast errors may not be well modelled by 

a normal distribution, in which case using the normal distribution implementation algorithm is 

not appropriate and a different implementation algorithm would need to be used. Furthermore 

the forecast calibration scheme may not be working effectively, and may not be creating 

sufficiently well calibrated forecasts; for instance the forecast errors may not be homogeneous, 

and should perhaps be calibrated in a way that accounts for that, or the use of constant 

parameters in the calibration scheme might be inappropriate if the biases in the forecast vary 

in time. These reasons overlap to some extent: suboptimal calibration could be leading to non-

normal forecast errors, for instance. Understanding these real forecast results and improving 

them would require a more detailed analysis. Doing so may lead to further insights into how to 

develop implementation algorithms for the extended cost-loss method for non-normal forecasts, 

and/or further insights into forecast calibration.  

 

In summary, this work demonstrates that there is a level of complexity that is needed in the 

logical interpretation of weather and climate forecasts that has perhaps not been fully 

appreciated before. In particular, we have shown that in a situation in which waiting for the 

next forecast is an option, the information in the probabilities in a probabilistic forecast is not 

necessarily enough to make a logical decision as to whether to wait or not and the forecast may 

need to be supplemented with additional information to help make that decision. In the case of 

well calibrated forecasts with normally distributed forecast errors, we have shown that the 

forecast mean squared error (MSE) at the relevant lead times is sufficient to provide this 

information. The MSE can be used to derive the variance of the size of forecast changes, which 

in turn can be used in a simulation algorithm that determines whether to wait for the next 

forecast or not. For non-normal forecasts the picture is more complicated. For some 

distributions, there may be simplifying assumptions that can be used to derive simple 
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algorithms as we have done for the normal distribution. In general, however, a full 

understanding of how forecasts change from one lead time to the next would be required. 

One implication of this work is that, in order to realize the full potential of probabilistic 

forecasts for decision making, forecast providers may need to consider providing additional 

information along with the forecasts that they supply. Forecast users could then use that 

information to make more logical decisions around the question of whether to wait for the next 

forecast or not. Those decisions might be made subjectively, with the additional information 

as inputs, or they might be made objectively using the extended cost-loss model we have 

described. 
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Tables 

 

 Bad weather Good weather 

Cancel  −𝐶 −𝐶 

Go-ahead −𝐿 0 

 

Table 1: utilities for the basic cost-loss model. The rows represent the different choices, and 

the columns represent the different weather. Each combination of choice and weather leads to 

a value of the utility. 

 

 

 

 

 Bad weather Good weather 

Cancel Thursday −𝐶2 −𝐶2 

Wait Thursday, cancel 

Friday 
−𝐶1 −𝐶1 

Wait Thursday, go ahead 

Friday 
−𝐿 0 

 

Table 2: utilities for the extended cost-loss model. The rows represent the different choices, 

combined across Thursday and Friday. Thursday’s choice is cancel or wait, and Friday’s 

choice, if cancellation has not already occurred on Thursday, is to cancel or go-ahead.  

 

 

 

 

𝑝𝑐𝑟𝑖𝑡 The critical probability in the basic cost-loss model, as used on Friday to decide 

whether to cancel Saturday’s event.  

𝑝1 The probability, evaluated on Friday, of bad weather on Saturday. When considered 

from the point of view of Friday 𝑝1takes a single value. When considered from the 

point of view of Thursday 𝑝1has a distribution of possible values. 

𝑝2 The probability, evaluated on Thursday, of bad weather on Saturday. 

𝑝’ The probability, evaluated on Thursday, that on Friday 𝑝1will exceed 𝑝𝑐𝑟𝑖𝑡. 

𝑝̂ 

 

The probability, evaluated on Thursday, that if on Friday 𝑝1does not exceed 𝑝𝑐𝑟𝑖𝑡, 

the weather on Saturday will nevertheless be bad.  

 

Table 3: definitions of the different probabilities used in the extended cost-loss model. 
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Row  Utility Number 

of cases 

% of all 

cases 

1 Cancel Thursday total −𝐶2 589 23.56 

2 …Cancel Thursday (then bad 

weather) 
−𝐶2 94 3.76 

3 …Cancel Thursday (then good 

weather) 
−𝐶2 495 19.80 

4 Wait Thursday  n/a 1911 76.44 

5 Cancel Friday total −𝐶1 37 1.48 

6 …Cancel Friday (then bad weather) −𝐶1 22 0.88 

7 …Cancel Friday (then good weather) −𝐶1 15 0.6 

8 Go ahead Friday total n/a 1874 74.96 

9 …Go ahead Friday (then bad 

weather) 
−𝐿 16 0.64 

10 …Go ahead Friday (then good 

weather) 
0 1858 74.32 

 

Table 4: numbers of different outcomes for the extended decision algorithm base case. 2500 

cases were tested in all.  

 

 

 

 

 

 𝑚2 𝑚1 𝑝’ 𝑝̂ 𝑎 Decision outcome 

Case 1 2.55 2.70 0.35 0.05 3.32 Cancel Thursday 

Case 2 1.36 3.58 0.19 0.03 3.02 Cancel Friday 

Case 3 -3.87 -2.81 0.00 0.00 -2.85 Go ahead (good weather) 

Case 4 0.29 2.80 0.02 0.01 3.94 Go ahead (bad weather) 

 

Table 5: four examples from the extended decision algorithm base case 
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Figures 

 

 

 
 

Figure 1: synthetic forecast data results for the average utility achieved across 2500 simulated 

cases, for four different decision-making methodologies applied to the base case described in 

the text. The methodologies are 1) the extended cost-loss decision making algorithm derived in 

this article (labelled extended), 2) the simple decision making methodology based on always 

ignoring Thursday’s forecast and waiting to Friday (labelled always-fc1), 3) the simple 

decision making algorithm based on always ignoring Friday’s forecast and deciding on 

Thursday (labelled always-fc2) and 4) the decision making algorithm that consists of applying 

the simple cost-loss framework on Thursday and then if necessary again on Friday (labelled 

basic-twice). The first four columns show the average utilities of each algorithm on its own. 

The black bars show the 5%-95% uncertainty intervals estimated with bootstrapping. We see 

that extended has the highest (least negative) utility. The next three columns show the 

differences in the utilities between the methods. We see that extended shows a statistically 

significant positive difference versus the other three methods. 
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Figure 2: Average utilities for a range of parameter values in the decision problem, calculated 

from synthetic forecasts, and compared across the four decision making methodologies. Panel 

(a) is for 𝐿 = 1,  𝐶1 = 0.1, and a range of 𝐶2 values such that the ratio 𝐶1/𝐶2 takes values from 

1 to 4. Panel (b) is the same, but for 𝐶1 = 0.5 and panel (c) is the same, but for 𝐶1 = 0.8. The 

blue lines show average utilities for the always-fc1 model, the orange lines show average 

utilities for the always-fc2 model, the green lines show average utilities for the extended model 

and the red lines show average utilities for the basic-twice model. 
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Figure 3: average utilities from the four decision models, for a real weather forecast data, for 

a range of parameter values. 
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