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Abstract: Solar energy is a renewable resource of energy that is broadly utilized and has the
least emissions among the renewable energies. In this study, machine learning methods of
artificial neural networks (ANNS), least squares support vector machines (LSSVM), and
neuro-fuzzy are used for advancing prediction models for thermal performance of a
photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature,
flow rate, heat, solar radiation, and the sun heat have been considered as the inputs variables.
Data set has been extracted through experimental measurements from a novel solar collector

system. Different analyses are performed to examine the credibility of the introduced
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approaches and evaluate their performance. The proposed LSSVM model outperformed
ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory
measurements are costly and time-consuming, or achieving such values requires
sophisticated interpretations.

Keywords: Renewable energy; neural networks (NNs); adaptive neuro-fuzzy inference

system (ANFIS); least square support vector machine (LSSVM); photovoltaic-thermal

(PVIT); hybrid machine learning model

1. Introduction
Developing more efficient systems and utilizing other energy resources are taking more

significance since the amount of available fossil fuel resources are facing a decreasing slope.
There are several renewable energy sources that can be exploited to satisfy the energy sector
demands (Qin, 2015). However, solar energy is considering more attention since it is
available almost everywhere, and also it is regarded as clean energy with no harmful effect
on the environment (Al-Maamary, Kazem, & Chaichan, 2017; Bong et al., 2017; Kannan &
Vakeesan, 2016; Twidell & Weir, 2015). Solar energy is useful for various applications,
including heating, cooling, and electricity production (Ahmadi et al., 2018; Ramezanizadeh,
Nazari, et al., 2018). There are two defined classifications of active and passive for utilizing
solar energy. In the passive approach, there is no requirement for any extra equipment, and
sun radiations utilized. While in the latter, the existence of mechanical components is
necessary for solar energy utilization and the conversion process of solar energy to another
form of energy is not direct. Solar collectors classified in the active approach of solar energy

conversion to a targeted type of energy (Kannan & Vakeesan, 2016; Lewis, 2016; Modi,
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Bihler, Andreasen, & Haglind, 2017; Sijm, 2017; Wagh & Walke, 2017). Several factors
affect the performance of solar-related systems including the absorption specifications of the
applied materials, solar radiation of the region, operating condition (such as the temperature
and daylight hours) and etc. (Qin, 2016; Qin, Liang, Luo, Tan, & Zhu, 2016; Qin, Liang, Tan,
& Li, 2016). These parameters must be considered for modeling and designing solar energy
technologies.

A solar collector defined as equipment which is used to gather sun-rays and absorb
sunlight thermal energy and delivered it to a working fluid, mostly air or water. The
transferred thermal energy in the working fluid can be stored in a storage tank to be used
when solar energy is not sufficient or is not available (e.g., during the nights). Photovoltaic
panels use solar irradiations and produce electricity. Moreover, during this electricity
production process, a considerable amount of waste heat is also generated which can be taken
its benefit by integrating a network of tubes which containing a fluid for heat transfer process
(Ahmad, Saidur, Mahbubul, & Al-Sulaiman, 2017; Kumar, Prakash, & Kaviti, 2017).

The photovoltaic panels or so-called solar thermal collectors transform solar energy to
the convenient electrical energy. Photovoltaic collector (PV) cells are challenged with low
efficiency due to the high heat. Yet, the novel design of the electrical-thermal interaction in
a hybrid photovoltaic/thermal (PV/T) collector is reported as an alternative to increase
efficiency through heat dissipation (A. K. Pandey et al., 2016).

Solar collectors categorized into two classifications based on the tracking model: no
tracking system installed, fixed collectors, and a tracker system provided for tracking the
sunlight during the daylight, tracking collectors. There is no movement for the fixed
collectors, while the tracking collectors move in a way where the incoming sun-rays are

perpendicular to the surface of the collectors. Flat plate collectors, evacuated tube collectors

do0i:10.20944/preprints202002.0181.v1


https://doi.org/10.20944/preprints202002.0181.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 February 2020 d0i:10.20944/preprints202002.0181.v1

are classified as the fixed collector. There are two subclasses of single-axis tracking and
double axis tracking for tracking of solar collectors. The former classified into three groups
of parabolic and cylindrical trough collectors and linear Fresnel collectors. The latter
examples are central tower collectors, parabolic dish collectors, and circular Fresnel lenses.
All of the mentioned technologies have their specific applications based on the feasibility of
the required and available amount of energy demand and also some other climatic
considerations (Fugiang et al., 2017; Hussain et al., 2013; K. M. Pandey & Chaurasiya, 2017).

Predictive models are widely used for pattern recognition and estimating the behavior of
various systems and technologies (Qin, Liang, Tan, & Li, 2017; Ramezanizadeh, et al, 2018;
Ramezanizadeh, et al. 2019). Currently, several methods are developed to predict the quantity
of solar energy production. The primary methods classified in the two approaches of the
cloud imagery integrated with physical models and machine learning approaches. The
prediction horizon is the distinction making factor for selecting between the methods.
However, there is no unity for all methods predictions, and the accuracy and precision are
different. Different methods developed for solar irradiance prediction based on the favorite
prediction time (Burrows, 1997; Marquez & Coimbra, 2011; Moreno, Gilabert, & Martinez,
2011; Podesta, Nufez, Villanueva, & Skansi, 2004; Tso & Yau, 2007).

Recently, the advantages of several PV/T collector systems highlighted in the
investigations (A. K. Pandey et al., 2016). The market development of various solar thermal
collectors was studied and compared with PV solar farms (Kramer & Helmers, 2013). To
avoid time-consuming and also expensive experimental examinations in the PV/T systems,
soft machine-based forecasting methods are developed (Chau, 2017; Chuntian & Chau, 2002;
Fotovatikhah et al., 2018; Hajikhodaverdikhan, Nazari, Mohsenizadeh, Shamshirband, &

Chau, 2018; Taherei Ghazvinei et al., 2018; Wu & Chau, 2011). These models can forecast
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the output efficiently based on some required input data. The data are then trained based on
the algorithms to predict the desired output. Utilizing artificial intelligence becomes popular
in the fields of heat transfer, e.g., the thermal performance of solar air collectors have been
predicted through an ANN approach where the model reported showed promising results
(Caner, Gedik, & Kegebas, 2011). Varol et al. (Varol, Koca, Oztop, & Avci, 2010) modified
the prediction technique; They evaluated three soft computing techniques of ANN, Support
Vector Machines (SVM), and ANFIS to forecast the thermal performance of the solar air
collectors.

Now, modern computational techniques are developed for optimization purposes,
finding the governing functions or solution of actual engineering problems in different
disciplines (Baghban, Bahadori, Lemraski, & Bahadori, 2015; Baghban, Kashiwao,
Bahadori, Ahmad, & Bahadori, 2016; Baghban, Sasanipour, & Zhang, 2018; Bahadori et al.,
2016; Haratipour, Baghban, Mohammadi, Nazhad, & Bahadori, 2017).

Since the calculation of the thermal efficiency by conventional solution methods results
in solving complicated mathematical differential equations that are time consuming, the use
of machine learning methods is considered. These methods can provide accurate prediction
of the studied process by saving time and cost compared to laboratory methods. In this
research, soft-computational techniques were employed to forecast the efficiency of PV/T
collector. These selected approaches are namely, MLP-ANN, ANFIS, and LSSVM. The sun
heat, flow rate, inlet temperature, and solar radiation are considered as the inputs variables
for training and testing machine learning models to study the electrical efficiency yield as the

output.

2. Theory


https://doi.org/10.20944/preprints202002.0181.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 February 2020 d0i:10.20944/preprints202002.0181.v1

2.1. The adaptive neuro-fuzzy inference model

The momentum duty of the adaptive neuro-fuzzy inference (ANFIS) is to discover for
fuzzy decision guidelines in the feed-forward framework. The establishment of conventional
ANFIS based on 1% order Takagi-Sugeno inference model is demonstrated in the following

figure, Fig. 1.

Figure 1. Establishment of typical ANFIS.
The ANFIS model states that a primary regulation made of 5 layers. As shown in figure

1, inputs of x and y fed into the built model, and the following output of f has resulted. In this

mode, two different if-then fuzzy statements defined as follows (Brown & Harris, 1994; Lin

& Lee, 1996):
Rule 1: If xisal and y is B1; then f1 = mlx + nly + rl (D
Rule 2:If xis a2 and y is f2; then f2 = m2x + n2y + r2 (2)

Where a1, a2, f1, and p. are the fuzzy sets for x and y. Furthermore, the variables of my, na,

ri, mz, Nz, and r represent the final outputs of the training workflow.
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The node functions are defined in every layer as follows:
Layer I is the fuzzification of the task. Each node i represents an adaptive node. The outcome

of each node in this layer is:

Ovi = tai(x) ~ fori=12 3)
Osi = wpi2(y) fori=3,4 (4)
x and y are the node’s input data, i. 1. and ug are functions for the fuzzy membership.
Layer I1: devoted to managing the layer and nodes with constant (i=M). The receiving signals
are consequently produced and resulted in the output. The output calculated by applying the

following equation:
O2i = Wi = uai(x)upily) ~ fori=12 )
Layer 111 is defined as the normalization layer. The normalized data of the i node, N,

calculate the normalized strength as follows:

wi
w1i+w?2

Ozi=Wi = fori=1, 2 (6)

Layer 1V is configured to de-fuzzy the data. Where between every node i and a node function,
an adaptive relation is defined:
Os,i = Wifi = Wi(mix + niy + ;) (1)
The parameter sets of this node are mi, nj and ri, respectively.
Layer V is the final layer. The overall output of all receiving signals are calculated by a fixed

node of E in this layer and then are summed:

Osi= 3, wify = 50 ®)

As mentioned above, the tuning parameters in the ANFIS structure are its membership

parameters. These parameters can be determined optimally using evolutionary and
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optimization algorithms, e.g. PSO, GA, ACO, ICA. In the current study, these parameters are

optimized using the PSO algorithm.

2.2. The multi-layer perceptron artificial neural network model

The ANNSs are composed of a several internal, external, and hidden neural layers
(Mitchell, 1997; Schalkoff, 1997; Yegnanarayana, 2009). Each layer includes some nodes
which called as neurons. Every neuron connected through an interconnection relationship. A
weighted parallel connecting establishment is made to treat these relationships. Multilayer
recurrent, RBF, and MLP are among the popular ANNSs. A general layout of the multi-layer

ANN demonstrated in Fig. 2.

Bias 1

Activation function
(more on this later)

%2
%3
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Figure 2. Construction of MLP-ANN model.

The two essential parameters in the ANN problems are weight and bias. Weight values
perform the interconnections throughout the neurons. Moreover, the bias parameter is used
to specify the system's degree of freedom (DOF). In the ANN arrangement, the output of
every single layer summed with the values of biases. Then, in order to convert and send the

obtained signals to the next layer, the transfer function must be used. Linear, Sigmoid, and
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Hyperbolic tangent functions are known as the most typical transfer function in ANN

structures:
= Linear function: f(z)=z 9)
= Sigmoid function: fl2) = 1;_2 (10)
= Hyperbolic tangent function: f(z) = Z::: (11)

In this investigation, the Sigmoid transfer function, Eq. (10), is employed in the hidden
layer and the Linear transfer function, Eq. (9), is applied in the output layer. Thus, the model

outcome obtained as (S. Haykin, 1994; S. S. Haykin, Haykin, Haykin, & Haykin, 2009):

1
7 = Z?:l W3; m + b3 (12)

Where, wi denotes the weight values, n represents the number of neurons in the hidden layer,
wi 3 indicates the weight values and bz is the bias. The outcome named Z.

Moreover, the layout of the ANN is trained and is gone through an optimization process
by utilizing the Back Propagation (BP) algorithm. During the training stage, the optimum
statuses of weights and biases calculated. While biases and weights reach their optimum
values, the disparity of the prediction of the ANN model and the real measured data is

minimized. The value of the prediction error is obtained as:

E=YpEW) =%p %07 — 07 (13)

Where, p, OiP * and rFindicate the quantity of the training data, the i"" neuron which belongs
to the 1™ output layer, and the i™ real output corresponding to the p" training data,
respectively.

Based on Eq. (14) moreover, Eg. (15), BP algorithm is used to transfer the bias terms

and also the weight's terms:
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ok +1) = w7 (k) = A== (14)

11]
l]

b (k+1) = b (k) — Aab’ (15)

Here, A indicates the learning rate, and k states the iteration numbers.

2.3. The radial basis function artificial neural network model

The process of the radial basis function artificial neural networks (RBF-ANNS) is
demonstrated in Fig. 3. There are many interconnected neurons in the RBF-ANNSs. It
composed of 3 layers of input, hidden layers, and output (Wasserman, 1993). The input
layer's task is to import the input parameters into the transfer function. The number of model
input parameters is equal to the number of nodes in the input layer. The hidden layer is the
most noticeable part of the RBF-ANNS. Radially symmetry is a prominent feature of these
nodes in this layer. Finally, by applying the weight factor from the output layer node to the
hidden layer node, the output of this model is generated.

RBF Network

Xy s B)

f(x)= i wjhj (x)

X, 1)
- -
h(x) =exp| — G=o) )’
f’
X, | R
Input Layer Hidden Layer Output Layer

Figure 3. Construction of the RBF-ANN approach.
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The MLP is structurally analogous to RBF-NNs. However, the calculation process is not
similar since, in the RBF-NNs, one hidden layer exists, uses, and estimates in the calculation
process, but the MLP-NNs employ multiple hidden layers that are interconnected. Before
applying the RBF-NNS, an activation function of the hidden layer defined, and the highest
quantity of the neurons specified. Here, neurons considered as a processing unit of the
network. Besides, the assessment of the optimum values is a crucial task in the process of
modifying the process based on the assessment. Weight factors are used to train the RBF-
NNs (Park & Sandberg, 1993).

The essential traits of the RBF-NNs are listed as follows:

Triple-layer structure.

Activation functions of Gaussian used in the hidden layer.

Weight delivered to the hidden layer and then assigned to the output layer.

An acceptable degree of interpolation.

In the interpolation algorithm, the input data mapped to the corresponding objective
value of t°. Thus, each input vector required an activation function. This process performed
by ¢(|lx — xP||). Here, ¢ is the activation function and ||[x — xP|| denotes the Euclidean

position difference between x and x°.  The output is calculated as follows:

f) =X5-iwp (llx? — xP|)) = tP (16)
Where, w, is the weight factor and x? denotes the g input vector. In other words, to
regulate the weight terms to come close to the Eq. (17), the interpolation process is necessary:

fx®) = Ep-wp d(llx? — xP|l) = tP (17)

Among available activation functions, the Gaussian activation function is mostly used.

This function is defined as follows:

do0i:10.20944/preprints202002.0181.v1
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() = exp (- ) (18)

where, ¢ and r denote the interpolating function and the distance between a center of "c"

and the local position of data point "x", respectively.

2.4. The least square support Vector Machine model

Support Vector Machine (SVM) considered as a unique tool since its full practicality in
various cases. SVM has several features, including wider converge to find the precious
optimum, no further network regulation is required, lower regulation parameters, and more
flexibility in overfitting issues. The following function can be considered for the SVM theory
(Pelckmans et al., n.d.; J A K Suykens, Van Gestel, De Brabanter, De Moor, & Vandewalle,
2002; Johan A K Suykens, Van Gestel, De Brabanter, De Moor, & Vandewalle, 2002; Ye &

Xiong, 2007):

f)=w'o() +b (19)

¢ (x) and WT substitute the kernel function and the output layer vector, respectively.
Furthermore, b and x represent the bias, and the inputs into the Nx n matrix, respectively. In
this matrix, the N denotes the trained data and n states the input parameters' number. Vapnik
presented a meticulous procedure to obtain weight and bias. In this process, the following

function must be minimized (Vapnik, Golowich, & Smola, 1997):

Objective Function = %WT +cYr (6 -89 (20)

By these following restrictions:
Ve —wTio(x)—b <e+&,k=12,..,N
WT(D(Xk) +b— Ve <€+ fk*, k=12,.. N (21)
&kié 20
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In the above equations, xis the k™ input, y, indicates the k™ output, & indicates the
accuracy of the function estimation, &, and &, denote the slack factors. In overall, in order
to specify the allowable deviations, slack terms are employed. A modifiable term of
¢ > 0 requires to adjust the value range of the deviation from the «.

SVM method is modified to Least Square Support Vector Machine (LSSVM) to be able
to cover linear equations through linear programming to get a faster and more curious

response than the conventional SVM approach. The LSSVM approach is as follow:

Objective Function = %WTW + %y YN_ e? (22)

While: Yie =wld(x,) + b+ e (23)
In the above equations, the training parameter denoted by y and the regression error of the
training steps is represented by ey,.

Moreover, in comparison with the SVM method, equality constraints are used instead of
the inequality constraints. The Lagrangian approach is used to solve the above problem (Eqg.

(22) and Eq. (23)):

L(w,b,e,@) = ;w™w + 2y SNy ef = T, ax (W' 0(a) +h —ex —yi)  (24)

Here, a; indicates the Lagrangian multipliers and its derivatives should be equal to zero for

solving the process. Furthermore, the following equations of Eq. (25) should be employed:

w = Y=g @ ()
ZIIX=1 ag = 0 (25)
ar =yvep,k=12,..,N
v =wlo(x) +b+e,k=12,.,N
Therefore, the LSSVM method should be applied to solve the 2N+2 equations and other

unknown variables of ey, a;, w, and b.
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y indicates the regulating variable of the LSSVM approach. Since both of SVM and
LSSVM methods are used kernel functions, the presence of other tuning parameters is

essential. Here, RBF kernel has been employed:

k(x,x;) = exp (_”xk—_xuz) (26)

o2

a? is acted as a regulating parameter. Therefore, the target parameters of the LSSVM
can be obtained more precisely by decreasing the error between the predicted results and the
actual illustrations. For the LSSVM approach; the mean square error (MSE) is presented as

follows:

MSE = 2?:1(ai,exp_‘xi,pred)2 (27)

n

n denotes the quantity of the primary population, o states the output amount of CO2. The
subscript Pred. stands for predicted data points and exp. is the experimental data points.

Here, LSSVM model is applied and the Genetic Algorithm (GA) is utilized in order to
perform an optimization to regulate the parameters of the LSSVM (J A K Suykens et al.,
2002). The schematic diagram of the LSSVM technique illustrated in Fig. 4. In this
procedure, the data points are classified into two subclasses: train and test datasets in the first
stage. The LSSVM network is composed based on the training data. o2 and vy are arbitrarily
guessed and then GA modified the values by means of minimizing the MSE between the real
output and predicted value. This algorithm is performing continuously to obtain the desired

objectives.
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Figure 4. The LSSVM-GA model.

3. Experimental Procedure and Data Preparation

Data was gathered from a laboratory scale PV/T setup that has a new design in layering

of the thermal section. As presented in Figure 5(a) a half pipe is used instead of full circle

tube as the fluid channel that is bonded to the absorber plate using special adhesives. This

design leads to direct contact of water with the absorber plate. This configuration reduces the

thermal resistance of the layers which significantly improves heat transfer from the cells to

the fluid. Half pipe mounted behind the absorber plate in a serpentine path that shows in

figure 5(b). The flowrate and inlet/outlet temperature of the fluid was measured to evaluate

the thermal energy gain from the PV/T panel.
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A PV panel with 36 cells (with 9 rows and 4 columns) has been used for this purpose.
Aperture area and nominal efficiency of the panel (under standard condition) are 0.7 m? and
12.5%, respectively. Also it has an open circuit voltage (Vo) of 22.2 V and short circuit

current (lsc) of 5.5A.

3 T:‘;Z i L@
T~

I
(@) (b)

Figure 5: (a) Cross section of Fluid Channel (1:Glass, 2:Adessive, 3:Absorber Plate, 4:Aluminium Half Pipe)

(b)serpentine path of half pipe on the back of the panel

Water is circulated with a pump and it’s flow rate is controlled with a manual ball valve and measured
by a rotameter in range of 0.5-4 liters per minute. Inlet and outlet temperature are measured with a K-
type thermocouple (with accuracy of +£0.1°C). Also, the output and solar radiation data can be
measured and recorded by a solar system analyzer. As shown in figure 6 the PROVA 1011 Solar
System Analyzer is used to measure the electrical characteristics of the solar panel. This device
measure the solar radiation by a photovoltaic pyranometer that shown in fig.6. Also it indicates the I-
V curve, maximum solar panel power and related voltage and current to this point and the present
efficiency of the solar panel.

Figure 6: Solar system analyzer and it’s connection to the PV/T panel
The system was tested on sunny summer days almost in the noon to have the constant

and maximum amount of solar irradiations. In addition to the above parameters, the ambient
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temperature and wind velosity was measured for entering to the model. The effect of the inlet
temperature and flow rate of the water stream on the electrical and thermal efficiency was

evaluated.

The system was experimented on a sunny summer day almost in the noon to have the
constant and maximum amount of solar irradiations. The variations of solar irradiance during

the tests on different days are illustrated in Figure 7.
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Figure 7. Data set for solar irradiance.

The water mass flow rate is an essential factor in the PV/T system. In this study, the
water mass flow rate is % to 4 lit/min and other system parameters are recorded. Also, the

influence of water inlet temperature (20°C <Tinee< 45°C) on the PV/T system has
experimented.
Fig. 8 demonstrates the parallel diagram of affecting parameters and their ranges at

various heat of the sun on the PV/T system. Fig. 9 illustrates Andrews diagram of all
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parameters to have a visual insight from high-dimensional data. For plotting these diagrams,
Andrews tool is used in MATLAB 2018 library. This diagram is a non-integer model of the
Kent-Kiviat radar diagram or the smoothened model of a parallel coordinate diagram
(Andrews, 1972). Curves belonging to samples of a similar class will usually be closer
together and their behavior is similar. As can be seen in this figure, since the Andrews
diagrams of the inlet temperature, heat, solar radiation, the heat of the sun, and electrical
efficiency are very close together, these parameters behave similarly, while flow rate behaves

very differently.

Qsun120450 B TWI822.710

1,500
1,400
1,300
1,200
1,100
1,000
900
800
700
600
500
400
300
200

100

Inlet Temp. Flow Rate(lit/min) QVWatt) Solar radiation Electrical efficiency

Figure 8. Parallel diagram of studied parameters in the present study of efficiency measurement of a PV/T
collector.
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Figure 9. Andrew plots of variables including inlet temperature, flow rate, heat, solar radiation, heat of the sun,
and electrical efficiency.

Moreover, a proper tool for evaluation of rough linear correlations of metadata is scatter
plot matrices. For all of the applied parameters of this study, the scatter plot was drawn and
illustrated in Fig. 10. In this figure, all of the parameters placed diagonally. Each parameter
plotted against other parameters. The more the parameters of a plot are related to each other,
the less scattered the points within that plot. For example, according to this Figure, heat of
sun has a relatively good linear relationship with solar radiation, while electrical efficiency

and flow rate are not linearly correlated.
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Figure 10. Scatter matrix plot for the studied parameters in the efficiency measurement of a PV/T collector.

4. Models Implementation

4.1. Preprocessing Procedure

Four machine-based prediction models of MLP-ANN, RBF-ANN, ANFIS, and LSSVM

were developed in Matlab 2018 software to model the efficiency of the PV/T system. In order

to find the objective of the efficiency of the PV/T system, some affecting parameters are

assumed to be known and inserted as an input to the model. These variables are inlet
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temperature, flow rate, heat, solar radiation, and heat of the sun. An overall number of 98
data points were utilized in the models above to forecast the desired objective.

The data classified into two subclasses of train and test, which 75% of the data
considered as training and the remaining belong to the test subclass. The former is used to
specify the external variables of the developed models, while the latter checks the precision
of the model's output. To have a homogenized data set, the following equation, Eq. (28) is
used to normalize the data points in the normalization range of [-1, 1]:

D_Dmin

D, =2 -1 (28)

Dmax—Dmin

D is the variable, n stands for normalized, min refers to a minimum, and max states the
maximum amounts of the corresponding variable. In these models, inlet temperature, flow
rate, heat, solar radiation, and heat of the sun are the input of the problem while the electrical

efficiency is designed to be the target objective.

4.2. Model Development

4.2.1. ANN

In this study, RBF and MLP are implemented to model the output of the electrical
efficiency of the PV/T system collector. Seven hidden neurons were used for the training
section in order to specify the target parameter by minimizing the distance of the forecasted
and actual measured data. It is worth noting that the number of hidden neurons is seven. This
number was obtained by trial and error method. For the ANN model we use ANN toolbox of
MATLAB and also the Levenberg Marquardt (LM) algorithm was chosen according to its
applicability in optimization problems in order to determine optimal weight and bias values.
The mean squared error of the obtained forecasted values from the MLP practice is depicted

in Fig. 11. Moreover, Table 1 presents the optimum of bias and weight.
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Figure 11. MLP-ANN performance during different iterations.
Table 1. Optimum values of weight and bias in the MLP-ANN model.
Input layer Output layer
Weight Bias Weight Bias
The .
Flow Solar Electrica
Inlet T rate Heat Rad. h;itnOf bl | Eff. b2
-3.00217 14'65289 019011 -6.14859 -10.254 11'22139 -0.77978 51'77533
25'1174 437362 -135.409 386.549 3883520 811.641  1.63077
6.00214 30.0033 -15.9983 5.14607 6.72196 4.23300 -3.20637
7 3 5 5 7
0'01205 001171 -0.01102 -4.46868 4'4%394 09196  -166.279
-77.2605 118é323 -20.377 72';436 75";972 -152.927 -1.55885
59.5953 54,9347 51.6115 15.5082 23.3249 5.85329 151761
1 7 1 9 3
12356 -25.3219 209364 031039 179291 . gi98 384421

2 4 3
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Besides, to train the RBF-ANN model, the Levenberg-Marquardt algorithm is used with
50 iterations. The training process of the radial basis network is regularly less time-
consuming than the sigmoid or the linear network. The performance of the RBF-ANN

method during various iterations is demonstrated in Fig. 12.
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04

0.2

Epoch

Figure 12. RBF-ANN performance during different iterations.

4.2.2. ANFIS method

In facilitate the advancement of the ANFIS model, the Particle swarm optimization
(PSO) approach was used. The overall numbers of ANFIS variables are dependent on
clusters' number, N¢, variables' number, Ny, and the number of membership function variables

(Nwr) as follows:

NT = NC'N‘U'NMF (29)

The membership function of this study is the Gaussian membership function. Z and ¢*
are the two membership function variables. The primary input parameters are sun heat, inlet

temperature, flow rate, and solar radiation. Seven clusters are primarily considered. Hence,
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the overall number of ANFIS parameters is 84. In order to obtain the optimum status of the
ANFIS parameters, the RMSE between experimentally measured and the forecasted values
is reflected as the cost function of the PSO algorithm Fig. 13. The RMSE of each iteration is

shown. The trained membership function for input data is illustrated in Fig. 14.
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Figure 13. Applying the PSO algorithm at various iterations in the training stage of the ANFIS model.
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Figure 14. Fuzzy inference system for input variables: Training.
4.2.3. LSSVM

The LSSVM approach employs two regulating variables in its algorithm. These variables
are y and ¢. The regulation variable is stated by y, and the kernel variable is the RBF.
Moreover, the LSSVM method is hybridized with GA to specify the optimum response of

the introduced model.

4.3. Models’ Evaluation

Different statistical criteria such as R-squared, Root Mean Squared Error (RMSE) and
etc. are applicable to evaluate the confidence, reliability and accuracy of the models (Qin &
Hiller, 2016; Qin, Hiller, & Bao, 2013). In this research, the proposed approaches are evaluated

based on various statistical methods as listed in the following:
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N
1
Mean Squared Error (MSE) = Nz(foP' - Hfal')2 (30)
i=1
100 O [HEP — HEL|
Average Relative Deviation (ARD)(%) = N z : TEa : (31)
i=1 i
1 N 0-5
Standard Deviation (STD) = <mz(fop' - Hl-“”')2> (32)
i=1
1 N O|5
Root Mean Squared Error (RMSE) = <NZ(fop' — Hl-“”')2> (33)
i=1
_ o SN (HEP_peal 2
Correlation Coefficient (R?) = 1 — (2 ) (34)

SI (H P -HeP)’
Where N denotes the quantity of data points. The superscripts of exp. and cal. are for values
which experimentally and based on calculation were obtained, respectively. H¢*? indicates

the mean efficiency obtained through experimental measurements.

5. Results and Discussion

The obtained results from applying four introduced intelligent techniques are described

in detail in Table 2. The used data set consists of 98 data points.

Table 2. Models’ characteristics and further information.

LSSVM ANFIS
Type Value Type Value/comment
Kernel function RBF Membership Function Gaussian
r 6942.0845 No. of MF parameters 84
o? 8.01234 No. of clusters 7
Quantity of training data 74 Quantity of training 74

data

Quantity of testing data 24 Quantity of testing data 24
Population size 100 Population size 50
Iteration 1000 Iteration 1000
C1 1 C:1 1

C 2 C 2
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MLP-ANN RBF-ANN
Type Value/comment  Type Value/comment
Quantity  of  input 5 Quantity of input neuron 5
neuron layer layer
Quantity hidden neuron 7 Quantity of hidden neuron 50
layer layer
Quantity of output 1 Quantity of output neuron 1
neuron layer layer
Hidden layer activation Logsig Optimization method Levenberg-
function Marquardt
Output layer activation Purelin Quantity of training data 74
function used
Optimization method Levenberg- Quantity of testing data 24

Marquardt

Quantity of training 74 Quantity of max iterations 50
data for
Quantity of testing data 24
Quantity  of  max 1500
iterations

Fig. 15 demonstrates the experimental plot for all investigated models, simultaneously.
As it is monitored, all of the methods show an acceptable agreement with the trend of
experimental values; because output line has passed most of the data well. However, the
LSSVM approach is more precise based on the less deviation from experimental values in

comparison with other methods; statistical calculations also confirm this result.
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Figure 15. Experimental versus predicted electrical efficiency value.

Fig. 16 demonstrates the regression plot of the forecasted and experimentally measured
values for the studied models. Based on this evaluation, it seems that most of the data are
placed close to the X=Y line. Figs. 16 (a)-(c) illustrate the optimum fitting lines by using
linear regression of experimentally measured data and forecasted values by machine-based
methods. The LSSVM model seems to have better predictability than other models. R-
squared value of the regression, which is used in several studies for evaluating the accuracy
and reliability of the models (Qin, Zhang, & Hiller, 2017), for the LSSVM model is equal to
0.9921 & 0.9867 for training and testing data set. Also, these values are equal to 0.9182 &
0.9225, 0.9723 & 0.9864, and 0.9404 & 0.9395 for training and testing data set of ANFIS,

MLP-ANN, and RBF-ANN models, respectively.
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Figure 16. Regression plot of efficiency: experimental Vs. estimated (a) LSSVM, (b) ANFIS, (c) MLP-ANN,
(d) RBF-ANN.
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The deviation graph is another typical evaluation graph, which is used to compare the

valued of the forecasted efficiency of the PV/T collector with the actual data resulted from

the experiments.
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Figure 17. Relative deviations of efficiency: experiment Vs. predicted (a) LSSVM, (b) ANFIS, (c) MLP-ANN,
(d) RBF-ANN.

Fig. 17 depicts the deviation diagram for all of the introduced models. Based on the

deviation plot, the closeness of the data near the zero line is higher in the LSSVM approach,
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and therefore, the lower deviation results. The MLP-ANN, RBF-ANN, ANFIS, and LSSVM
models resulted in the values of 0.6, 0.75, 1.03, and 0.27 for the mean relative deviation of
respectively. In order to examine the ability of the presented strategies, statistical error
analyses are also performed for train, test, and overall data. Table 3. represents the results

indicating that the proposed methods express precise estimation.

Table 3. Error analysis through different criteria.

Model MSE RMSE MRE MAE R?> STD
Test 0.004 0.061 0.265 2.901981 0.987 0.055
LSSVM  Train 0.003 0.053 0.253 2.678706 0.992 0.046
Total 0.003 0.055 0.256 2.733386 0.991 0.048
Test 0.011 0.107 0.768 8.244855 0.922 0.069
ANFIS  Train 0.032 0.178 1.123 12.13705 0.918 0.132
Total 0.027 0.164 1.036 11.18386 0.918 0.120
Test 0.007 0.083 0.509 5.467401 0.986 0.063
MLP-ANN Train 0.008 0.091 0.634 6.832438 0.972 0.061
Total 0.008 0.089 0.603 6.498143 0.976 0.061
RBF-ANN  Test 0.037 0.193 1.049 10.59609 0.940 0.165
Train 0.015 0.123 0.656 7.124918 0.940 0.100
Total 0.020 0.143 0.752 7975 0.937 0.119

The following table compares the results of this work with previously published papers on
the related subject (Table 4). Kalani and his colleagues did a machine learning work in
predicting electrical efficiency of photovoltaic nanofluid based collector using RBF-ANN,
MLP-ANN and ANFIS. Their model input parameters include ambient temperature, fluid
inlet temperature and incident radiation. Rejeb and his colleagues used finite volume method
to investigate the dynamic behavior of the photovoltaic/thermal sheet and tube collector,
based on the energy balance. In addition, Dubey and his colleagues did analytical expression

for determination of electrical efficiency of PV/T hybrid air collector. The results of these
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researchers' work are presented in the Table 4. From this table, the LSSVM model presented

in this paper has the best ability to model the thermal performance of PV/T collector.

Table 4. A comparison between the results of this paper with previously published works

Model Reference RMSE (%) R?
LSSVM The present work 0.055 0.991
ANFIS The present work 0.164 0.918
MLP-ANN The present work 0.089 0.976
RBF-ANN The present work 0.143 0.937
(Kalani, Sardarabadi, &
ANFIS ) 0.2675 0.9896
Passandideh-Fard, 2017)
MLP-ANN (Kalani et al., 2017) 0.3621 0.9363
RBF-ANN (Kalani et al., 2017) 0.2562 0.9906
o o (Rejeb, Dhaou, & Jemni,
Numerical investigation 2.31224 Not reported
2015)
(Dubey, Sandhu, &
Analytical investigation 3.41t04.19 0.806 to 0.849
Tiwari, 2009)

5.1. Outlier Detection

The trustworthiness of the employed models is exceptionally dependent on the
experimentally measured data points (Rousseeuw & Leroy, 2005). Outliers called to those
data (individual or group) which their behaving trend is not following other data points.
Therefore, one of the most important steps in the evolution of models is to detect and remove
the outliers. Thus, to specify the outliers, the Leverage analysis by implementing
standardized residuals (R) is utilized. The outlying candidates explored through drawing
William's plot, i.e., the graph of Rs against hat values (H). The H is the diagonal arrays of

the hat matrix and calculates as follows to specify the available space.
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H=XXTX)"1xT (35)

X denotes a [...]nxk matrix where n is the quantity of data and k indicates the number of input
variables. Feasible space is a squared region constrained to cut-off value on the vertical axis
and also limited to the warning leverage value on the horizontal axis. Warning leverage is

defined as:

x _ ghktl
H* =3~ (36)
R=3 is the recommended cut-off value. The lines of R = +3 on the vertical axis limit the
feasible region. On the other hand, the feasible space on the horizontal axis is specified
between lines of H=0 and H=H"=0.09. Those data that were outside of the acceptable range

are called the Outlying. Based on William’s plot, which is depicted in Fig. 18, most of the

data are placed in the acceptable range except for one data for all studied models.
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Figure 18. William’s plot for: (a) LSSVM, (b) ANFIS, (c) MLP-ANN, (d) RBF-ANN.

5.2. Sensitivity Analysis
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In order to demonstrate the reliance of the objective of the study on input parameters, a
sensitivity analysis is carried out. A relevancy factor of -1< r <+1 is selected in the sensitivity
analysis. As the r is closer to unity states that the final objective parameter is highly affected
by the input variables. The positive values of r state the increasing effect of input parameters
on the final objective, and negative values of r represents a decreasing trend for the

dependency of the target to the inputs. Relevancy factor is obtained as follows:

N ¥ S
r = Yic1 (X, sz)(yl ¥) (37)
JE (507 2, 052
X,.; expresses the i input, X, denotes the mean value of the k™ input, y; indicates the i
output, and y represents the mean value of output. N is the overall population of data. The
relevancy factors for all of the input data are illustrated in Fig. 19. The inlet temperature is

monitored to be the most affecting variable in the efficiency of the PV/T system since the

relevance factor of 0.36 was computed.
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Figure 19. Relevancy factors for input variables.

6. Conclusion

Machine-based methods of MLP-ANN, RBF-ANN, ANFIS, and LSSVM were utilized
to establish a mathematical model between efficiency of PV/T collector and input parameters
of inlet temperature, flow rate, heat, solar radiation, and heat of the sun. To this end,
experimental measurements prepared by designing a solar collector system and a hundred
data extracted. The trustworthiness of the models in precise estimation of the efficiency
shown with graphical and statistical approaches. In order to demonstrate the

comprehensiveness of the models, the outlying recognition performed. It was shown that the
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results of the LSSVM model were more satisfactory than other models. R-squared (R?) and
Mean Squared Error (MSE) were 0.986 & 0.007, 0.94 & 0.037, 0.922 & 0.011, and 0.987 &
0.004 for the four models, respectively. Based on the sensitivity analysis, the water inlet
temperature has the most effect on the efficiency of the PV/T system since it has the most
significant relevancy factor. Fortunately, the LSSVM model presented here has simple
calculations. Using it in commercial software or as an alternative tool when there is no
empirical data is another of its applications. The present model has a lot of importance for
chemical engineers, especially who studies the electrical efficiency of renewable resource of

solar energy.

Nomenclature:

Tinlet inlet temperature [°C]

Q heat [watt]

Qsun heat of sun [watt]

ICA Imperialist Competitive Algorithm

LSSVM  Least Squares Support Vector Machine

NNs  Neural Networks
MLP  Multilayer Perceptron
ANFIS  Adaptive neuro-fuzzy inference system

RBF Radial Basis Function

PSO Particle Swarm Optimization
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PVIT  Photovoltaic-thermal

MSE  Mean Squared Error

R? Correlation Coefficient

RMSE  Root Mean Square Error
MRE  Mean Root Error

STD Standard Deviation

DOF  Degree of Freedom

BP Back Propagation
GA Genetic Algorithm

LMA  Levenberg-Marquardt Algorithm

GNA  Gausian-Newton Algorithm
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