
Learning to Incorporate Structure Knowledge for Image Inpainting

Abstract
This paper develops a multi-task learning framework that at-
tempts to incorporate the image structure knowledge to as-
sist image inpainting, which is not well explored in previous
works. The primary idea is to train a shared generator to si-
multaneously complete the corrupted image and correspond-
ing structures - edge and gradient, thus encourages the gen-
erator to exploit relevant structure knowledge while inpaint-
ing. Besides, we also introduce a structure embedding scheme
to explicitly embed the learned structure features into the in-
painting process serving as preconditions for image comple-
tion. Specifically, a novel pyramid structure loss is proposed
to supervise structure learning and embedding. Moreover, an
attention mechanism is developed to exploit the recurrent pat-
terns in the image to refine the generated structures and con-
tents. Through multi-task learning, structure embedding be-
sides with attention, our framework takes advantage of the
structure knowledge and outperforms several state-of-the-art
methods on benchmark datasets quantitatively and qualita-
tively.

Introduction
Image inpainting targets at filling corrupted or replacing un-
wanted regions of images with plausible and fine-detailed
contents, which is widely applied in fields of restoring dam-
aged photographs, retouching pictures, et al.

Existing inpainting approaches can be roughly divided
into two groups: conventional and deep learning based ap-
proaches. Conventional inpainting approaches usually make
use of low-level features (e.g. color and texture descriptors)
hand-crafted from the incomplete input image and resort
to priors (e.g. smoothness and image statistics) or auxiliary
data (e.g. external image databases). They either propagate
low-level features from surroundings to the missing regions
following a diffusive process or fill holes by searching and
fusing similar patches from the same image or external im-
age databases. Without a high-level understanding of the im-
age contents and structures, conventional approaches usu-
ally struggle to generate semantically meaningful content,
especially when a large portion of an image is missing or
corrupted.
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• We propose a multi-task learning framework to incorpo-
rate the image structure knowledge to assist image in-
painting.

• We introduce a structure embedding scheme which can
explicitly provide structure preconditions for image com-
pletion, and an attention mechanism to exploit the similar
patterns in the image to refine the generated structures and
contents.

Related Work
Numerous image inpainting approaches have been pro-
posed; here, we focus to review the representative deep
learning based methods.

Method
Our multi-task framework leverages the structure knowledge
with multi-tasking learning (simultaneous image and struc-
ture generation), structure embedding and attention mecha-
nism. As a future work, we plan to investigate adapting the
proposed multi-task framework to other specific inpainting
architectures to leverage the structure knowledge.

Experiments
In this section, we present our experimental comparison-
s with several state-of-the-art image inpainting approaches
and ablation studies of the effectiveness of our multi-task
framework. More results can reference our supplementary
material.

Conclusion
We have primarily presented a framework for incorporating
image structure knowledge for image inpainting. We pro-
pose to utilize the multi-task learning strategy, explicit struc-
ture embedding besides with an an attention mechanism to
make use of the image structure knowledge for inpainting.
The experiments results demonstrate that the proposed ap-
proach shows superior performance compared with sever-
al state-of-the-art inpainting methods which either ignore or
not well exploit the structure knowledge. Besides, each com-
ponent for incorporating structure knowledge is verified by
ablation studies.



Supplementary Material
In this supplementary material, we present more details of
the network architectures and training, additional qualitative
comparisons and visual results.

A. Network Architectures
The detailed architectures of our generator and discriminator
are shown in Table 1 and Table 2 respectively. Our model is
trained end-to-end using Adam optimizer with β1 = 0 and
β2 = 0.9. We set the initial learning rate 10−4 then lower
it to 10−5 until metrics converge. The code will be made
public in the future.

B. More Experimental Results
For the experiments, we show more qualitative comparison
results on Places2 in Figure 1 and CelebA in Figure 2. More
visual results are shown in Figure 4 and Figure 5. Additional
ablation study results are shown in Figure 3.

Table 1: The architecture of our generator. ⊕ denotes feature
concatenation, φ1 the feature maps in the encoder, A1 atten-
tion maps, S1 structure feature maps, ϕi the features maps
in the decoder. [IN: Instance Normalization; RBs: Residual
Blocks (Nazeri et al. 2019); AT: Attention Layer; SE: Struc-
ture Embedding Layer.]

Input: Î⊕M⊕ Ê⊕ Ĉ (256× 256× 11)

φ1: Conv. (7, 7, 64), stride=1; IN; ReLU;
φ2: Conv. (4, 4, 128), stride=2; IN; ReLU;
φ3: Conv. (4, 4, 256), stride=2; IN; ReLU;
φ4: Eight RBs(φ3)
A1: AT(φ4)
S1: SE(A1)
Structure Output: Conv. (1, 1, 6), stride=1;
ϕ1: A1 ⊕ S1; Deconv. (3, 3, 128), stride=2; IN; ReLU;
A2: AT(ϕ1)
S2: SE(A2)
Structure Output: Conv. (1, 1, 6), stride=1;
ϕ2: A2 ⊕ S2; Deconv. (3, 3, 64), stride=2; IN; ReLU;
ϕ3: AT(ϕ2); Conv. (5, 5, 64), stride=1; IN; ReLU;
Structure Output: Conv. (1, 1, 6), stride=1;
Image Output: Conv. (1, 1, 3), stride=1;

Table 2: The architecture of our discriminator. SNConv. de-
notes the convolutions with spectral normalization.

Input: Icomp (256× 256× 3)

[layer 1]: SNConv. (5,5,64), stride=2; LReLU;
[layer 2]: SNConv. (5,5,128), stride=2; LReLU;
[layer 3]: SNConv. (5,5,256), stride=2; LReLU;
[layer 4]: SNConv. (5,5,512), stride=2; LReLU;
[layer 5]: SNConv. (5,5,1), stride=1;
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Figure 1: Ours compared with EG (Nazeri et al. 2019) and
the ground truth (GT) on Places2. [Best viewed with zoom-
in.]
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Figure 2: Ours compared with baselines and the ground truth (GT) on CelebA. [Best viewed with zoom-in.]
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Figure 3: Qualitative results of the ablation study. [Best viewed with zoom-in.]
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Figure 4: Example inpainting results on Facade. [Best
viewed with zoom-in.]
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Figure 5: Example inpainting results on CelebA. [Best
viewed with zoom-in.]


