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1 Abstract
We develop a mathematical model to provide epidemic predictions for the 2019-nCov epidemic in

Wuhan, China. We use reported case data up to January 31, 2020 from the Chinese Center for Disease
Control and Prevention and the Wuhan Municipal Health Commission to parameterize the model. From
the parameterized model we identify the number of unreported cases. We then use the model to project
the epidemic forward with varying level of public health interventions. The model predictions emphasize
the importance of major public health interventions in controlling 2019-nCov epidemics.

2 Author summary
An epidemic outbreak of a new human coronavirus 019-nCov, has occurred in Wuhan, China. For

this outbreak, the unreported cases and the disease transmission rate are not known. In order to recover
these values from reported medical data, we present the mathematical model (4.1) for outbreak diseases.
By knowledge of the cumulative reported symptomatic infectious cases, and assuming (1) the fraction f
of asymptomatic infectious that become reported symptomatic infectious cases, (2) the average time 1/ν
asymptomatic infectious are asymptomatic, and (3) the average time 1/η symptomatic infectious remain
infectious, we estimate the epidemiological parameters in the model (4.1). We then make numerical
simulations of the model (4.1) to prodict forward in time the severity of the epidemic. We observe that
public health measures, such as isolation, quarantine, and public closings, greatly reduce the final size of
the epidemic, and make the turning point much earlier than without these measures. We observe that the
predictive capability of model (4.1) requires valid estimates of the parameters f , ν and η, which depend
on the input of medical and biological epidemiologists. Our results can contribute to the prevention and
control of the 2019-nCov epidemic in Wuhan.

3 Introduction
An epidemic outbreak of a new human coronavirus, termed the novel coronavirus 2019-nCov, has

occurred in Wuhan, China. The first cases occurred in early December, 2019, and by January 29, 2020
more than 7000 cases had been reported in China [1]. Early reports advise that 2019-nCov transmission
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may occur from an infectious individual, who is not yet symptomatic [2]. Evidently, such asymptomatic
infectious cases are not reported to medical authorities. For epidemic influenza outbreaks, reported
cases are typically only a fraction of the total number of the symptomatic infectious individuals. For the
current epidemic in Wuhan, it is likely that intensive efforts by Chinese public health authorities, have
reduced the number of unreported cases.

Our objective is to develop a mathematical model, which recovers from data of reported cases, the
number of unreported cases for the 2019-nCov epidemic in Wuhan. For this epidemic a modeling approach
has been developed in [3], which did not consider unreported cases. Our work continues the investigation
in [4] and [5] of the fundamental problem of parameter identification in mathematical epidemic models.
We address the following fundamental issues concerning this epidemic: How will the epidemic evolve
in Wuhan with respect to the number of reported cases and unreported cases? How will the number
of unreported cases influence the severity of the epidemic? How will public health measures, such as
isolation, quarantine, and public closings, mitigate the final size of the epidemic?

4 Results

4.1 The model and data
Our model consists of the following system of ordinary differential equations:

S′(t) = −τS(t)[I(t) + U(t)],

I ′(t) = τS(t)[I(t) + U(t)]− νI(t)
R′(t) = ν1I(t)− ηR(t)
U ′(t) = ν2I(t)− ηU(t).

(4.1) 4.1

Here t ≥ t0 is time in days, t0 is the beginning date of the epidemic, S(t) is the number of individuals
susceptible to infection at time t, I(t) is the number of asymptomatic infectious individuals at time t,
R(t) is the number of reported symptomatic infectious individuals at time t, and U(t) is the number of
unreported symptomatic infectious individuals at time t. This system is supplemented by initial data

S(t0) = S0 > 0, I(t0) = I0 > 0, R(t0) = 0 and U(t0) = U0 ≥ 0. (4.2) 4.2

The parameters of the model are listed in Table 1.

Symbol Interpretation Method
t0 Time at which the epidemic started fitted
S0 Number of susceptible at time t0 fixed
I0 Number of asymptomatic infectious at time t0 fitted
U0 Number of unreported symptomatic infectious at time t0 fitted
τ Transmission rate fitted

1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fitted
ν2 = (1− f) ν Rate at which asymptomatic infectious become unreported symptomatic fitted

1/η Average time symptomatic infectious have symptoms fixed
Table1

Table 1: Parameters of the model.

We use three sets of reported data to model the epidemic in Wuhan: First, data from the Chinese CDC
for all of China (Table 2), second, data from the Wuhan Municipal Health Commission for Hubei Province
(Table 3), and third, data from the Wuhan Municipal Health Commission for Wuhan Municipality (Table
4). These data vary, but represent the epidemic transmission in Wuhan, from which almost all the cases
originated in the larger regions.
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Date January 20 21 22 23 24 25 26 27 28 29
Confirmed cases 291 440 571 830 1287 1975 2744 4515 5974 7711
(cumulated) for China
Mortality cases 9 17 25 41 56 80 106 132 170
(cumulated) for China

Table2

Table 2: Reported case data Jan. 20, 2020 - Jan. 29, 2020, reported for all of China by the Chinese
CDC [1].

Date January 23 24 25 26 27 28 29 30 31
Confirmed cases 549 729 1052 1423 2714 3554 4586 5806 7153
(cumulated) for Hubei
Mortality cases 24 39 52 76 100 125 162 204 249
(cumulated) for Hubei

Table3

Table 3: Reported case data Jan. 23, 2020 - Jan. 31, 2020, reported for Hubei Province by the Wuhan
Municipal Health Commission. [6].

Date January 23 24 25 26 27 28 29 30 31
Confirmed cases 495 572 618 698 1590 1905 2261 2639 3215
(cumulated) for Wuhan
Mortality cases 23 38 45 63 85 104 129 159 192
(cumulated) for Wuhan

Table4

Table 4: Reported case data Jan. 23, 2020 - Jan. 31, 2020, reported for Wuhan Municipality by the
Wuhan Municipal Health Commission. [6].

4.2 Comparison of the model (4.1) with the data
section3

For influenza disease outbreaks, the parameters τ , ν, ν1, ν2, η, as well as the initial conditions S(t0),
I(t0), and U(t0), are usually unknown. Our goal is to identify them from specific time data of reported
symptomatic infectious cases. To identify the unreported asymptomatic infectious cases, we assume that
the cumulative reported symptomatic infectious cases at time t consist of a constant fraction along time
of the total number of symptomatic infectious cases up to time t. In other words, we assume that the
removal rate ν takes the following form: ν = ν1+ν2, where ν1 is the removal rate of reported symptomatic
infectious individuals, and ν2 is the removal rate of unreported symptomatic infectious individuals due
to all other causes, such as mild symptom, or other reasons.

The cumulative number of reported symptomatic infectious cases at time t, denoted by CR(t), is

CR(t) = ν1

t∫
t0

I(s)ds. (4.3) 4.3

Our method is the following: We assume that CR(t) has the following special form:

CR(t) = χ1 exp (χ2t)− χ3. (4.4) 4.4

We evaluate χ1, χ2, χ3 using the reported case data in Table 2, Table 3 and Table 4. We obtain the
model starting time of the epidemic t0 from (4.4):

CR(t0) = 0⇔ χ1exp (χ2t0)− χ3 = 0 ⇒ t0 =
1

χ2
(ln (χ3)− ln (χ1)) .

We fix S0 = 11.081 × 106, which corresponds to the total population of Wuhan. We assume that the
variation in S(t) is small during the period considered, and we fix ν, η, f . By using the method in section
6.1, we can estimate the parameters ν1, ν2, τ and the initial conditions U0 and I0 from the cumulative
reported cases CR(t) given (4.4). We then construct numerical simulations and compare them with data.

The evaluation of χ1, χ2 and χ3 and t0, using the cumulative reported symptomatic infectious cases
in Table 2, Table 3 and Table 4, is shown in Table 5 and in Figure 1 below.
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Name of the parameter χ1 χ2 χ3 t0

From Table 2 for China 0.16 0.38 1.1 5.12
From Table 3 for Hubei 0.23 0.34 0.1 −2.45
From Table 4 for Wuhan 0.36 0.28 0.1 −4.52

Table5

Table 5: Estimation of the parameters χ1, χ2, χ3 and t0 by using the cumulated reported cases in Table
2, Table 3 and Table 4.

Remark 4.1 According to the Table 2, Table 3 and Table 4, the time t = 0 will correspond to December
31. So in Table 5, the value t0 = 5.12 means that the starting time of the epidemic is January 5, the
value t0 = −2.45 means that the starting time of the epidemic is December 28, and t0 = −4.52 means
that the starting time of the epidemic is December 26.
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Figure 1: In the left side figures, the dots correspond to t→ ln (CR(t) + χ3), and in the right side figures,
the dots correspond to t→ CR(t), where CR(t) is taken from the cumulated confirmed cases in Table 2
(top), in Table 3 (middle) and in Table 4 (bottom). The straight line in the left side figures corresponds
to t → ln (χ1) + χ2t. We first estimate the value of χ3 and then use a least square method to evaluate
χ1 and χ2. We observe that the data for China in Table 2 and Hubei in Table 3 provides a good fit for
CR(t) in (4.4), while the data for Wuhan in Table 4 does not provide a good fit for CR(t) in (4.4).

Remark 4.2 As long as the number of reported cases follows (4.1), we can predict the future values of
CR(t). For χ1 = 0.16, χ2 = 0.38 and χ3 = 1.1, we obtain

Jan.30 Jan.31 Feb.1 Feb.2 Feb.3 Feb.4 Feb.5 Feb.6
8510 12390 18050 26290 38290 55770 81240 118320

The actual number of reported cases for China are 8, 163 confirmed for January 30, 11, 791 confirmed
for January 30, and 14, 380 confirmed for February 1. So the exponential formula (4.4) overestimates
the number reported after day 30.
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From now on, we fix the fraction f of symptomatic infectious cases that are reported. We assume
that between 80% and 100% of infectious cases are reported. Thus, f varies between 0.8 and 1. We
assume 1/ν, the average time during which the patients are asymptomatic infectious varies between 1
day and 7 days. We assume that 1/η the average time during which a patient is symptomatic infectious,
varies bewtween 1 day and 7 days. So, we fix f, ν, η. Since f and ν are known, we can compute

ν1 = fν and ν2 = (1− f) ν. (4.5) AUX4.5

Moreover by following the approach described in the supplementary, we should have

I0 =
χ1χ2exp (χ2t0)

f ν
=
χ3χ2

f ν
, (4.6) AUX4.6

τ =
χ2 + ν

S0

η + χ2

ν2 + η + χ2
, (4.7) AUX4.7

and
U0 =

ν2
η + χ2

I0 =
(1− f)ν
η + χ2

I0. (4.8) AUX4.8

By using the approach described in the supplementary material, the basic reproductive number for model
(4.1) is given by

R0 =
τS0

ν

(
1 +

ν2
η

)
.

By using ν2 = (1− f) ν and (4.7) we obtain

R0 =
χ2 + ν

ν

η + χ2

(1− f) ν + η + χ2

(
1 +

(1− f) ν
η

)
. (4.9) AUX4.9

4.3 Numerical simulations
section5

We can find multiple values of η, ν and f which provide a good fit for the data. For application of
our model, η, ν and f must vary in a reasonable range. For the corona virus 2019-nCov epidemic in
Wuhan at its current stage, the values of η, ν and f are not known. From preliminary information, we
use the values

f = 0.8, η = 1/7, ν = 1/7.

By using the formula (4.9) for the basic reproduction number, we obtain from the data in Table 2,
that R0 = 4.13. Using model (4.1) and the values in Table 5, we plot the graph of t→ CR(t), t→ U(t)
and the data for the confirmed cumulated cases in Figure 2, according to Table 2 for China, Table 3 for
Hubei and Table 4 for Wuhan. We observe from these figures that the data for China and Hubei fit the
model (4.1), but the data for Wuhan do not fit the model (4.1) because the model (4.4) is not a good
model for the data for Wuhan in Table 4. The data for Wuhan do not fit an exponential function.
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Figure 2: In these figures we use f = 0.8, η = 1/7, ν = 1/7 and S0 = 11.081 × 106. The remaining
parameters are derived by using (4.6)-(4.8). In Figure (a), we plot the number of t→ CR(t) (black solid
line) and t → U(t) (blue dotted) and the data (red dotted) corresponding to the confirmed cumulated
case for all China in Table 2. We use χ1 = 0.16, χ2 = 0.38, χ3 = 1.1, t0 = 5.12 and S0 = 11.081 × 106

which give τ = 4.44 × 10−08, I0 = 3.62, U0 = 0.2 and R0 = 4.13. In Figure (b), we plot the number of
t→ CR(t) (black solid line) and t→ U(t) (blue dotted) and the data (red dotted) corresponding to the
confirmed cumulated case for Hubei province in Table 3. We use χ1 = 0.23, χ2 = 0.34, χ3 = 0.1 and
t0 = −2.45 and S0 = 11.081 × 106 which give τ = 4.11 × 10−08 I0 = 0.3, U0 = 0.02 and R0 = 3.82. In
Figure (c), we plot the number of t→ CR(t) (black solid line) and t→ U(t) (blue dotted) and the data
(red dotted) corresponding to the confirmed cumulated cases for Wuhan in Table 4. We use χ1 = 0.36,
χ2 = 0.28, χ3 = 0.1 and t0 = −4.52 and S0 = 11.08 × 106 which give τ = 3.6 × 10−08, I0 = 0.25,
U0 = 0.02 and R0 = 3.35.

In what follows, we plot the graphs of t → CR(t), t → U(t), and t → R(t) for Wuhan by using
model (4.1). We define the turning point tp as the time at which the red curve (i.e., the curve of the
non-cumulated reported infectious cases) reaches its maximum value. For example, in the figure below,
the turning point tp is day 54, which corresponds to February 23 for Wuhan.
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Figure 3: In this figure we plot the graphs of t→ CR(t) (black solid line), t→ U(t) (blue solid line) and
t → R(t) (red solid line). We use f = 0.8, η = 1/7, ν = 1/7, and S0 = 11.081 × 106. The remaining
parameters are derived by using (4.6)-(4.8). We obtain τ = 4.44× 10−08, I0 = 3.62 and U0 = 0.2. The
cumulated number of reported cases goes up to 8.5 million people and the turning point is day 54. So the
turning point is February 23 (ie. 54− 31).

In the following we take into account the fact that very strong isolation measures have been imposed
for all China since January 23. Specifically, since January 23, families in China are required to stay
at home. In order to take into account such a public intervention, we assume that the transmission of
2019-nCov from infectious to susceptible individuals stopped after January 25. Therefore, we consider
the following model: for t ≥ t0 

S′(t) = −τ(t)S(t)[I(t) + U(t)],

I ′(t) = τ(t)S(t)[I(t) + U(t)]− νI(t)
R′(t) = ν1I(t)− ηR(t)
U ′(t) = ν2I(t)− ηU(t)

(4.10) 4.10

where
τ(t) =

{
4.44× 10−08, for t ∈ [t0, 25],
0, for t > 25.

(4.11) 4.11

The figure below takes into account the public health measures, such as isolation, quarantine, and
public closings, which correspond to model (4.10) and (4.11). By comparison of Figure 4-(a) with Figure
3, we note that these measures greatly mitigate the final size of the epidemic, and shift the turning point
about 24 days before the turning point without these measures.
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Figure 4: In this figure we plot the graphs of t → CR(t) (black solid line), t → U(t) (blue solid line)
and t → R(t) (red solid line). We use again f = 0.8, η = 1/7, ν = 1/7, and S0 = 11.081 × 106. In
Figure (a), we use χ1 = 0.16, χ2 = 0.38, χ3 = 1.1, t0 = 5.12 for the parameter values for China which
give τ = 4.44 × 10−08 for t ∈ [t0, 25] and τ = 0 for t > 25, I0 = 3.62, U0 = 0.2. In Figure (b), we use
χ1 = 0.23, χ2 = 0.34, χ3 = 0.1 and t0 = −2.45, for the parameter values obtained from the data for
Hubei province, which give τ = 4.11 × 10−08 for t ∈ [t0, 25] and τ = 0 for t > 25, I0 = 0.3, U0 = 0.02.
In Figure (c), we use χ1 = 0.36, χ2 = 0.28, χ3 = 0.1, and t0 = −4.52 for the parameter values obtained
from the data for Wuhan, which give τ = 3.6 × 10−08 for t ∈ [t0, 25] and τ = 0 for t > 25, I0 = 0.25,
U0 = 0.02. The cumulated number of reported cases goes up to 7000 in Figure (a), 4000 in Figure (b)
and 1400 in Figure (c), and the turning point is around January 30 in Figures (a), (b) and (c).

5 Discussion
As a consequence of our study, we note that public health measures, such as isolation, quarantine,

and public closings, greatly reduce the final size of this epidemic, and make the turning point much
earlier than without these measures. With our method, we fix η, ν and f and get the same turning point
for the three data sets in Table 2, Table 3 and Table 4. We choose f = 0.8, which means around 80% of
cases are reported in the model, since cases are very well documented in China. Thus, we only assume
that a small fraction, 20% were not reported. This assumption may be confirmed later on.

We also vary the parameters η, ν and f , and we do not observe a strong variation of the turning point.
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Nevertheless, the number of reported case are very sensitive to the data sets, as shown in the figures.
The formula (4.4) for CR(t) is very descriptive until January 26 for the reported case data for China
and Hubei, but is not reasonable for Wuhan data. This suggests that the turning point is very robust,
while the number of cases is very sensitive. We can find multiple values of η, ν and f which provide a
good fit for the data. This means that η, ν and f should also be evaluated using other methods. The
values 1/η = 7 days and 1/ν = 7 days, are taken from information concerning earlier corona viruses, and
are used now by medical authorities [2].

The predictive capability of models (4.1) and (4.10) requires valid estimates of the parameters f
(fraction of asymptomatic infectious that become reported symptomatic infectious), the parameter 1/ν
(average time asymptomatic infectious are asymptomatic), and the parameter 1/η (average time symp-
tomatic infectious remain infectious). In Figure 5, we graph R0 as a function of f and 1/ν for the data
iin Table 2, to illustrate the importance of these values in the evolution of the epidemic. The accuracy
of these values depend on the input of medical and biological epidemiologists.

fig5

Figure 5: In this figure we use 1/η = 7 days and we plot the basic reproductive number R0 as a function
of f and 1/ν using (4.9) with χ2 = 0.38, which corresponds to the data for China in Table 2. If both f
and 1/ν are sufficiently small, R0 < 1. The red plane is the value of R0 = 4.13.

In influenza epidemics, the fraction f of reported cases may be significantly increased by public health
reporting measures, with greater efforts to identify all current cases. Our model reveals the impact of an
increase in this fraction f in the value of R0, as evident in Figure 5 above, for the 2019-nCov epidemic
in Wuhan.

6 Supplementary material

6.1 Method to estimate the parameters of (4.1) from the number of reported
cases

From now on, we fix f, ν, η.
Step 1: Since f and ν we know that

ν1 = fν and ν2 = (1− f) ν.

Step 2: By using equation (4.3) we obtain

CR′(t) = ν1I(t)⇔ χ1χ2exp (χ2t) = ν1I(t) (6.1) 6.1

and
exp (χ2t)

exp (χ2t0)
=

I(t)

I(t0)
,
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and therefore
I(t) = I0exp (χ2 (t− t0)) . (6.2) 6.2

Moreover by using (6.1) at t = t0

I0 =
χ1χ2exp (χ2t0)

f ν
=
χ3χ2

f ν
. (6.3) 6.3

Step 3: In order to evaluated the parameters of the model we replace S(t) by S0 = 11.081 × 106 in
the right-hand side of (4.1) (which is equivalent to neglecting the variation of susceptibles due to the
epidemic, which is consistent with the fact that t → CR(t) grows exponentially). Therefore, it remains
to estimate τ and η in the following system:{

I ′(t) = τS0[I(t) + U(t)]− νI(t)
U ′(t) = ν2I(t)− ηU(t).

(6.4) 6.4

By using the first equation we obtain

U(t) =
1

τS0
[I ′(t) + νI(t)]− I(t),

and therefore by using (6.2) we must have

I(t) = I0 exp (χ2 (t− t0)) and U(t) = U0 exp (χ2 (t− t0)) ,

so by substituting these expressions into (6.4) we obtain{
χ2I0 = τS0[I0 + U0]− νI0
χ2U0 = ν2I0 − ηU0.

(6.5) 6.5

Remark 6.1 Here we fix τ in such a way that the value χ2 becomes the dominant eigenvalue of the
linearized equation (6.10) and (I0, U0) is the positve eigenvector associated to this dominant eigenvalue
χ2. thus, we apply implicitly the Perron-Frobenius theorem. Moreover the exponentially growing solution
(I(t), U(t)) that we consider (which is starting very close to (0, 0)) follows the direction of the positive
eigenvector associated with the dominant eigenvalue χ2.

By dividing the first equation of (6.5) by I0 we obtain

χ2 = τS0

[
1 +

U0

I0

]
− ν

and hence
U0

I0
=
χ2 + ν

τS0
− 1. (6.6) 6.6

By using the second equation of (6.5) we obtain

U0

I0
=

ν2
η + χ2

. (6.7) 6.7

By using (6.6) and (6.7) we obtain

τ =
χ2 + ν

S0

η + χ2

ν2 + η + χ2
. (6.8) 6.8

By using (6.7) we can compute

U0 =
ν2

η + χ2
I0 =

(1− f)ν
η + χ2

I0. (6.9) 6.9
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6.2 Computation of the basic reproductive number R0
section4

In this section we apply results in Diekmann, Heesterbeek and Metz [7] and Van den Driessche and
Watmough [8]. The linearized equation of the infectious part of the system is given by{

I ′(t) = τS0[I(t) + U(t)]− νI(t),
U ′(t) = ν2I(t)− ηU(t).

(6.10) 6.10

The corresponding matrix is

A =

[
τS0 − ν τS0

ν2 −η

]
and the matrix A can be rewritten as

A = V − S

where
V =

[
τS0 τS0

ν2 0

]
and S =

[
ν 0
0 η

]
.

Therefore, the next generation matrix is

V S−1 =

 τS0

ν

τS0

η
ν2
ν

0


which is a Leslie matrix, and the basic reproductive number becomes

R0 =
τS0

ν

(
1 +

ν2
η

)
. (6.11) 6.11

By using (6.8) we obtain

R0 =
χ2 + ν

S0

η + χ2

ν2 + η + χ2

S0

ν

(
1 +

ν2
η

)
and by using ν2 = (1− f) ν we obtain

R0 =
χ2 + ν

ν

η + χ2

(1− f) ν + η + χ2

(
1 +

(1− f) ν
η

)
. (6.12) 6.12
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