
 

Abstract—Microwave Power Modules (MPM) are high power devices largely used for radar applications. An MPM is a 

hybrid combination of a Solid-State Power Amplifier (SSPA) as a driver and a Traveling wave tube amplifier (TWT) as the 

final high power stage.  Power equalizer is often used to flat the TWT output power gain owing to its big gain fluctuations 

in the operating frequency range. This paper deals with an optimal design and development of a fully-coaxial easy-tunable 

power equalizer for an X-band MPM. The structure utilizes a coaxial waveguide as the main transmission line and a coaxial 

cavity loaded with absorbing material as the resonant unit. A sensitivity analysis of the coaxial cavity length, the thickness 

of the absorbing disc and inserted depth of the probe on the attenuation amplitude and resonant frequency is carried out. 

The transmission characteristic curves and the voltage standing wave ratio curves show a good compromise in terms of 

transferred power and adaptive matching impedance at the input and output ports. The measured results show that the 

equalization curve meets the requirements well and prove that this structure is practical and effective.  

 
Index Terms—Broadband power equalizer; coaxial; MPM; TWT; X-band. 

 

I. INTRODUCTION 

Wide-band high-power sources operating at microwave and millimeter wave necessitates more 

efficient devices [1][2][3]. Microwave Power Module (MPM), a hybrid combination of a Solid-

State Power Amplifier (SSPA) as a driver and a Travelling wave tube amplifier (TWT) as the final 

high power stage, is widely used in many potential system applications, such as radar and 

electronic warfare. The gain equalizer is one of the important parts in MPM, which is used to 

flatten the output gain of traveling wave tube [4][5][6].  

Due to the standardization necessary to keep production costs low, the manufacturer of these 

equalizers generally designs and produces his own network not considering the problems of the 

circuits connected to it. As a result, equalizers must be mounted separately, requiring additional 
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cables and connectors, which results in greater or lesser compensation than desired. 

Since the requests of the users of such devices have become rather demanding, as regards what 

constitutes acceptable operating characteristics or parameters when such devices are used in 

apparatuses having ever more rigorous and involved design criteria, the redesign of the device for 

producing the required output characteristic is prevented by the efficiency of this choice. 

To get the advantages of small size, lightness, simple structure and ease of processing, the 

microstrip circuit is the most used for the realization of the equalizer [7][8][9]. In this case, 

however, the costs of redesigning the device, depending on the requests of the user, limit its use. 

To have the advantages of a high factor of merit, low transmission losses, and a tuning capacity, a 

coaxial equalizer must be realized [10][11]. 

However, to be economic, such an equalizer should not show the usual high-cost increases usually 

associated with device miniaturization. Of course, if a smaller, lighter, and lower-cost microwave 

equalizer were available with a low Voltage Standing Wave Ratio (VSWR) compared to the 

normal class of microwave equalizers, its contribution to the art would be evident. 

In this paper, the design and realization of a fully coaxial tunable broadband equalizer for an X-

band MPM, are reported [12].  

 

II. STRUCTURE AND ANALYSIS 

The microwave amplitude equalizer design consists of several substructures formed by absorbent 

coaxial resonant cavities. Many factors, such as the length of the cavity, the size of the cavity and 

the probe, the materials, the position of the adjustable metal micrometric screw, the attenuation 

screw, the number of resonators, etc., have been taken into consideration in the design [10]. 
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a. Description of substructure 

The schematic of the fully coaxial tunable equalizer is reported in Fig. 1. L1 is the cavity length, 

L2 the insertion depth of the probe, and D the thickness of the absorbing disc. 

 

.   

Fig.1. Schematic of the  substructure of the designed fullly coaxial equalizer. 

One end of the resonator is connected to the main transmission line, whereas the other end is short-

circuited by an adjustable piston. At the base of the resonator, there is a disk of absorbent material 

whose thickness determines the merit factor Q of the resonant cavity and at the same time has a 

little effect on the resonance frequency. 

The substructure is composed of the following materials:  

- Brass: for the resonator, as it has excellent conductivity and a low coefficient of thermal 

expansion;  

- ECCOSORB: for the absorbent disc at the base of the cavity. An absorbent material at 

microwaves, consisting of polyurethane;  

- Copper: for the main transmission line as it has an excellent conductivity and it is very ductile to 

guarantee the desired diameter;  

- Air: for the rest of the structure. 

 

b. Main transmission line size 

The value of the characteristic impedance (Z0) of a coaxial line section is given by the following 

equation: 
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𝑍0 =
60

√ 𝜀 𝑟
ln

𝑏

𝑎
                     (5) 

where: 𝜀𝑟 is the dielectric constant of the filling medium in the coaxial line, whereas a and b are 

respectively the radius of the internal and external conductor of the coaxial cable. 

If 𝜀𝑟 = 1 (in the case of air), the characteristic impedance value is equal to 50Ω for a ratio between 

b and a approximately equal to 2.3 (b / a = 2.3). For the proposed equalizer, the internal 

transmission line is made of copper, whereas the external part is air. The values for the radius of 

the internal conductor and of the external cylinder are 1mm and 2.3 mm respectively as shown in 

Fig.2. 

 

Fig. 2. Internal and external diameters of the main transmission line. 

c. Length of the resonator 

The length l of the coaxial resonator l is determined from the following relation: 

 

𝑙 = (2𝑛 − 1)
1

4
 𝜆0             𝑐𝑜𝑛 𝑛 = 1, 2, 3, …               (6) 

where λo is the resonance wavelength. 

Since the resonance wavelength is equal to multiples of λ /4, the resonator is called a resonant 

cavity at λ /4. 

With reference to equation (6) and considering that the extremes of the operating band are 8 and 

12 GHz, it is possible to obtain the length of the cavity which in the worst case will be 9.5mm. 
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d. Cavity and probe diameters 

As regards the dimensions of the diameters of the resonant cavity and of the probe, the main factors 

to take into account are: the maximum power capacity, the dissipation of the conductor, the 

matching impedance and the propagation of the TEM mode. 

For the proposed equalizer, according to the relationship of the characteristic impedance, an 

external diameter of 4.6 mm for the cavity and an internal diameter of 2.3 mm for the probe have 

been chosen. In relation to this an M5 thread (ISO standard in terms of threads), which corresponds 

to a diameter of 5 mm as the external diameter of the cavity and an M2 thread, which corresponds 

to a diameter of 2 mm for the probe, were chosen as reported in Fig.3. 

 

              

Fig. 3. Size of the tuning screw in the substructure. 

e. Absorbing disc thickness 

The thickness of the absorbing disc D is directly connected to the thickness of the resonator 

resistance. So, an increasing of the absorbing disc thickness will increase the resistance R and 

according to eq. (1) a decreasing in Q will occur.  

By keeping the length of the cavity and the insertion depth of the probe constant, the transmission 

coefficient S21 and the input VSWR curves vs frequency with the thickness of the absorption 

cylinder as a parameter have been drawn and shown in Fig.4. It can be observed that the thicker 
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the absorption cylinder, the lower the resonance frequency and the attenuation, with a lower  input 

VSWR. A disk thickness of 0.5 mm as a good compromise between S21 and VSWR has been 

chosen. 

 

Fig. 4. Transmission and VSWR curves with the thickness of the absorption disk as a parameter. 

f. Number of substructures 

The number of secondary structures that must be interconnected to the main line depends on the 

Q value of the single substructure, the maximum attenuation range that each of them can provide, 

the frequency band to be equalized, and the degree of precision with which to adjust the curve. For 

the proposed equalizer, a 4-substructures was designed. In fact, with the thickness of ECCOSORB 

chosen (0.5 mm) and verifying that the maximum value of attenuation that each substructure can 

give is about 8 dB, the waveform to be given at the input of the amplifier may be equalized in a 

fairly accurate and precise way. 
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III. SIMULATIONS  

In Fig.5, the schematic design of the proposed equalizer using  4 coaxial cavity resonators in 

cascade is reported. 

 

 

Fig. 5. Schematic design of the  designed microwave equalizer structure. 

The equalizer has been designed to match the amplifier with the power attenuation curve at each 

working frequency. 

Figure 6 shows the attenuation curves of the designed equalizer, consisting of the sum of the 

individual attenuation curves of each substructure. 

 

 

Fig. 6. Equalization curve in the 8-12 GHz band realized by adding the single curves of each resonator. 

 

In Fig. 7, the input and output VSWR of the designed equalizer are shown. The input VSWR has 

a peak value of about 2.2, which corresponds to a reflected power of about 13%. 
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To keep the VSWR low, an absorbent disc that is not too thin or a probe that is not too coupled 

have to be use. In both cases this leads to a decrease in attenuation. Since, the desired attenuation 

is lower than that simulated, then this trade-off can easily be solved. 

 

Fig. 7.  Input and output VSWR of the designed equalizer. 

 

Starting from the structure shown in Fig.5 and with the help of HFSS by Ansoft, it is possible to 

model and simulate the single resonator disconnecting all the others. 

The simulations of the S21 and VSWR curves have been carried out as follows: 

-L2 and D constant and L1 as a parameter, shown in Fig. 8; 

-L1 and D constant and L2 as a parameter, shown in Fig. 9. 

The curves show a good compromise in terms of transferred power and adaptive matching 

impedance at the input and output ports. 
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Fig. 8. Transmission and VSWR curves with the cavity length as a parameter. 

 

Fig. 9. Transmission and VSWR curves with the probe coupling as a parameter. 

IV. MECHANICAL STRUCTURE 

The external design of the device is shown in Fig. 10. It has a height, width, and depth of 15 mm, 

9 mm, and 40 mm respectively. It is made by perforating an aluminum parallelepiped and inserting 

in it the tuning screws, the absorption disc, and the main transmission line interfaced with the 

outside through the glass bead.  
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Fig. 10. External design (top) and glass bead for input/output port (down). 

The sensitivity analysis of the insertion of the glass bead into the structure and of the distance of 

the main line between the input and output port, carried out with HFSS,  is reported in Fig.11. 

Figure 11 a) shows  the more you insert the glass bead in the structure, the less the attenuation will 

be. Figure 11 b) shows that the more the distance of the main line between the input and output 

port the more the mismatch will be. 

 

 

(a)                                                                                     (b) 

Fig. 11. Transmission coefficient for different insertion lengths of the glass bead (a) and for different distances of the main transmission line from 

the input / output port (b). 
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Fig. 15   Output power over Frequency and temperature 

 

V. CONCLUSIONS 

In this paper, the design of a fully coaxial broadband tunable microwave equalizer was presented. 

The structure has the advantage of large power capacity, wide operating frequency band, 

convenient tune and good transmission performance. The equalizer operating at X-band meets the 

design requirements well to make flat the output characteristic of an MPM for radar applications.  
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