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Abstract: Topographic mapping using stereo plotting is not effective because it takes much time 

and labor-intensive. Thus, this research was conducted to find the effective way to extract building 

footprint for mapping acceleration. Building extraction method in this process comprises four steps: 

ground / non-ground filtering, building classification, segmentation, and building extraction. Non-

ground points from filtering process were classified as building with the algorithm based on multi-

scale local dimensionality to separate points at the maximum separability plane. Segmentation 

using segment growing was used to separate each building, so edge detection could be conducted 

for each segment to create boundary of each building. Lastly, building extraction was conducted 

through three steps: edge points detection, building delineation, and building regularization. With 

10 samples and step 0.5, classification resulted quality and miss factor of 0.597 and 0.524, 

respectively. The quality was improved by segmentation process to 0.604, while miss factor was 

getting worse to 0.561. Meanwhile, on average shape index value from extracted building had 0.02 

difference and the number of errors was 30% for line segment comparison. Regarding positional 

accuracy using centroid accuracy assessment, this method could produce RMSE of 1.169 meters. 
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1. Introduction 

The availability of high-quality geospatial data, including building footprint as part of digital 

topographic map, is necessary for bigger purposes, including 3D city models [1], [2] and spatial 

planning. In Indonesia, spatial planning plays more concern due to limited availability of topographic 

data that inhibits spatial planning in many regions because spatial planning in Indonesia requires 

topographic map as a reference for base map.  

Traditionally, topographic data production uses stereo plotting process using photogrammetry 

technique. However, manual stereo plotting takes much time and labor-intensive, so it is not effective 

to be applied for large scale topographic mapping in the whole area of Indonesia. Due to high needs 

for large scale topographic maps, acceleration of large-scale mapping must be conducted, therefore 

innovation in large scale mapping method should be discovered. 

Automation of map feature extraction is one of the solutions for mapping acceleration. The 

automation will reduce the amount of time and human resources, so that it will increase the speed of 

topographic map production. One of the map features that has been evaluated to be extracted in this 

research is building. The need of the highly accurate building footprint can be fulfilled by manual 

digitization, but it can be very time consuming. Compared to the other map features, building is one 

of the most complex features. It is not easy to develop the algorithm for automatic building extraction. 

Moreover, most buildings in Indonesia are very dense and close to each other, and many of them are 

in irregular shapes, making it a more challenging research.  
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Research of automatic building extraction is not something new, many methods have been 

developed effectively and accurately. Various base data from aerial photo, LiDAR, satellite imagery, 

or combination of them has been examined in order to find the best method for building extraction. 

A recent technology is based on deep learning algorithms, and many researches about that for 

building extraction have been conducted, for example using neural networks and Markov Random 

Fields (MRF) [3], end-to-end trainable gated residual refinement network (GRRNet) [4], Fully 

Convolutional Network [5], Convolutional Neural Network [6], Deep Convolutional Network [7] [8], 

or Deep Fully Convolutional Networks [9]. Another method such as supervised and unsupervised 

segmentation are still used and developed, for instance by [10] in which it compared supervised and 

unsupervised multiresolution segmentation for building extraction.  

The development of LiDAR creates a new approach for automatic map features extraction. 

LiDAR is not only used for DEM extraction, but also for detecting planimetric features such as 

buildings and roads. Commonly, building extraction from LiDAR starts from point cloud 

classification of building class (or building roof class). Many algorithms have been developed for 

building class classification from LiDAR point clouds, for instance using input attributes from DSM 

and ortho image [11], a supervised parametric classification algorithm [12], the theory of Dempster-

Shafer for two different stages of classification process [13], the geometry and echo information of 

LiDAR point cloud to estimate parameters for the learning model [14], and a multiple-entity based 

classification method [15]. Regarding building extraction, a lot of research found alternative methods 

for building extraction from LiDAR, for example using OBIA (Object Based Image Analysis) with the 

use of class modelling methods [16], data fusion of point and grid-based features using a graph cuts 

algorithm [17], a novel ordered points-aided Hough Transform (OHT) [18], a modified LEGION 

segmentation [19], automatic process with emphasis on top-down approaches [20], and rule-based 

segmentation of non-ground LiDAR point clouds [21].  

Combination and integration using both raster and point based data is another option. [22] 

developed automatic building detection algorithm using LiDAR data and multispectral imagery, 

combining masks creation from LiDAR to extract line segments and NDVI from imagery to remove 

line segments around trees. [23] proposed a method for automatic 3D roof extraction through an 

integration of LiDAR and multispectral imagery, in which segmented non-ground points were used 

to extract the roof planes, while the classified image as roof edge and roof ridge were used as baselines 

to locate the nearby LiDAR points of the neighboring planes to extract the complete roof plane. [24] 

integrated LiDAR and optical multi-view images by incorporating the segmented roof points and 2D 

lines extracted from aerial images for reconstructing 3D roof models.  

Combination of raster image and LiDAR point cloud data is not only applicable for detecting 

building footprint, but also good for 3D building model extraction. 3D modeling both from images 

and LiDAR has been an active research area in the photogrammetry, computer vision, and computer 

graphic communities [25]. 3D building modeling from LiDAR has been developed, for instance, by 

[26] that developed reconstruction approach to produce 3D building model with LOD2, [27] that built 

new framework to create compact building models automatically, or [28] that proposed fast and 

automatic method to create 3D watertight building models. Specifically using Indonesian data, [29] 

built building models using plane fitting to sets of non-ground points. Similar to building footprint 

extraction, combination of raster and point clouds data is also possible to generate 3D building 

models. For example, by integrating multi-view aerial imageries and LiDAR data to reconstruct 3D 

building models [24] or integrating multi-source point clouds and oblique remote sensing imageries 

for accurate reconstruction of the LoD3 building models [30]. Thus, utilization of LiDAR or 

combination of LiDAR and imagery has been used beyond building footprint extraction, namely for 

3D building modeling, or even city modeling.  

The purpose of this research was to find the best approach to extract building footprint 

automatically for topographic mapping acceleration in Indonesia. Although this research did not use 

recent technologies such as deep learning or machine learning, it was effective enough to create 
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accurate building geometries. Moreover, what is most needed in Indonesia is finding a simple but 

effective approach to extract topographic map features, since completing topographic map for a large 

country such as Indonesia is still challenging. This research is expected to improve the business 

process of topographic mapping in Indonesia to be cheaper, faster, and more effective. 

2. Materials and Methods  

This research used LiDAR data acquired in 2016 (for building footprint extraction) and 

topographic map of Indonesia/RBI5K mapped in 2017 (as a reference dataset) in Lombok region, 

Nusa Tenggara province, Indonesia. More specifically, the research was conducted at Sayang-sayang 

village, located in Cakranegara district in Mataram City, Lombok (Figure 1). This area was chosen 

because it represented various characteristic of buildings, containing both dense and sparse building 

groups, so that the analysis could be conducted based on the density of buildings. Regarding the 

specification of the data, the density of point clouds was 4 ppm (points per meter square) or higher, 

meaning that for each meter square area there were at least four points. This specification was suitable 

for Indonesia’s topographic mapping at 1:5,000 map scale. 

 
(a) 

 
(b) 

Figure 1. (a) Area of interest, located in Sayang-sayang village, Nusa Tenggara Barat, Indonesia; (b) 

Aerial photo of research area (acquired in 2016), cropped using village boundary from topographic 

map. 

2.1. Ground / Non-ground Filtering 

Ground / non-ground filtering was one of the important steps in this research, because it would 

affect building classification result. Ground and non-ground classification was not only useful for 

DTM extraction, but also for identifying building because it could reduce number of points [31]. In 
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that sense, the next step of point cloud classification into vegetation and building classes was 

conducted in non-ground points only. Therefore, point cloud separation to ground and non-ground 

classes determined the quality of building classification. 

Classification of ground and non-ground classes was performed using Adaptive-TIN Surfaces 

algorithm (Figure 2) in Terrasolid software. This algorithm contains four steps, namely: calculating 

initial parameters using all data, selecting seed points, iterative densification of the TIN, and 

continuing until all points were classified as ground or object [32]. The inputs such as maximal 

building size, terrain angle, iteration angle, and iteration distance were crucial, in which the values 

used were 100 meters for maximal building size, 88.0 degrees for terrain angle, 5.00 degrees to plane 

for iteration angle, and 1.40 meters for iteration distance. Maximum building size shows area that has 

at least one initial ground point, terrain angle assumes the steepest angle between points in generated 

TIN, terrain angle depends on terrain condition in which smaller iteration angle is better for flat 

terrain and vice versa, and iteration distance is maximum distance between point to triangle [33].  

  

Figure 2. Parameters of TIN densification in Adaptive TIN Models algorithm [32]. 

2.2. Building Roof Classification 

Building roof classification used the algorithm developed by [34]. It was based on a multi-scale 

local dimensionality to separate points into two classes at the maximum separability plane. The 

classification considered how the cloud geometrically looked like at a ball geometry at a given scale, 

then the best combination of scales at which dimensionality was measured. The diameter of the ball 

was defined as a scale while point of interest was located at the center, as shown in Figure 3. 

 

Figure 3. Neighborhood ball [34]. 

To determine whether the cloud appeared locally at a given scale in 1D, 2D, or 3D, the proportion 

of variance by the eigenvalues resulting from Principal Component Analysis (PCA) was used, with 

the equation (1) defined the proportion of variance [34]. 

pi = 
𝜆1

𝜆1+ 𝜆2+ 𝜆3
 (1) 
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where if 𝜆𝑖 , i = 1 … 3 be the eigenvalues, ordered by decreasing magnitude: 𝜆1 ≥ 𝜆2 ≥ 𝜆3. The number 

of eigenvalues that accounted for the total variance in the neighborhood ball determined whether the 

points were distributed in one, two, or three dimensional around the reference scene point. 

The algorithm used a linear Support Vector Machines (SVM) created by CANUPO training 

plugin in Cloud Compare software. A linear classifier proposed one solution in the form of 

hyperplane that best discriminated and separated two classes (e.g. vegetation against building). It 

used weight vector (w) and bias (b), in which the hyperplane was defined by equation wTX – b = 0. w 

and b were used to project the feature space on the hyperplane, then the distance to the hyperplane 

d1 = 𝑤1
𝑇X – b1 was calculated for each point. The second distance d2 was obtained by repeating the 

process in order to get the second-best direction orthogonal to the first, then both distance d1,d2 were 

used as coordinates at 2D plane of maximal separability. 

The plane of maximal class separability only kept two main components, so in this research point 

clouds were separated into two categories: building and vegetation. To do this classification step, we 

first created training area that represented both categories. Then, some parameter numbers were 

decided to create this training data, including minimum and maximum scale to be limits of multiscale 

dimensionality. The unit of the scale referred to the unit of the point cloud. In this research, the chosen 

number for scales was 2-10 because the buildings length in the research area were considered 

between 2 and 10 meters since they were located at settlement area. Another parameter was step, 

defined as the distance unit from the minimum to the maximum scale, in order to achieve multi-scale 

features. Small step means more features, otherwise, larger step means less features. In this research, 

the chosen number for step was 0.5 meters due to the density of LiDAR point clouds is 4 ppm (points 

per meter square). 

Shortly, the whole process for all classification steps is explained in Figure 4. It started from 

ground and non-ground classification, then non-ground points were classified as building and 

vegetation points. All processes here were binary classification. The building points were then used 

in the next stage, namely segmentation. 

 

Figure 4. Classification process from unclassified point clouds to classified building points. 

 

2.3. Segmentation 

Segmentation in point cloud is used to distinguish group of points based on feature similarity. 

In order to improve classification result, [35] used segment-based features rather than traditional 

point-based features for point based classification. The segment-based features led to more accurate 

classification result. In our research, segmentation was used to separate each building, so that edge 
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detection could be conducted per segment to create boundary of each building. The data used in this 

stage was the previous classification result, namely classified building points. 

Segment growing [35] algorithm was chosen for segmentation process. We used Point Cloud 

Mapper software for the implementation of the segment growing segmentation. In this algorithm, 

the test for accepting neighboring points as extensions of a segment was based on similarity of feature 

values and normal vectors scaled by the planarity to distinguish between surfaces with different 

orientations [35]. Seed points with similar feature values would be extended and merged with their 

neighbor points if their values were close to the average feature values for each segment. For instance, 

[36] used such segment growing based on echo widths of full waveforms to separate vegetation from 

non-vegetation. Combination with the normal vector direction scaled by planarity was used to 

distinguish between surfaces with different orientations, in which when 𝜆1  > 𝜆2 > 𝜆3 were the 

eigenvalues of the co-variance matrix, the planarity could be expressed as 
(λ2− λ3)

λ2
 [35].  

Segmentation was also used to remove small segments and unsegmented points, therefore it 

eliminated building errors in the building extraction process. Unsegmented points, colored as white 

points (Figure 5) and did not have segment number, were points without sufficient nearby similar 

points to start a new seed [35].   

 

Figure 5. Unsegmented points (colored as white points) around segmented point clouds. 

2.4. Building Footprint Extraction 

Building extraction process started from boundary detection for each segment to create 

delineation of coarse building footprint from those edge points. After segmented points were 

obtained using segment growing, then edge points of each segment were extracted using developed 

boundary package in MATLAB before delineation of coarse building boundaries are created from 

those edge points (Figure 6a, 6b, and 6c). The algorithm of boundary points detection returned points 

that represented boundary arounds the building roof points, and unlike the convex hull, the 

boundary could shrink towards the interior of the hull to envelop the points 

(https://www.mathworks.com/help/matlab/ref/boundary.html). Then, points for each segment were 
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connected with lines using Points to Line tool so it produced raw building footprints. Lastly, to 

produce smooth and sharp building footprint, regularization of building boundary was conducted 

using Building Regularization tool that applied algorithm developed by [37] (Figure 6d). The 

implementation of the edge delineation and building footprint regularization was performed in 

ArcGIS Pro software (https://www.esri.com/en-us/arcgis/products/arcgis-pro/resources).  

In order to achieve good geometry of building regularization, reconstruction of coarse building 

required support 90° and 45°. This algorithm was also suitable to arcs, in which the arc passing 

through considered locations differed from the segment by the necessity to define the radius [37]. 

Building regularization required the setting of tolerance parameter that described the smallest 

segment length in the output features, and it was set to 1 meter. This number was based on 

experiments using several numbers, considering the difference between the number of segments 

from extracted and reference segments, so it could be assumed that extracted objects had similar level 

of detail to reference objects.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. (a) Segmented points cloud from segment growing helped to identify each single building; 

(b) From segmented point cloud, edge points were created using developed boundary package from 

MATLAB; (c) Edge points were used to delineate coarse building boundary, so coarse boundaries for 

each building were created; (d) Regularization process to coarse boundary was needed to produce the 

final building footprint.  

3. Results and Discussion 

3.1. Classification Result 

Figure 7 shows the result of filtering process, color-coded by the elevation. Figure 7a shows all 

points in the research area, while 7b depicts the result of ground and non-ground filtering process, 

with background of ortho photo. As can be seen in Figure 7b, ground points were removed, as 

illustrated in paddy field area, because it was an open area and no building existed in that area, 

almost all points there were removed.  
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(a) 

 
(b) 

Figure 7. The result of ground and non-ground classification: (a) Ground points; (b) Non-ground 

points, consist of building and vegetation. 

Then, analysis of building classification was conducted. Figure 8 shows the distribution of 

training area for both categories, namely building and vegetation. Red color indicates building area, 

while blue color shows vegetation area. Each category had 10 objects as training area, which was 

obtained from manual classification by human interpretation and well distributed in the whole 

research area. It should be noted that even though the number of samples were small, the 

classification performed well as can be seen in the result. 

 

Figure 8. Training area for each category (building and vegetation). Red points are building, while 

blue points are vegetation.  

Classification result of training data was shown in a plane of maximal separability and 

separation line. Balanced accuracy (ba) and Fisher Discriminant Ratio (fdr) was used to quantify the 

performance of the classifier, where a large ba value indicated a good recognition rate, while a large 

fdr value indicated that classes were well separated, and obtained using these equations [34]: 

ba = ½(av + ab) (2) 

• av = 
𝑡𝑣

𝑡𝑣+𝑓𝑏
  

• ab = 
𝑡𝑏

𝑡𝑏+𝑓𝑣
 

• tv, tb, fv, fb = the number of points truly(t) / falsely(f) classified into the 

vegetation(v)/building(b) classes 
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fdr = (μ2 – μ1)2 / (v1 + v2) (3) 

• μc and vc = the mean and variance of the signed distance d for each class c  

 

Figure 9. Classifier definition in the plane of maximal separability. Blue: vegetation samples, red: 

building samples. From statistic calculation, the value of ba was 0.916, while the value of fdr was 3.811. 

The statistic showed that ba value gave very good result, reaching 91.6%, meaning that the 

algorithm could recognize both building and vegetation well (Figure 9). However, fdr value did not 

indicate good separation of those classes because it was only 3.811. To test the effect of number of 

samples and step parameter to ba and fdr results, experiments with various parameters were 

conducted. We used several numbers of sample from 10, 15, 20, 25, and 30, and also changed the step 

parameter by 0.5 and 1, where the result is shown in Table 1. It can be seen that addition of samples 

and changing step parameters did not improve the results of ba and fdr too much. In conclusion, it 

was still difficult to increase fdr value to reach more than 10 as produced by [34]. Unlike our work 

that used airborne laser scanning, [33] used much higher point density of terrestrial laser scanning. 

Therefore, it was expected that our work achieved lower fdr value than [33]. 

Table 1. The result of ba and fdr value with various number of samples and step parameters. 

Number of Samples Step ba fdr 

10 
0.5 0.916 3.811 

1 0.912 3.414 

15 
0.5 0.926 3.651 

1 0.923 3.763 

20 
0.5 0.918 3.583 

1 0.909 3.213 

25 
0.5 0.92 3.463 

1 0.909 3.218 

30 
0.5 0.916 3.344 

1 0.914 3.203 

Besides comparing the ba and fdr value, analysis of classification accuracy was conducted using 

matched rates analysis, consisting of completeness, correctness, quality, and miss factor, defined by 

equation (4) – (7) [38]. Initially, those equations were used to assess extracted buildings instead of 

classified building points, but in this research, it was adapted to examine the accuracy of building 

classification result. Reference points here were non-ground points cloud that overlapped with 
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building geometry from topographic map, which were obtained from manual stereo plotting. It was 

assumed that those points were the correct building points and there was no geometrically offset 

between point cloud and topographic map. 

Completeness = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

Correctness = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

Quality = 
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 (6) 

Miss factor = 
𝐹𝑁

𝑇𝑃
 (7) 

• TP (true positive) = the common points of classified points and reference points 

• FP (false positive) = the classified points but not reference points 

• FN (false negative) = the points that belong to the reference but not the classified 

points 

• Completeness = the percent of classified points being correctly detected with 

respect to the reference data 

• Correctness = the percent of correctly detected part to the classified points 

• Quality = metric that combines the completeness and correctness 

• Miss factor = the rate of missed building points 

 

The result of matched rates analysis is shown in Table 2. With 10 samples and step 0.5, it 

produced the highest correctness at once the lowest completeness and quality compared to the other 

parameters. The best result was produced using 25 samples and step 1, with quality of 0.666 and miss 

factor of 0.263. However, since the purpose of this research was to find the simple and effective 

method for building extraction, the least number of samples was chosen. Meanwhile, the step used 

was 0.5, because when the specification of point density was 4 ppm, it was assumed that the distance 

between 2 points was at least 0.5 meter. 

Table 2. The result of matched rates analysis. 

Number of Samples Step Completeness Correctness Quality Miss Factor 

10 
0.5 0.656 0.869 0.597 0.524 

1 0.719 0.846 0.635 0.392 

15 
0.5 0.695 0.849 0.619 0.438 

1 0.740 0.831 0.643 0.352 

20 
0.5 0.787 0.802 0.659 0.270 

1 0.792 0.800 0.661 0.263 

25 
0.5 0.790 0.806 0.664 0.266 

1 0.792 0.807 0.666 0.263 

30 
0.5 0.773 0.822 0.663 0.293 

1 0.769 0.826 0.662 0.300 

In the next step, the training data was applied to classify the whole research area. This area was 

covered by buildings (with various characteristic such as big, small, regular, and irregular), 

vegetation with variability of canopy diameter, and also open area like paddy field and roads. 
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Generally, the buildings had similar shape and geometry because most of them were settlement and 

housing area. Figure 10 shows the classification result. 

 

Figure 10. Building and vegetation classification result. Red color indicated building class, while the 

blue one was vegetation class. 

3.2. Segmentation Result 

Figure 11 shows segmentation result from Point Cloud Mapper software, in which each color 

indicated different segment. Segment growing result showed point clouds were segmented to each 

building, so that segmentation result could be identified as building separation. This process was also 

used to remove small segments and unsegmented points, so small and unidentified objects that 

classified as errors were eliminated here. 

 

Figure 11. Segmentation result using segment growing algorithm. 

Compared to classification result, segmentation increased the quality of building points based 

on assessment method in the previous chapter. The quality was escalated from 0.597 to 0.604, while 

correctness was improved from 0.869 to 0.913. Nevertheless, the completeness and miss factor got 

worse, where completeness was reduced from 0.656 to 0.641, while miss factor was increased from 

0.524 to 0.561. It was because there were more points eliminated in this stage, therefore the percentage 

of missing objects was higher. 

Building separation from segmentation process was compared to building polygon from 

topographic map at 1:5,000 scale. In general, segmentation could produce good result in sparse 

buildings (Figure 12a), but the error of segmentation result was bigger when the buildings were 
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denser, because many of buildings that were very close to each other were segmented as one segment 

(Figure 12b).  

 
(a) 

 
(b) 

Figure 12. (a) Segmentation result in sparse building area; (b) Segmentation result in dense building area. 

3.3. Building Extraction Result 

3.3.1. Visual Analysis 

Visual analysis was conducted by comparing extracted buildings and ortho photo. In general, 

the errors from visual analysis can be divided into five categories: 

1. Extracted buildings were generated in non-building area (visually checked on ortho photo) 

Figure 13a shows the example of this category, where extracted buildings were located in 

non-building area. Based on the ortho photo, it was known that the object was vegetated area. It 

was caused by error of classification result, where some non-ground points were classified as 

building in non-building area (Figure 13b). This error may be corrected by changing the 

classification parameters.   

 
(a) 

 
(b) 

Figure 13. Error where extracted buildings were generated in non-building area based on ortho photo; 

(a) Error in extracted building footprints; (b) Error in building classification of non-ground point 

clouds. 

2. Extracted buildings were not generated in building area (visually checked on ortho photo) 

This category is opposite to the previous category, where the true buildings based on ortho 

photo were not generated in extracted building. It can be seen in Figure 14a that some of buildings 

were not generated. Figure 14b shows those buildings only had a small number of points so it 

was not possible to create building boundary from them. Such points were also possible to be 

removed during segmentation process, so it increased the possibility for them to be not extracted 

in the building delineation. It may be corrected by changing the classification parameters. This 
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error would need further effort to delineate building boundary using another method like 

manual digitization. 

 
(a) 

 
(b) 

Figure 14. Error where extracted buildings were not generated in building area based on ortho photo; 

(a) Error in extracted building footprints; (b) Error in building classification of non-ground point 

clouds. 

3. Extracted buildings had different orientation from true building (visually checked on ortho 

photo) 

Another error was when extracted buildings had different orientation compared to the true 

building that was seen from ortho photo. Even though the possibility of this error was much less 

than the previous errors, it was still possible, as depicted in Figure 15a. This kind of error could 

be caused by building regularization algorithm that assumed building geometry has 90° or 45° 

angle, or error during classification and segmentation. One of the solutions was by improving 

segmentation result, but in this research, it had not been conducted yet. 

 
(a) 

 
(b) 

Figure 15. Error where extracted buildings had different orientation from true building based on ortho 

photo; (a) Error in extracted building footprints; (b) Error in building classification of non-ground 

point clouds. 

3.3.2. Statistical Analysis 

A number of related data samples were taken to assess the result of building extraction from 

LiDAR. Figure 16 illustrates the result of building extraction which depicted as building footprints, 

where the red line polygon was building feature from the LiDAR and the blue one was the feature 

from reference dataset. It can be seen that the result of building extraction had a similar pattern to the 

reference map. However, some errors were found, i.e. the building that was separated into several 

buildings. In addition, several small buildings were missing and not well extracted, and vice versa. 

Also, several building footprints were extracted falsely in non-building positions. 
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(a) 

 
(b) 

Figure 16. (a) The sresult of building extraction; (b) Samples of extracted building. 

Three methods were used to assess the results of geometry of footprint building extraction, 

which were segment of line comparison, shape index similarity [39]–[41] and edge point-

correspondence [39], [42]. The segment of line comparison was used to evaluate the number of 

sections of every line resulted from samples against reference dataset. Statistically, both data were 

calculated to generate distinction of the line segments and counted it into a percentage which 

indicated the level of error. Matrix of the line segment comparison is shown as Table 3. Shape index 

similarity was used to enumerate the shape ratio between two objects. This method expressed a ratio 

of area to the length of the circumference [40]. Each sample of extracted building was calculated as a 

polygon, where the shape index was calculated between perimeter in giving an internal area of a 

polygon. If the shape index was 1, it meant the polygon calculated was circular, while the higher 

number of 1 indicated the bar-shaped of the polygon. If the polygon was square, it had an index of 

approximately 1.13. It is possible to express the shape index equation as follows: 

𝐷𝑖 =
𝑝𝑖

2√𝐴𝜋
 

(8) 

where: 

Di : index 

pi : perimeter (m) 

A : area (m2) 

Table 3. Comparison of segment number between samples of reference datasets and building extraction data. 

A  B  C  D  E 

4  4  12  4  6 

4 4 4 4  4 4 4 4  8 6 4 4  4 4 4 4  8 6 4 4 

F  G  H  I  J 

9  4  12  8  6 

6 4 4 4  6 4 4 4  6 4 4 4  10 6 4 4  6 4 4 4 

K  L  M  N  O 

4  14  4  9  17 

4 4 4 4  6 4 4 4  4 4 4 4  18 10 6 4  14 10 8 8 

P  Q  R  S  T 

8  7  4  10  13 

13 12 6 4  8 6 6 6  4 4 4 4  4 4 4 4  8 6 4 4 
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Table 3 shows the number of line segment in each data sample, where it was arranged 

downward respectively in sample ID, number of segments of reference datasets, and number of 

segments of extracting data. Each number of segments of extracting data is shown as four columns 

as well as the interval of tolerance in building regularization processes, which are 1 m, 1.5 m, 2 m, 

and 2.5 m consecutively. The comparison of extracting data to reference datasets obtained maximum 

number of errors in each sample data. The error was depicted as a percentage which is illustrated in 

Figure 17a. According to the graph, the maximum error was found in sample data N, where it had 

indefectible error regarding to line segment of building extraction. The most suitable interval 

tolerance value in regularization process was 1 m. Overall, the number of errors on average was 30% 

or 0.3, meaning the line segment of this building extraction is acceptable.  

 
(a) 

 
b) 

Figure 17. (a) Maximum error of every extracted data; (b) Shape index similarity difference. 

Assessment of shape similarity resulted value of index in every sample. The result of shape 

similarity index is shown as Figure 17b. Related to extracted data and reference dataset there was a 

low difference index mostly. On average, the whole sample had 0.02 difference in shape index value. 

Comparing the whole data, sample S merely generated the highest difference shape index, or 

quantitatively was 0.3. Thus, the resulted of building extraction had a nearly similar shape to 

reference data in particular of building edge features. 

The last test was positional accuracy using the calculation of Root Mean Square Error (RMSE). 

Accuracy was assessed by comparing centroid positions between extracted and reference sample 

objects. Centroid was used because Euclidean distance between the centers of the mass of an extracted 

object and the reference object could be used as another metric to measure positional accuracy other 

than the corner points of buildings [38]. From those buildings, centroid coordinates were calculated 

on both data as shown in Table 4, then RMSE was obtained from equation (9). 

 RMSE = √
∆𝑿2+ ∆𝒀2

𝑛
 

(9) 

where n is the number of points. 

Table 4. Positional accuracy of each building. 

Building 
RBI Centroid Extracted Centroid 

∆X ∆Y 
X Y X Y 

A 405948.5634 9052575.401 405948.7904 9052574.619 0.226927 -0.78278 

B 403751.8255 9052608.894 403751.9463 9052609.337 0.120799 0.44350 

C 404762.9299 9052628.274 404763.5870 9052627.533 0.657047 -0.74099 

D 405676.4566 9052661.92 405675.4476 9052661.517 -1.00909 -0.40284 
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Building 
RBI Centroid Extracted Centroid 

∆X ∆Y 
X Y X Y 

E 404172.2934 9052784.286 404172.0479 9052785.029 -0.24550 0.74309 

F 403496.5628 9052842.961 403495.4145 9052844.058 -1.14823 1.09681 

G 403047.6751 9052971.569 403047.7159 9052972.250 0.040818 0.68093 

H 404773.5661 9052991.895 404774.6981 9052992.894 1.131985 0.99836 

I 404352.5259 9053041.472 404353.3299 9053041.220 0.804018 -0.25141 

J 403099.2191 9053048.893 403098.9275 9053049.127 -0.29165 0.23374 

K 403916.2759 9053055.857 403916.3749 9053055.938 0.099017 0.08112 

L 403215.2586 9053062.684 403214.7439 9053060.015 -0.51466 -2.66944 

M 403077.9607 9053076.599 403077.7129 9053076.649 -0.24784 0.04981 

N 404339.5701 9053067.305 404340.5263 9053068.846 0.956276 1.54164 

O 403728.3297 9053078.913 403728.0897 9053077.952 -0.23999 -0.96126 

P 403107.3267 9053089.027 403106.5055 9053089.452 -0.82120 0.42480 

Q 403892.0488 9053111.929 403892.2003 9053111.525 0.151487 -0.40353 

R 403455.3598 9053116.471 403457.0229 9053115.892 1.663097 -0.57930 

S 403058.2910 9053112.110 403058.0958 9053112.389 -0.19524 0.27849 

T 403300.1876 9053175.343 403301.2474 9053174.690 1.059716 -0.65262 

RMSE = 1,1686316 

The relationship between centroid coordinates in both data can be seen in Figure 18. Due to 

small difference distance between coordinates from extracted and reference objects, the graph shows 

positive correlations. It means that based on positional accuracy using centroid accuracy assessment, 

this method could produce good geometric accuracy. 

 
(a) 

 
(b) 

Figure 18. Correlation between coordinates from extracted and reference data; (a) Correlation 

between X coordinates; (b) Correlation between Y coordinates. 
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3.3.3. Time Processing Analysis 

Our works were conducted using laptop with specification of processor Intel(R) Core (TM) i7-

7500U, RAM memory 8.00 GB, and 64-bit Operating system. Thus, the result of this analysis can be 

a consideration for practicality evaluation using that hardware specification, and the process could 

be faster using higher computer specification. Time processing analysis was conducted for each step, 

namely ground/non-ground classification, building classification, segmentation, and building 

footprint extraction for an area of 2.478 km2. Based on existing topographic map, it has 3637 

buildings. The result of time processing analysis is presented in Table 5. 

Table 5. The result of speed processing analysis. 

Process Times Information Software 

1. Ground / non-

ground classification 

1 minutes 51.32 

seconds 

1.a. Adaptive-TIN 

Surfaces algorithm 
Terrasolid 

2. Building 

classification 

7 minutes 20.81 

seconds 

2.a. Training area 

selection 
Cloud Compare 

 
0 minutes 24.54 

seconds 

2.b. Generation of 

training data 
Cloud Compare 

 
7 minutes 57.62 

seconds 

2.c. Implementation to 

whole area 
Cloud Compare 

3. Segmentation 
3 minutes 33.85 

seconds 

3.a. Processing of 

segment growing 
Point Cloud Mapper 

4. Building footprint 

extraction 

16 minutes 40.22 

seconds 

4.a. Boundary 

detection 
MATLAB 

 
0 minutes 31.95 

seconds 
4.b. Edge delineation ArcGIS Pro 

 
0 minutes 43.13 

seconds 

4.c. Building footprint 

regularization 
ArcGIS Pro 

TOTAL 
37 minutes 12.12 

seconds 
  

According to the result above, it shows that this simple method could complete the whole 

process very quickly. While manual editing or digitization was still necessary, it was only needed in 

a few areas since more than half of entire data were statistically satisfying. The time processing 

analysis indicated that our method run fast, and although this proposed method was simple, it 

produced good results in a high effectivity manner.   

4. Conclusions 

This research aimed to support mapping acceleration especially for topographic map 

production. It focused on automatic building extraction from LiDAR data using combination of 

several methods, namely classification, segmentation, and building footprint extraction. Building 

class classification used multi-scale local dimensionality to separate points into two classes at the 

maximum separability plane. Building footprint extraction comprised three steps: edge points 

detection, building delineation, and building regularization. With 10 samples and step 0.5, 

classification resulted quality and miss factor of 0.597 and 0.524, respectively. The quality was 

improved by segmentation process to 0.604, while miss factor was getting worse to 0.561. Meanwhile, 

on average shape index value from extracted building had 0.02 difference and the number of errors 

was 30% for line segment comparison. Regarding positional accuracy using centroid accuracy 

assessment, this method could produce RMSE of 1.169 meters. From those statistical analysis, it can 
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be concluded that this method produced acceptable quality for building footprint extraction. 

Nevertheless, the results may be improved for the further research such as using higher density of 

the point cloud.  
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