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Abstract
Synthetic biology (SynBio) is an interdisciplinary field that has developed rapidly in the last
two decades. It involves the design and construction of new biological systems and processes
from standardized biological components, networks and synthetic pathways. The goal of
Synbio is to create logical forms of cellular control. Biological systems and their parts can be
re-designed to carry out completely new functions. SynBio is poised to greatly impact human
health, environment, biofuels and chemical production with huge economic benefits. SynBio
presents opportunities for the highly agro-based African economies to overcome setbacks that
threaten food security: The setbacks are brought about by climate change, land degradation,
over-reliance on food imports, global competition, and water and energy security issues
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among others. With appropriate regulatory frameworks and systems in place, the benefits of
harnessing SynBio to boost development in African economies by far potentially outweigh
the risks. Countries that are already using GMOs such as South Africa and Kenya should find
the application of SynBio seamless, as it would be a matter of expanding the already existing

regulations and policies for GMO use.

Key words: synthetic biology, food security, biosafety, regulation, GMO

Introduction
The past two decades have been characterised by a boom in a new interdisciplinary field
anchored on the application of engineering principles in biology called synthetic biology
(SynBio). It integrates scientific disciplines such as molecular biology, chemistry, (bio-)
physics, computer-aided modelling and design (Millar-Haskell et al., 2019; Konig et al.,
2013). The field involves the designing and constructing of entirely new biological systems
(that may not be found in nature) and processes from standardized biological components,
networks and synthetic pathways with the goal of creating logical forms of cellular control
(Gofii-Moreno and Nikel, 2019; Pretorius, 2016; Jing Liang et al., 2011). It can be used to
engineer and redesign biological systems so that they can be used in real-world applications.
These can be in biosensing, biomanufacturing and biotherapy. They follow a typical design-
build-test cycle (Xiang et al., 2018). Inspired by computer science and electronics, synthetic
gene circuits have been designed to control the flow of information in biological systems.
SynBio offers the ability to redesign existing biological systems or their parts to carry out
new functions (Enyeart et al., 2013; Lu et al., 2009; Chen et al., 2017). It makes use of
interchangeable and standardized ‘biological-parts” so as to construct complex genetic
networks that allow robust and tunable transgene expression in response to changes in signal
input (Young and Alper, 2010; Guiziou et al., 2018). Using the same engineering principles,
existing organisms can be redesigned for new or enhanced purposes to satisfy human needs.
The key for development of biocomputing SynBio based approaches is in Boolean logic
functions design and implementation in cells (normally encoded into genetic material). Logic
gates, counters, multiplexers, adders, and memories have been engineered in cells. Through
modifying cell-cell communication programmes, distributed computations have been
designed and built in multicellular systems. Biological systems can solve relatively simple
mathematical problems and compute intricate Boolean logic operations. They are a powerful
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platform for tackling bioproduction, diagnosis and bioremediation that were restricted to
silicon-based computer technologies (Gofii-Moreno and Nikel, 2019). The last few years
have witnessed a surge in the availability of tools and components that enable researchers to
generate biological modules and genetic devices through modelling and rationalizing via

engineering-driven approaches (Amos and Gofii-Moreno, 2018).

There is tangible evidence demonstrating that SynBio is poised to have major impacts in a
number of fields such as human health, environment, biofuels and chemical production
(Mcdaniel and Weiss, 2005; Serrano, 2007; Khalil and Collins, 2010; Schmidt, 2010).
Engineering principles are now being applied to complex multigene constructs that include
pathways and whole genomes. Where genes that are essential for a minimal bacterial genome
are synthesised and at times transplanted into microbial cells. This has made feasible and
simple previously impossible tasks (Goold et al., 2018). SynBio offers technologies such as
whole cell biosensors that can be used in environmental monitoring, bioremediation,
landmine detection as well as production of safer alternatives such as biodegradable plastics
(Lee et al., 2006; Gogerty and Bobik, 2010; Teo, 2014, Belkin et al., 2017; Goold et al.,
2018). SynBio is being propelled into prominence by the ever-decreasing costs of DNA
sequencing and DNA synthesis and the increasing speed at which they are being

accomplished. This is facilitating a paradigm shift in molecular sciences (Goold et al., 2018).

Of particular interest, in this paper, is the applicability of SynBio in agriculture extending
beyond crop development. The far-reaching applications stretch from farm management to
agri-intelligence systems right up to post-harvest stages to reduce risks of product spoilage
(Liu and Jr, 2015). SynBio poses a huge economic potential with the global market expected
to be valued at US$38,7 billion by 2020 (Allied market research, 2019). Agriculture, which is
one of the bedrock of African economies, faces an increasingly challenging future due to a lot
of factors among them climate change, land degradation, over reliance on food imports,
global competition, water and energy security issues (Conceicdo et al., 2016). With the
continent’s population continuing to increase, demand for food will also increase. Hence,
food security becomes a paramount economic issue. Africa’s present food production
approaches are not capable of providing sufficient food without posing serious adverse
environmental impact (Funk et al., 2008).
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SynBio can be an investable utility technology capable of ensuring that Africa meets and
sustains its food security needs. However, while SynBio applications from areas other than
agriculture have been predicted to offer great benefits by making products, they have also
given rise to concerns about new safety, ethics and socio-economic risks (Dana et al., 2012;
Edwards, 2014; Ribeiro and Shapira, 2018). Whilst SynBio may present benefits for the
economy at large, its use in the production of compounds commonly extracted from natural
plants could have negative effects on communities which grow/harvest those plants. Common
examples include replacement of the anti-malarial artemisinin produced from the plant
Artemisia annua with artemisin produced using SynBio and the production of flavors using
SynBio as opposed to conventional agriculture (Path, 2013; Mitchell, 2018). This could
deprive African farmers of income due to reduced demands for their products (Oldham et al.,
2012; Goold et al., 2018).
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Figure 1: The map illustrates where some natural crops are produced in Africa. The current
and near term biosynthetic production of numerous ingredients or chemicals to replace these

crops has relevance for Africa.
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This often involves the use of genetically engineered microbes such as yeast or algae, which
feed on sugar. There is potential for negative effects on biodiversity as a result of adoption of
SynBio. These can include a reduction in demand for natural plants such as shea, cocoa and
cassava and a huge demand for sugar which is used to produce the genetically engineered
microbes for production of SynBio products. The sugar is often produced by agribusiness
using unsustainable methods and high amounts of water which is becoming difficult to get

because of climate change (ETC Group et al., 2018).

Small-molecule natural products produced by endangered organisms that are on the verge of
extinction may need alternative methods of production. This is because a continuation of their
extraction from natural sources will not be viable. This approach has been used for
heterologous production of many complex and high-value phytochemicals in microorganisms
(Gandhi, 2019). Yeast can be engineered with ease and it has high growth rates. There is an
abundance of infrastructure and industries with expertise in yeast fermentation. Thus,
together with bacteria they can be used as hosts for production of medical and non medical
bio-products. Also use of plants for production of high value compounds such as flavourings,
medicines and oils bring caveats such as long generation rates, dependence on arable land
and water and seasonality. Genetic engineering of plants is plagued by long generation times
and large polyploidy genomes such as wheat. Using SynBio, multigene pathways can be
transplanted to microbes such as yeasts and plant derived waste materials can be used as
feedstocks that are converted to useful metabolites. Opiods, cannabinoids, fragrant raspberry
ketones and cocoa butter are examples of complex commodities that have been produced in
yeast through SynBio techniques (Goold et al., 2018; Carvalho et al., 2017; Lee et al.,
2016). This use of microbial hosts in producing plant commodities can thus result in market

stability for unstable seasonal plant commodities in Africa.

Implementation of SynBio in agriculture could be hampered by shortage of adequate tools
because agriculture is dominated by higher mammals and plants. New techniques for genome
design and synthesis, more efficient molecular tools that include CRISPR/Cas9 present more
opportunities than new breeds and cultivars development. They can deliver transformative
short to long term changes to agriculture. These include engineering of biosensors, novel anti
microbials, microbial metabolic engineering, synthetic speciation and mammalian
multiplexed CRISPR (Goold et al., 2018).
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This review is aimed at providing an overview of recent progress in the application of SynBio
in agriculture as well as on arguments and evidence related to their possible benefits to the

African continent while also outlining the risks and governance implications.

Applications of SynBio

Food issues faced in Africa

Africa, especially ‘“The Horn of Africa’” and Sub-Saharan Africa, is among the most food
insecure regions in the world (FAO, 2017). The root cause of food insecurity in Africa is the
inability to access food due to poverty (FAO, 2017; IFAD, 2017; UNICEF, 2017; WFP,
2017; WHO, 2017). War and political instability also contribute to food insecurity as they
disrupt the normal economic activities such as agriculture and distribution of resources. Trade
bans and export restrictions connected to the politics of countries also have negative impacts
on food security. Climate change, which has seen the increase in sporadic rains and
desertification across the continent is exacerbating poor food security. Additionally, most
African countries do not have sustainable agricultural policies to support food security in the
coming years. Farmers have little access to modern sustainable agriculture methods and tools
resulting in a small percentage of the arable land being used for agriculture. Rapid
urbanization and population growth also contribute to food insecurity by disrupting

agricultural production and increasing food demands (Fawole et al., 2005).

Malnutrition observed in some African countries is leaving children weak, vulnerable and
less able to fight common childhood illnesses such as diarrhoea, acute respiratory infections,
malaria and measles. This has more deleterious effects in children living with HIV and AIDS.
Adults and adolescents suffer consequences of food insecurity and malnutrition such as
decreased energy levels, delayed maturation, growth failure, impaired cognitive ability,
diminished capacity to learn, decreased ability to resist infections and illnesses, shortened life
expectancy, increased maternal mortality and low birth weight. Individuals experiencing food
insecurity are likely to experience and show feelings of alienation, stress and anxiety (FAO,
2017; Fawole et al., 2005).

Possible applications of SynBio to food and agriculture in Africa

SynBio has a number of applications in the food sector across various sub-sectors. SynBio

can be applied for the production of metabolites and health products such as vitamins.
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Artificially produced health products can be packaged as supplements which might be
cheaper and more readily available than naturally occurring vitamins and other health
products. Another food sector potential application is the production of processing aids in the
manufacture of food and food derivatives such as nutraceuticals, probiotics and glycol,
nutrients used to raise the value of certain foods or nutrient enriched plants. Nutrient-enriched
plants are ideal for people in Africa living in poverty as one plant would be able to address
several nutrient needs. It can be used in the production of preservatives such as nisin and
artificial flavours and fragrances. Vanilla has been successfully produced from baker’s yeast
(Hansen et al., 2009) and synthetic saffron has been produced for commercial use at a
fraction of the price of natural saffron (Pretorius, 2016). Thus, SynBio can potentially reduce

prices of some commaodities on the African continent.

SynBio surpasses the application of conventional genetic engineering for crop development
and farm management. Drought monitoring and prediction systems (DMAPS) in Africa use
various indicators at different temporal and/or spatial resolutions. They are based on remote
sensing, land surface modeling, and seasonal climate forecast. These are efficient but drought
preparedness remains low (Hao et al., 2017). The development of engineered tomato plants
that are able to activate drought protection mechanisms on application of fungal spray can
help African farmers prepare for drought (Goold et al., 2018). This helps abate crop loss due
to climate change induced droughts and ordinary droughts that have been occurring at least

once every ten years in many African countries (Hao et al., 2017).

There is still low adoption of mineral fertilisers use in some African countries due to reasons
that include high costs. However, when they are coupled with some good agricultural
practices, they can help increase yields (Donkor and Owusu, 2019). Using SynBio, non-
leguminous crops that are able to fix atmospheric nitrogen reducing the need for fertilizers
were developed (Goold et al., 2018). The technology can be transfered to crops grown on the
African continent thereby helping to reduce nutrient associated losses and hence costs of
production for many crops. This is because fertiliser is a major cost driver in agriculture and

there are periodic shortages that lead to yield losses.

More smart crops with various other advantages such as high yield, drought resistance, and
pesticide resistance amongst other adaptations, can be engineered into the synthetic plants
Page 7 of 23

do0i:10.20944/preprints202002.0017.v1


https://doi.org/10.20944/preprints202002.0017.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2020

(Park et al., 2015). The benefit to farm management from SynBio comes through the
development of biosensors and the use of agri-intelligence systems that reduce the use of
pesticides and fertilizers. The plants will detect when there is a drought or weed threat and
activate necessary response mechanisms. This will reduce yield losses and wastage of
herbicides which pollute the environment. Food waste processing methods are able to take
advantage of this technology and increase the amount of toxic waste removed from the
environment (Pretorius, 2016). This will help increase the amount of arable land being
cultivated and its productivity as most farmers in Africa cannot afford fertilizers and

pesticides.

Given that more than 80% of the poor Africans keep livestock (FAO, 2009), enhancing
animal productivity is a noble way of improving livelihoods. Increased productivity is one
way of attaining some of the United Nations Sustainable Development Goals, namely (1) no
poverty and (2) zero hunger. One of the major challenges in animal production is that the
breeds used by most communal and small-scale farmers have not been genetically improved
to enhance productivity. Most of the highly efficient breeds in developed countries have been
developed over decades of commercial quantitative genetic selection pressure. Major
successes include the ability of broiler chicken to attain more than four kilograms at eight
weeks compared to less than a kilogram in 1957 coupled with higher feed conversion
efficiency (Zuidhof, 2014). The success that has taken a long time to achieve can be attained
in a relatively short time through the application of SynBio. A possible approach is the use of
artificial gene synthesis and gene editing techniques to enhance traits of economic
importance. Known major genes can be synthesised de novo and subsequently infused in
populations using gene drives. Major traits that need improvement include growth, feed
conversion efficiency, meat quality and prolificacy. Information from known major genes in
exotic breeds such as the double muscling gene/myostatin (Kambadur et al., 1997), growth
hormone (Jomane et al., 2015), stearoyl-CoA desaturase and sterol regulatory element
binding protein—1 (Mannen, 2011) can be used for artificial gene synthesis and infusion into
indigenous cattle. In sheep the booroola gene (Souza et al., 2001; Sahu et al., 2016) is a good
candidate for increasing prolificacy. Other possibilities include whole genome editing for
traits of economic importance. The success recorded in removing all porcine endogenous

retroviruses from the pig gene (Niu et al., 2017) highlights the practicality of the approach.
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Apart from productivity, opportunities for improving animal welfare and food safety were
highlighted by Goold et al. (2018).

Figure 2: Application of SynBio in Agriculture

Challenges for the adoption of SynBio in Africa
Risks, advantages and disadvantages of using SynBio

Risks should be thoroughly assessed before large numbers of synthetic organisms are
released out of the laboratory, taking into consideration self-replication, crossing over events
and recombination. Thus, there is need for strict monitoring of the technology and its
products. Research and development teams should include multiple safeguards in synthetic
cells, such as giving them strictly limited life spans or on/off switches, and engineering them
to depend on laboratory-specific conditions. They should also keep using unique identifying

marks, so that products can be traced back to their “creators”.

SynBio offers the advantage of removing the use of selectable markers which are a
requirement in many genetic modification applications. It can achieve this using retargetable

mobile group Il introns commonly called ‘targetrons’. These have very high efficiency such
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that there is no requirement for selectable markers (Lambowitz and Zimmerly, 2004).
Targetrons function in a wide variety of bacteria. Beyond suicide plasmids which have low
efficiency and are unstable, targetrons are first genetic tool of significant utility (Heap et al.,
2007).

Non-coding RNA molecules used in RNA interference crops can survive mammalian
digestion. They then go on to regulate genes of mammals that consume them. They can also
have off target effects. When created using SynBio non-coding RNA molecules will likely

have similar effects unless it is addressed in the design stages.

One of the biggest challenges with SynBio is biopiracy of Africa’s vast genetic resources.
Biopiracy is “the unethical or unlawful appropriation or commercial exploitation of
biological materials native to a particular country or territory without providing fair financial
compensation to [its] people or government” (Merriam-Webster). Technologies in DNA
synthesis and sequencing now mean that genetic information can be transmitted
electronically across borders. There may be no need to transport a physical seed or plant.
Current laws and policies regulate transfer of physical material only. Thus open access to
digital sequences can facilitate further biopiracy. It will thus also cause profit extraction of

African plant, animal and microbial resources (ETC Group et al., 2018).

Regulation of SynBio
The current state of regulation of SynBio
SynBio is a rapidly evolving, multidisciplinary and promising techno-science field. In
particular it is anticipated that it may lead to the 5" industrial revolution (Peccoud, 2016).
Strikingly, the technologies have enormous potential to significantly alter genomes of
viruses, prokaryotes and eukaryotes. It is thought that when these altered organisms are
released into the environment, they can become a biodiversity risk as they may become
invasive. Biosecurity risks may also arise if biological weapons are made using SynBio
(Trump, 2017). All these concerns raise environmental, health, social, legal and ethical issues
(The Parliamentary Office of Science and Technology, 2015). In light of these concerns,
some countries have regulations that govern the use of SynBio. Often where regulatory
provisions are non-existent in countries, regulatory authorities have often resorted to the use
of the precautionary approach principle (UN, 2011).
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Regulation of SynBio in Europe

The regulations governing their use in Europe exist at various levels of implementation. In
the majority of the cases, the regulations originally produced for the regulation of GMOs and
their derivatives are revised to suit the current technological innovations. In this regard, for
the last two decades, two EU GMO directives namely the Contained Use Directive
(2009/41/EC) and the Deliberate Release Directive (2001/18/EC) have been used for the
regulation of SynBio products. There are regulations for laboratory research work and the
release of GMOs into the environment. However, in the current EU GMO regulatory
framework, the genetically modified (GM) organism is compared with an equivalent non-
GMO. However, as the number of traits and sources of genetic materials increase, finding a
comparator organism becomes a daunting task. Since these complex organisms are developed
in a step by step manner and regulatory approvals are sought at each stage, the EU Scientific
Committees have suggested that a complex organism developed earlier in the chain could be
used as a comparator if it has a history of safe use (Parliamentary Office of Science and
Technology, 2015).

Regulation of SynBio in the United States of America

The United States of America (USA) is using the same regulatory frameworks for GMOs for
the regulation of SynBio. The present state and form of the legal regulatory framework for
GMOs is applied to SynBio and products derived thereof. Agencies involved in the
implementation of the regulatory system are the U.S. Department of Agriculture’s Animal
and Plant Health Inspection Service (APHIS), the U.S. Environmental Protection Agency
(EPA), and the U.S. Food and Drug Administration (FDA) (Carter, et al., 2014). Elsewhere,
these agencies are viewed as organizations who have limited regulatory authority to regulate
some SynBio products. For instance, APHIS regulates organisms in which plant pests or
components thereof have been used to modify the plant. It is most likely that development
methods of SynBio derived organisms will not be covered by these regulations (Carter et al,
2014). Thus, the products will go without regulatory oversight because they are not explicitly
covered by the existing statutes. The responsible and enforcing agency is thus rendered
‘powerless’. In the case of EPA, as modified microbes become more complex, risk

assessments will become more difficult, requiring more financial resources and expertise.
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Regulation of SynBio in Africa

Despite the potential positive impact of SynBio, it is important to note that the regulatory
framework for SynBio products including synthetic organisms still has to be developed by
some African countries. There is no distinctive line between what is traditionally labelled
‘natural’ and what should be labelled ‘synthetic’. Even African countries with well-
established systems for regulation of genetically modified organisms (GMOs) such as Kenya,
and South Africa, are yet to put in place regulations which are specifically meant for SynBio.
It is worth noting that certain provisions contained in their current GMO regulations may be
extended to SynBio since it builds on modern biotechnology methodologies and techniques.
As more complex organisms are produced by SynBio there will be a need to develop
regulations for more comprehensive risk analysis (The Parliamentary Office of Science and
Technology, 2015). This is because the comparative principle used for the regulation of
GMOs may not be applicable if organisms which are fundamentally different from natural
organisms are produced using SynBio.

Nigeria amended the National Biosafety Management Agency Act of 2015 in 2019 to cater
for the regulation of SynBio. A new section was inserted (NBMA, 2019) and it reads as
follows:

25A. Application of gene drive, gene editing and synthetic biology

“No person, institution or body shall carryout gene drive, gene editing and synthetic biology
except with the approval of the Agency”. Supporting regulations however are still to be

developed.

In Zimbabwe SynBio is regulated through the National Biotechnology Authority Act
[Chap.14.31] of 2006. Subsection 3 (2) ¢ of the Act states that the Act shall apply to - (c) any
activity involving biological and molecular engineering technologies such as metabolic
engineering, proteomics, metabolomics, nanotechnology, genetic modification, cloning,
DNA-chip technology and bioinformatics; and such other technologies as may be declared by
the authority to constitute potentially harmful research or undertaking. SynBio products are
currently classified as genetically engineered (GE) and are covered under the current
regulations hence the NBA Act of 2006 is used. However, although a comprehensive
National Biosafety Framework exists for effective regulation of biotechnology, future
reviews of regulations to accommodate complex SynBio processes cannot be ruled out.
Furthermore, future reviews of the regulations will be motivated by the fact that globally the
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definition of SynBio and products is ambiguous and SynBio produces more complex
products which potentially present legal issues. The NBA Act does not make specific
reference to SynBio and to avoid any ambiguity, a statutory instrument which supports the
NBA Act requires gazetting.

The African continent needs to assume a harmonized position on regulation and governance
of SynBio, whether it should be case specific or not, process based or product based. These
gaps in the regulatory frameworks need to be addressed if Africa is to derive maximum
benefit from SynBio whilst minimizing the risks associated with the technology. This is
critical given that fellow African countries such as South Africa are among the leading
researchers of SynBio (Oldham et al., 2012).

International treaties

Misuse of SynBio presents threats to international peace and security hence this section looks
at some of the international treaties governing the use of SynBio. The Biological Weapons
Convention (BWC) bans the development, production and stockpiling of all weapons of mass
destruction (United Nations Office for Disarmament Affairs, 2018). This includes microbial,
other biological agents and toxins for which there is no justified use for preventative,
protective or other peaceful cause. The BWC provides for any unforeseen misuse of SynBio
techniques (Parliamentary Office of Science and Technology, 2015).The United Nations
Security Council Resolution 1540 of April 2004 requires all UN member states to refrain
from supporting terrorists to make, obtain, transport, develop, possess, use or transfer any
nuclear, chemical or biological weapons (UN Office for Disarmament Affairs, 2018). This
resolution and the BWC provide a safeguard measure for guiding against the misuse of

SynBio.

Whereas, the Convention on Biological Diversity (CBD) at its 13" meeting held in Mexico in
2016 invited parties to take a precautionary approach on SynBio. It noted that current living
organisms developed using SynBio and those in early stages of research and development fall
within the Cartagena Protocol on Biosafety (CPB) definition for living modified organisms
(LMOs). As such, the current risks assessment methodologies under the CPB can be applied
for these, however they may need to be reviewed as the technology advances. CBD parties
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also noted that it is not clear whether the final products of the early stages of SynBio research
and development would fall under the CPB LMO definition.

There are a number of capacity limitations and challenges that need to be addressed globally
if the countries are to effectively regulate SynBio products. Addressing these issues would go
a long way in ensuring that countries benefit from these technologies whilst protecting human
and animal health and the environment. SynBio is rapidly advancing and current regulations
may not adequately cover future products of the technologies. Taking cognisance of both
benefits and risks of the technology (Good et al., 2018), countries need to come up with all-
encompassing regulatory frameworks which will not stifle development, at the same time
making sure that adequate biosafety and biosecurity measures are put in place to prevent
misuse of the technologies. In the case of Africa, it is worth noting that the judicious
application of synthetic biology can alleviate food and energy security, reduce poverty, boost
industrial growth, reduce greenhouse gases and promote environmental conservation (Garang
and Onkware, 2016).

Future perspectives and conclusion

Adoption of SynBio has the potential to improve food security and livelihoods in Africa.
Considering that most African countries are yet to accept genetically modified organisms, the
adoption of SynBio might seem arduous. However, there are countries like Zimbabwe where,
growing of GE’s is not permitted but controlled research on and food processed from GE’s is
permissible. It is important that stakeholders’ perspectives on GE’s are investigated: the
understanding of GE’s definition(s), methods employed in obtaining GE’s, knowledge of
SynBio, source of information and willingness to fund research of GE’s. This will improve
platforms for knowledge transfer, identifying key challenges and mapping solutions. It is
knowledge that will assist in developing informed polices that have meaningful impact of the

socioeconomic factors.

Without a clear policy on GE’s, public funds will not be readily channeled towards research
on GE’s. In the countries that are leading in research and adoption of SynBio and other GE’s,
their governments have made significant investments of more than US$30 billion dollars
however, most African countries are lagging behind (World Bank, 2015). 5rrrr5rOther funds
have come from private players and industry. The government, industry and academia are
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working together in improving knowledge, adoption and safety of SynBio and other GE’s.
Industry will only fund research where there is a guaranteed return on investment. With the
current policy in Zimbabwe and other African nations where GE’s are limited, industry is less
likely to invest in research on GE’s. It becomes a chain: No good policy -> no funding -> no
research -> no information -> no good policy. This cycle needs to be broken. Though SynBio
presents a golden opportunity for improving livelihoods in Africa, its success can only be
realized if the policy and legislative environment is conducive. The diagram illustrates the
critical activities that the majority of African countries need to consider in making SynBio a

success in transforming livelihoods.

Figure 3: Flow chart of critical activities to be adopted by the majority of African countries
to make the adoption of SynBio successful
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SynBio thus offers great opportunities although it can result in many adverse effects on the
environment and economies in Africa. Its adoption is however still low. It seems to be
following the trajectory of GMOs which to date are being legally cultivated in Sudan and
South Africa only out of about 50 African countries. These limited experiences therefore

provide limited data on the effects of some of these GM technologies on the continent.
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