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Abstract: The question of building sustainable in a geographical locality is inexorably linked to cost.  

In 2011, one of the authors built a sustainable house that was (at the time) the highest certified 

sustainable home based on the National Association of Home Builder’s standards for sustainable 

construction.  This Texas house has been used for residential and research purposes for the past 

decade.  In this case study, the authors evaluate components of the construction and their 

effectiveness as well as unseen secondary and tertiary effects.  Some of the specific components 

discussed are home site placement; rainwater harvesting (100% of residential requirements); 

aerobic septic system;  grid-tied solar array power;  electric car charging; geothermal heating and 

cooling; reclaimed wood framing;  spray foam installation; selection of windows, fixtures, and 

appliances; on-demand electric water heaters for guest areas; generator backups; and use of local 

items.  Electric bills and water system improvements are discussed in detail, as improvements 

were made as part of residential and research requirements.  This case study suggests that the 

financial outlay is worth the extra up-front costs if residents in this geographical area and climate 

will occupy the residence 7 years. 
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1. Introduction 

Reducing the impact of the built environment is a necessary step to address concerns of climate 

change as well as population growth.  Green building codes have arisen to help provide best 

practice for green construction.  Understanding what codes actually result in effective 

environmental changes that are positive for the consumer is necessary [1].   

In a recent study, electricity, tap water consumption, and employee commuting dominated 10 

out of 12 environmental impact categories, categories that included global warming, human health 

consequences, eutrophication /acidification and use of water, as well as smog formation. For land 

use impacts, wood products contributed the most (perhaps, unsurprisingly) [2], 

Net Zero (or even Net Positive) construction involves the design of facilities that either consume 

no net energy (demand less supply) or that produce more energy than consumption [3], reducing 

global warming.  Net Zero construction may even power user transportation [4].  Rainwater 

harvesting removes the stress on below-ground and ground water sources for both residential and 

business construction (including hospitals) [5, 6].  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2020                   doi:10.20944/preprints202002.0002.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Land 2020, 9; doi:10.3390/land9050152

mailto:lf25@txstate.edu
mailto:bmb230@txstate.edu
mailto:mbrooks@txstate.edu
mailto:scottkruse@txstate.edu
mailto:kim.lee@txstate.edu
https://doi.org/10.20944/preprints202002.0002.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land9050152


 2 of 23 

 

This qualitative case study analyzes best practice construction design for both the environment and 

the consumer based on one author’s decade of living in a sustainably constructed residence. This 

residence was the highest-rated house ever certified by the National Association of Home Builders at 

the time it was built [4].  Both construction successes and failures are analyzed with commentary 

from both the environmental and consumer perspective.  Where possible, cost-benefit analyses are 

provided.  

2. Materials and Methods  

In this case study, we evaluate life-cycle costs, environmental impacts, and efficacy of multiple 

sustainable building innovations to evaluate construction possibilities for residences.  The 

particular 4,800 square foot home studied exists in a semi-arid environment (San Antonio, Texas.)  

Particularly foci of this qualitative case study include the efficacy of solar panels theoretically 

sufficient to power the homeowner’s electrical demand as well as power an electric car and the 

utility of a rainwater harvesting system designed to support 100% of the homeowner’s needs.  The 

study evaluates home site placement; local materials extraction; reclaimed wood framing; spray 

foam insulation; window, fixture, and appliance selection; material recycling; rainwater harvesting 

design and engineering;  aerobic septic system;  xeriscaping; grid-tied solar arrays; electric car 

charging and use; on-demand water heaters; wireless switches to reduce wiring requirements; 

geothermal heating and cooling; and electrical back-up system options.  The primary hypothesis is 

that construction of a large house in a semi-arid environment using sustainable techniques could be 

green for the pocketbook as well as green for the environment.  

3. Results 

3.1. Initial Considerations 

3.1.1. Site Placement 

The residence in the study was designed from the ground up to be sustainable, and the design 

considerations included geographical placement.  The home site (5.3 acres on a hill just North of 

San Antonio, Texas) was selected to be North facing to maximize solar capture (West, South, and 

East facing panels and to leverage predominant local winds (South to North) [7].  Further, the site 

selected minimized tree removal, reducing cost and effect on the environment.  Qualitatively, the 

placement was a success in this construction, as the solar capture is as expected (discussed later), and 

the cost as well as the environmental impact of excess tree removal was avoided.  Figure 1 is the 

Google Maps satellite image of the house [8]. 
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Figure 1.  The residence as constructed 

3.1.2.  Material Location / Transportation 

One of the major sustainability considerations in residential construction is the transportation of 

materials.  As part of the house design, only local materials (those within 50 miles) were selected.  

For example, local limestone was selected for the exterior (Figure 2).  Reducing transportation 

requirements reduces emissions.  While the extent of the carbon emission reduction is unknown, 

the use of local materials achieved at least some reduction in environmental impact. Further, 

material overhead for distant transportation of materials was avoided, logically reducing costs. The 

amount of that reduction is unknown and not estimated.  

 

Figure 2.  All construction materials were native. 

3.1.3.  Waste Collection and Recycling 

During construction, bins for waste were used to recycle materials as appropriate (Figure 3).  Doing 

so allowed for reclaimed wood to be reclaimed as engineered lumber and for used paper and metal 

to be recycled.  While this has little to no bearing on cost, it does have an effect on the environment. 

  

Figure 3. Bins established for paper / metal collection during construction 

3.2. Engineered Lumber / Finger-Jointed Studs  

Finger-jointed studs use reclaimed wood that might otherwise be discarded (Figure 4).  They 

are straighter and result in less wood wasted.  Further, they have a strong vertical load capability, 

with evidence that many species (including pine) have better structural properties when 

finger-jointed [9]. 
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Figure 4.  Finger-jointed stud used in the residence construction 

A 20” diameter tree with 42 feet length of usable wood produces about 260 board feet. The Idaho 

Forest Products commission estimated that a typical 2,000 square feet house would use 102 trees of 

that size [10].  Assuming linearity, the 4800 square feet home would have been estimated to require 

approximately 245 trees.  Assuming an offset of even 25% of the wood requirements results in a 

reduction of about 61 trees.  See Table 1. 

Table 1.  Estimate of trees saved by using engineered lumber (finger-jointed studs) in this case study. 

 

% Offset of Traditional Lumber Trees Saved 

10% 24.5 

15% 36.8 

20% 49.0 

25% 61.3 

30% 73.5 

35% 85.8 

40% 98.0 

The cost of finger-jointed studs may be more expensive than regular studs. At one lumber site, retail 

cost of a 2 x 4 x 104 5/8” regular pine stud versus the same size finger-jointed stud is listed at $3.62 

[11] versus $5.59 [12], respectively. This is a 54.4% cost increase for materials, which might be offset 

by lower labor costs due to engineered lumber’s straightness.   

The cost differential is not atypical, as many engineered lumber products have upcharges between 

1.5 and 2 times the cost of traditional lumber [13].  HomeAdvisor estimates the total cost of 

traditional framing between $4 to $10 per square foot for labor and $3 to $6 per square foot for 

materials [14].   

With a 30% reduction of labor costs for engineered lumber, low material costs for standard lumber, 

and 54.4% higher costs in engineered lumber, there are several ways in which finger-jointed studs 

actually save money.  Table 2 illustrates those combinations (2020 dollars) 

Table 2.  Regular lumbar versus finger-jointed studs at 1.54 and 0.70 times materials and labor, respectively 

 

Regular Lumbar, $ / ft2 Engineered Lumber, $ / ft2 4800 Sq. Ft. 

Materials Labor Materials Labor Cost Savings 

        3.00         10.00         4.62                 7.00                   6,624.00  
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        3.00           9.00         4.62                 6.30                   5,184.00  

        4.00         10.00         6.16                 7.00                   4,032.00  

        3.00           8.00         4.62                 5.60                   3,744.00  

        4.00           9.00         6.16                 6.30                   2,592.00  

        3.00           7.00         4.62                 4.90                   2,304.00  

        5.00         10.00         7.70                 7.00                   1,440.00  

        4.00           8.00         6.16                 5.60                   1,152.00  

        3.00           6.00         4.62                 4.20                      864.00  

        5.00           9.00         7.70                 6.30                             -    

Using the average estimate of $7 for labor and $4 for materials (traditional construction) and 

30% reductions in labor ($4.90) with 54.4% increases in materials ($6.18, non-traditional construction) 

results in comparative estimates of $52,800 (traditional) and $53,184 (non-traditional).  The total 

difference in cost is estimated to be nominal.  The total difference in environmental impact is not. 

3.3. Spray Foam Insulation 

Residential spray-foam insulation (Figure 5) provides a thermal barrier with exceedingly low 

conductivity (.021 W/mK in one study [15]). Spray foam has reasonable hygrothermal properties and 

is resistant to moisture migration; however, mechanical extraction and humidity controls were 

installed because of the tight environmental seal of the house and the requirement to exchange air.  

The practical relevance of the tight seal around the residence is that during the heat of the Texas 

summer (in excess of 100 degrees F), the observed temperature in the attic spaces does not exceed 

80F/26.7C with the house thermometer set to 76F / 24.4C. 

 

Figure 5.  Open-cell spray-foam insulation 

 The 2020 cost for open-cell spray-foam insulation is about $.35 to $.55 per board foot. Assuming 

3.5” depth of spray converts to $1.23 to $1.93 per square foot.  Fiberglass batt insulation runs $.64 to 

$1.19 per square foot.  Assuming average costs of $1.58 per square foot (spray-foam) and $.915 

(fiberglass) with 6,000 square feet of attic and walls to be insulated results in cost estimates of $9,480 

and $5,490, respectively [17]. 

The analysis above, however, is incomplete.  Spray-foam works as an air barrier, vapor barrier, 

water-resistant barrier, and insulation.  There is no need for attic vents, test ductwork, or air-seal 

attics.  When evaluated in this manner, it is actually 10-15% less expensive than traditional 

construction.  Inflating the estimated cost of $9,480 by 10% to account for all traditional construction 

requirements results in $10,428 for standard construction. 
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3.4. Low Solar Heat Gain Coefficient (SHGC) and U-Factor Windows (Energy Star) 

Solar Heat Gain Coefficient (SHGC) is defined as the fraction of incident solar radiation 

admitted through a window.  In warm climates, windows should have solar heat gain coefficients 

(SHGC) less than .25 [18].  Further, the U factor, a factor that express the insulative value of 

windows, should be .4 or lower. Low emissivity Jeldwen windows and doors with SHGC of .23 and 

U-Factor of .3 were used throughout the house (Figure 6). 

 
 

Figure 6.  Windows and doors must match environmental considerations 

Low emissivity windows are 10 to 15% more expensive than standard windows [19]. The 

typical cost range in 2020 dollars is $385 to $785 with an average of $585 [20].  The Department of 

Energy estimates savings of $125 to $465 dollars a year from replacing windows with new windows 

that have higher Energy Star ratings [21].  Assuming average cost for Energy Star windows ($585), 

15% cheaper traditional windows ($508.70), and a total of 25 windows results in acquisition costs of 

$14,625 (Energy Star) versus $12,717.50 (non-Energy Star).  The $1,907.50 difference would be offset 

in about 6.5 years at the average $295 energy savings.   

3.5. Rainwater Harvesting 

The decision to install a rainwater harvesting system (RWH) versus a well or city water is one 

that is entirely dependent on the environment, the availability, homeowner’s wishes, and 

regulations.  In this case study, no city water sources were available.  After a cost analysis, it was 

estimated that the cost for an aquifer-draining well and the cost for a rainwater harvesting system 

would be nearly identical ($20,000).  Rainwater harvesting was selected for both sustainability and 

quality considerations.  From a sustainability perspective, RWH requires far less water for the same 

aquifer demand.  Specifically, run-off, absorption / adsorption, and evaporation / transpiration 

reduce aquifer resupply by at least 30% [22].  On the other hand, RWH systems capture 75% to 90% 

of rainwater, depending on design and rainfall [23].  The amount of water pulled from the aquifer 

to supply one gallon is therefore at least 3.333 gallons, whereas well RWH systems capturing only 

75% of the available rainfall require 1.333 gallons. The net savings to the aquifer is 2 gallons of water 

per 1 gallon demanded. 

Figure 7 depicts the RWH as currently installed in the residence.  The system works as follows.  

Rainwater falls on the roof and is captured by gutters.  The guttered water flows to the cistern 

where ~100 gallons or so is flushed out through a pipe with a ball float to eject the debris on the roof.  

This is called the first flush (Figure 8).  Once the ball float seals the flushing tube, the water 

continues into French drain and basket filters (Figure 9) and then into a cistern (Figure10). Parallel 

on-demand pumps (Figure 11) push water towards the house where it is processed through a 

sediment filter, charcoal regeneration system, and ultraviolet light which is an effective method for 
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inactivating pathogens through irradiation [24]. The water is then used and exits to an aerobic septic 

system (not shown). 
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Figure 7.  Rainwater harvesting system as designed 

 

Figure 8.  First flush system 

 

Figure 9.  French drain and basket filter location (inside the black tank lid) 
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Figure 10.  RWH components after installation 

 

Figure 11.  Parallel on-demand pumps 

Quality considerations for water are significant.  Using rainfall for potable house needs 

requires proper roof selection (ceramic or metal as examples), flushing (first flush), gross filtering 

(e.g. French drain and basket filters), storage (food-grade butyl rubber), pumping, cleansing (e.g., 

sediment filter and charcoal regeneration, Figure 12), purifying (ultraviolet purification as one 

example, Figure 13), and disposal of gray water (aerobic septic system).  The Texas Manual on 

Rainwater Harvesting [23] provided the baseline quality construction requirements.  

 

Figure 12.  From right to left:  sediment filter, charcoal regeneration, ultraviolet filter (spare tank in front) 
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Figure 13.  Ultraviolet purification and example light 

Design of an RWH capable of meeting the needs of an entire household required simulation 

modeling, so that the distribution of the minimum in the cistern (order statistic) would be strictly 

greater than zero over all supply and demand considerations and all simulation runs.  Details of the 

simulation are available from [5,25] .  The final system selected included 4000 square feet of capture 

space and a 40,000 gallon cistern.   

To date, the observed minimum in the tank (the order statistic of most importance) has been 

75% by dipstick measurement.  The system was over-engineered in a deliberate way.  The 

homeowners estimate that with a full tank, they will retain water in the tank for approximately two 

years without any rainfall. 

Acquisition costs for the rainwater harvesting system (guttering, PVC piping, Pioneer 40K 

gallon cistern with butyl rubber liner and accessories) cost approximately $25,500  in 2020 [26].  

Current well drilling prices in Texas are $30 to $55 per foot [27].  On this property, a 600’ drilling 

depth is required. At the average $42.50 per foot, the drilling cost alone would run $25,500 now.    

Cost to maintain the system has been reasonable.  Ultraviolet tubes (replaced annually for 

typical use) as well as sediment filters and other system requirements cost approximately $100 per 

year. According to the Centers for Disease Control and Prevevntion, wells should also be inspected 

annually [28] at a cost of $300 to $500 per month [29]. The system is cost effective.  Further, the 

water quality exceeds local and state requirements.  Since it is soft, there is no residue when 

washing anything (Figure 14). 

 

Figure 14.  Water clarity and softness 
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3.6.  Water Fixtures 

Selection of appliances and fixtures is important for a sustainable house reliant on 100% 

rainwater.  Toilets, shower heads, and other water fixtures were low flow / high pressure (see 

Figure 15), as the residence sought to sustain itself using only rainwater harvesting.  Mayer et 

al. [30] estimate that toilets use 29% of indoor water consumption, while water used for 

showering/bathing, dishwashing and laundry consume about 36%, 14%, and 21%, respectively.  

The Environmental Protection Agency (EPA) shows that high pressure, low flow shower heads 

reduce flow from 2.5 gallons per minute to 2.0 gallons per minute, a 20% reduction [31].  Costs 

for low flow fixtures are comparable to standard fixtures.  There are no cost savings or 

increases.   

 

Figure 15.  Low flow (dual flush) toilet, installed 

 3.7  Aerobic Septic 

Cradle-to-grave water management requires that black water be treated responsibly and 

sustainably.  In this area, aerobic septic systems are required by regulation.  The owner had 

installed a Jet Biologically Accelerated Treatment (BAT) plant (also termed Biologically Accelerated 

Wastewater Treatment, BAWT, plant). BAT plants work by treating wastewater physically and 

biologically in a pre-treatment compartment.  Water then flows through the treatment 

compartment where it is aerated, mixed, and treated by a host of biological organisms (a biomass).  

The mixture then flows to a settlement compartment where particulate matter settles, returning to 

the treatment compartment, leaving only odorless and clear liquid (gray water produced by the 

biomass) which is discharged through sprinkler heads [32]. Figure 16 is the encased BAT system 

installed at the residence. Aerobic systems break down waste far quicker than anaerobic due to the 

nature of the bacteria. 
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Figure 16.  Biological Accelerated Treatment plant during installation 

There is no cost benefit for installing such a system at this residence. Installing an  anerobic 

system averages $3,500, whereas an aerobic costs about $10,500 [33]. Maintaining the aerobic septic 

system is about $200 annually [34], which is somewhat more than anaerobic systems [35].  There 

are, however, benefits to the environment in that 1) pumps for transporting water to wastewater 

treatment plants are not necessary (and the associated energy costs), 2) treated water returned to the 

environment is cleaner, 3) electricity for processing water (in this case) is largely if not entirely 

generated by the sun. 

3.8.  Tankless Water Heaters 

One of the current additions to this research residence has been the inclusion of an on-demand 

electric water heater for a guest room, guest kitchen, and guest bathroom (see Figure 17).  These 

water heaters take up less space and do not constantly use energy to keep water warm.  The 

acquisition cost of an electric tankless heater is largely dependent on size, capability, and brand and 

may be larger than traditional tank versions; however, the acquisition cost for the installed unit was 

identical to the tank unit in this case.  Tankless may also last 1.5 to 2 times as long as tank water 

heaters (20 years) and save 8 to 34% on water, depending on water demand; however, demand flow 

for multiple simultaneous operations must be evaluated [36].    

 

Figure 17.  Rheem tankless water heater (image labeled and authorized for reuse) 

Comparing the life-cycle of a 50-gallon electric water heater with that of a tankless requires 

some up-front assumptions.  One study indicated that the life-cycle savings over traditional electric 

storage systems is $3,719 Australian dollars (about $2500 US dollars) [37].  However, that study 

does not consider the possibility that all electrical power needed is generated by solar.   Further, the 

carbon footprint is much lower, as it is in operation only when demanded.  Tankless water heaters 

may be 99% efficient [38].   
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The acquisition and installation costs for 2 x 50 gallon tank water heaters during initial 

construction was nearly $3,000.  Under traditional grid power, the yearly costs are $494 per tank or 

just under $1000.  For tankless water heaters under solar, the installation and acquisition costs are 

$3000 for two units (high end).  There are zero annual costs. 

3.9.  Solar Arrays 

In a sustainable home located in semi-arid regions, solar arrays are an obvious solution for 

producing energy requirements.  This residence initially had installed a 7.25 kWh system (32 x 225 

watt panels) with a Sunny Boy inverter ($33,600 in 2011, Figure 18) and then subsequently added 

another 9.585 kWh system (27 x 355 watt panels, $31,317 in 2018, Figure 19) with a Solar Edge 

inverter after home expansion and capitalization of the original solar power system.  The total cost 

of both systems was approximately $64.917.  After 30% federal tax credits, the total cost to the 

resident was approximately $44,441.90.  From installation date until 31 January 2020, the initial 7.25 

kWh system has produced 90.579 MWh of power in 35,212 hours of operation for 2.57 kWh per hour, 

saving 153,984 pounds of CO2 emissions.  The 9.585 kWh system has produced 25.86 MWh in about 

18,240 hours since installation, saving 40,038.49 pounds of CO2 emissions and resulting in only 1.4 

kWh per hour.  The low result is due to installation in January and a month wait to replace the 

initial inverter (faulty) in January to February 2018. 

  

Figure 18.  Initial 7kWh system (top left) with inverter (bottom left), total power production (upper right), and 

acquisition costs (lower right) 
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Figure 19.  10 kWH SolarEdge system (top left) with inverter (bottom left), power production (upper right), 

and acquisition costs (lower right) 

 

Initial break-even analysis is based on both acquisition cost and energy cost as if both systems 

were installed on the expanded house.  Figure 20  illustrates the residence usage after power 

generation for a one-year period.  During the six months of April through September, the residents 

produced or banked more power than consumed. From October through March, the resident 

consumed more power than produced.  The $32.72 bill provided is a connection fee.  During this 

month, the residents consumed 1699 kWh and produced only 1226 kWh.  There is, however, no 

delivery or cost of power charge, as the previous months, the residents produced more than 

consumed.  The total consumption estimate is then about 2925 kWh for a 4800 square foot house in 

a cool month.  When averaged over a single year, total consumption is approximately 3500 kWh per 

month. 
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Figure 20.   Electric bill, 9/30/2019 (both production, top, and consumption, bottom) 

A non-solar house consuming 3500 kWh per month under traditional utility billing at $.07 per 

kWh with at $14.77 customer charge results in an annual estimated cost of $3,117.24 ($259.77 x 12).  

The same consumption with solar runs $498.00 ($33 x 6 months + $50 x 6 months).  Residential 

electricity rates are anticipated to be fairly stable over time [39].  The break-even point for both 

systems is estimated to be about 17 years; however, this does not account for avoidance of 

automobile gasoline charges assuming the use of an electric car.   

From an environmental perspective, the carbon dioxide avoidance by leveraging solar is 

significant. The footprint of solar is 6 g CO2e/kWh, while coal CCS is 109 g and bioenergy is 98 g.  

Wind power produces less emissions (4 g each); however, the residence location is a low-production 

wind area [40].   

3.10.  Electric Car Charging 

Electricity generated from the solar panels was used to charge an electric Nissan Leaf (early 

adopter, see Figure 21).  The gasoline avoidance in doing so was significant.  Assuming equivalent 

acquisition costs for electric versus non-electric cars, a $100 avoidance in gasoline each month and 

holding all other variables constant, the net annual savings for solar would be $3,117.24 - - $702 = 

$3,819.24 for a break-even of 11.6 years.  Unfortunately, early Nissan Leaf vehicles suffered from 

battery issues [41]. The owner divested after 3 years due to this issues as well as a change in 

employment location. Improvements in the batteries of these vehicles as well as extended range 

models makes this vehicle an attractive option for minimizing gasoline and maintenance costs.   

 Nissan Leaf ownership costs over 8 years are estimated to be $36,537.82 with total 8-year 

energy costs (kWh) at $3,969 [42].  When powered by solar that is 100% capable of producing both 
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home and automobile power, there are no energy costs.  Thus, the difference in cost between an 

equal value gasoline car (after accounting for any tax credits and residual) would be the 

maintenance and energy costs.  Assuming a gasoline car experiences the average 13,476 miles 

driven per year (107,808 over 8 years), 30 miles per gallon, and $3.00 per gallon of gas (while 

ignoring maintenance costs) results in a fuel cost  estimate of $10,780.80, which is 2.72 times that of 

the electric car option. 

 

Figure 21.  Nissan Leaf and final charging station 

3.11.  Geothermal Heating & Cooling 

As part of the construction, the residence was equipped with a closed loop, geothermal system 

(see Figure 22).  Vertical, closed-loop geothermal units are heat exchangers that leverage the fact the 

temperature 200’ below the Earth remains relatively constant.  The system operated with limited 

success for seven years, as the heat exchange and unit was unable to keep up with greater 100 degree 

F temperatures in its South Texas location.   The cost of the system including wells, unit and 

ducting (complete) was $26,500.  The tax credit was 30% or $7,950, and so the end cost to the 

resident was $18,550.  Climatemaster (the brand installed) estimates a $1000 savings in electrical 

costs per year over an electric heat pump ($3,135 versus $4,169) [43]. The system was replaced with a 

5-ton, 18-seer American Standard Platinum heat pump unit in 2018 at a cost of $16,255, over $10,000 

less expensive and fully effective. 
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Figure 22.  Geothermal unit and vertical drilling of wells 

3.11.  Generator or Other Backup System 

The residences have explored many options (from Tesla Powerwall to the Chinese BYD B-box 

10) for retaining produced solar energy rather than feeding it back into the utility grid.  All options 

are expensive (between $80 to $110 per kWh storage per year for 10 years) with decay rates that 

generate lithium ion battery disposal concerns after 10 years for most products [44].  

Since the storage technology is still developing, the residents opted for a 22 kWh propane-powered 

back-up generator, a device sufficient to empower the entire house (Figure 23). Back-up power is 

necessary to retain water during electrical outages, as the house is still grid-tied.  Propane is a green 

fuel that, when burned, has nominal effects on the environment [45].  The 1,000 gallon propane tank 

and generator are sufficient to maintain full power to house for about 14 days under reasonable 

utilization conditions.  The cost for this generator, automatic transfer switch, propane tank, 

underground installation, and connections was $19,668.00.  A large portion of expense involved 

burying the propane tank in rocky terrain. 
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Figure 23.  Generac 22 kWh whole-house generator and propane tank 

3.12.  Overall Analysis 

Sustainable construction can generate a break-even for the pocketbook and for the 

environment. Figure 24 illustrates the cost comparisons of the sustainable construction techniques 

discussed in this paper. Costs are inflated based on BLS forecasts [46].  

Looking at Figure 24, the breakeven for 2020 construction would be about 2026.  The additional 

cost of sustainable construction is estimated at $54,733, which is much lower than might be expected 

due to the tax credits associated with solar and geothermal.  The use of geothermal, though, was not 

effective, even after several modifications.  Eliminating the geothermal in favor of high-seer heat 

pump would reduce the tax credit to $19,475 and the acquisition cost to $16,255.  The cost of this 

sustainable construction is $52,438. 

Appendix A is a 15-year net present value analysis (NPV) assuming cost of capital is 5%.  This 

analysis suggests a $160,222 savings for sustainable construction with geothermal and a $186,338 

savings without geothermal. Total estimated costs are $(2,278,943), ($2,118,721), and $(2,092,604) for 

traditional, sustainable with geothermal, and sustainable without geothermal, respectively.  

If the residents were to begin the construction process all over, every sustainable element would 

be included except for geothermal.  The expansion of the number of solar panels would have been 

completed when first built in preparation for expansion.  Additional considerations for lead-acid 

batteries, powerwalls, etc. would be included as part of the process.   
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BLS Inflation 0.03 0.03 0.03 0.03 0.03 0.03

Traditional House & Car 2020 2021 2022 2023 2024 2025 2026

Lumber (52,800)$         -$           -$           -$           -$           -$           -$           

Insulation / Vents (10,428)$         -$           -$           -$           -$           -$           -$           

Windows (12,718)$         -$           -$           -$           -$           -$           -$           

Well Water (25,500)$         (400)$         (412)$         (424)$         (437)$         (450)$         (464)$         

Electricity (100%) -$                 (3,117)$      (3,211)$      (3,307)$      (3,406)$      (3,508)$      (3,614)$      

Gas for Car (1,348)$           (1,348)$      (1,388)$      (1,430)$      (1,473)$      (1,517)$      (1,562)$      

Anaerobic Septic (3,500)$           (150)$         (155)$         (159)$         (164)$         (169)$         (174)$         

2 x H20 Tank (3,000)$           (1,000)$      (1,030)$      (1,061)$      (1,093)$      (1,126)$      (1,159)$      

Heat Pump (16,255)$         (4,169)$      (4,294)$      (4,423)$      (4,556)$      (4,692)$      (4,833)$      

Tax Credits -$                 -$           -$           -$           -$           -$           -$           

Net Cash Flows (125,548)$       (10,184)$   (10,489)$   (10,804)$   (11,128)$   (11,462)$   (11,806)$   

Cumulative Cash Flow (125,548)$       (135,732)$ (146,221)$ (157,025)$ (168,153)$ (179,615)$ (191,421)$ 

With Geothermal Acquisition

Sustainable House & Car 2020 2021 2022 2023 2024 2025 2026

Engineered Lumber (53,184)$         -$           -$           -$           -$           -$           -$           

Spray Foam (9,480)$           -$           -$           -$           -$           -$           -$           

Energy Star Windows* (14,625)$         -$           -$           -$           -$           -$           -$           

H20 Harvesting (25,500)$         (100)$         (103)$         (106)$         (109)$         (113)$         (116)$         

Solar (100%)+Electric (64,917)$         (498)$         (513)$         (528)$         (544)$         (561)$         (577)$         

Electric Car Gas -$           -$           -$           -$           -$           -$           

Aerobic Septic (10,500)$         (200)$         (206)$         (212)$         (219)$         (225)$         (232)$         

2 x Tankless on Solar (3,000)$           -$           -$           -$           -$           -$           -$           

Geothermal** (26,500)$         

Tax Credits 27,425$          -$           -$           -$           -$           -$           

Net Cash Flows (180,281)$       (798)$         (822)$         (847)$         (872)$         (898)$         (925)$         

Cumulative Cash Flow (180,281)$       (181,079)$ (181,901)$ (182,747)$ (183,619)$ (184,518)$ (185,443)$ 

Without Geothermal Acquisition

Sustainable House & Car 2020 2021 2022 2023 2024 2025 2026

Engineered Lumber (53,184)$         -$           -$           -$           -$           -$           -$           

Spray Foam (9,480)$           -$           -$           -$           -$           -$           -$           

Energy Star Windows* (14,625)$         -$           -$           -$           -$           -$           -$           

H20 Harvesting (25,500)$         (100)$         (103)$         (106)$         (109)$         (113)$         (116)$         

Solar (100%)+Electric (64,917)$         (498)$         (513)$         (528)$         (544)$         (561)$         (577)$         

Electric Car Gas -$           -$           -$           -$           -$           -$           

Aerobic Septic (10,500)$         (200)$         (206)$         (212)$         (219)$         (225)$         (232)$         

2 x Tankless on Solar (3,000)$           -$           -$           -$           -$           -$           -$           

Heat Pump (16,255)$         

Tax Credits 19,475$          -$           -$           -$           -$           -$           

Net Cash Flows (177,986)$       (798)$         (822)$         (847)$         (872)$         (898)$         (925)$         

Cumulative Cash Flow (177,986)$       (178,784)$ (179,606)$ (180,452)$ (181,324)$ (182,223)$ (183,148)$ 

*savings in use of solar electric

**ineffective  

Figure 24.  Color-coded break-even analysis 

3.13.  Ongoing Sustainable Improvements 

All add-on construction to the residence included mini-splits (both in wall and in roof systems).  

These systems have more upfront costs but are much more energy efficient, as they do not lose 

energy through ductwork. Further, they are now inconspicuous and highly effective [47].  See 

Figure 25 for pictures of in-roof and in-wall systems installed in the residence.  In new construction, 

these systems should be considered due to their efficiency and elimination of ductwork and other 

requirements. 
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Figure 25.  Mini-split units, in wall and in roof 

Another new construction consideration is the use of wireless multi-gang light switches.  

These fixtures can minimize wiring requirements by using a single drop instead of multiple drops.  

With the advent of 5G, it might be possible to eliminate CAT6 wiring during residential construction 

in the future as well. 

 

4. Discussion 

The results show that building a sustainable house can be green for the environment and green 

for the pocketbook.  The initial up-front costs may be quickly offset by savings depending on 

construction options.  In the case study here, only seven years were required for break-even.  

Aside from the economic considerations, the environmental responsibility issues are clear.  

Avoiding carbon emissions is responsible construction. 

There are also policy requirements for sustainable construction.  That policy push towards 

sustainable construction is evolving to a universal mandate with penalties for failure to comply. The 

prime example is in California where a new law passed a solar mandate where all new homes built 

after 1 January 2020 must be equipped with a solar electric system. That system must be sized that it 

will offset 100% of the home’s electricity usage. This mandate is one aspect of the California Energy 

Commission’s initiative to have 50% of the entire State of California’s energy production be from a 

clean energy source by 2030 [48]. Continuing with the California mandates on sustainability 

mandates, California passed another law recently signed by Gov. Brown that imposes water usage 

requirements. The law states that all California residents will be restricted to 55 gallons/day water 

usage by 2022 and is reduced to 50 gallons/day by 2030 [49]. While both initiatives discuss the 

mandates, neither has shown the penalty for failure to comply or even specifics on implementation. 

What is clear is that the mandates on both electric and water usage are the wave of the future and 

appear to be only the start in California with certainty that other States will adopt similar measures. 

A proactive approach leveraging the analysis presented here and elsewhere will help both builders 

and buyers.   

Another implication of this analysis shows that the return on investment requires the occupant 

to live in the home for an extended period to make the up-front costs viable on the back end. An 

issue that is imperative to ensure economic break-even is the inclusion of accessibility as part of the 

engineering design process.  One reason people must leave their homes is impairment of mobility 

and access.  The solution to this from a policy perspective should be that all homes being built 

should also be required to meet basic American with Disabilities Act Accessibility Guidelines. The 

ADA does not apply to private residences, but a significant sustainability policy implication is that it 

should be extended along with the resource mandates as mentioned on power and water. These 

guidelines have minimum standards to exterior access, parking, hallway dimensions, bathroom 

access, as well as reach and appliance access.  The International Code Council publishes new 
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International Building Codes every 3 years, and the current code was published in 2018, known as 

ICC IBC-2018. The time is now to incorporate the ADA accessibility standards into the new code to 

be published in 2021, which would require all new construction, both private and public, to meet 

these standards. In so doing, this would allow individuals to remain in their homes longer, and 

experience longer ROI on all sustainability aspects of their home.  While the residence discussed in 

this case study is not yet fully ADA compliant, it was designed with the minimum hallway, 

bathroom, and parking requirements to support future disability of its residents. 

5. Conclusions 

The study focuses on individual economics and technical components of constructing a net zero 

family home.  The individual commitment and passion implies a vision of long-term survival of our 

planet and society, a vision which is achievable from a consumer cost perspective.  Thus, the study 

provides both a contribution to the growing sustainability culture in our regional, national, and 

international communities as well as presents an opportunity to further expand upon sustainability 

culture indicators. Other authors have presented research on a cultural sustainability index 

framework [50] to extrapolate and evaluate the effect of making a difference collectively as a society.   

Including an evaluation of cultural sustainability for multiple individual green family dwellings is a 

logical next step from the current study.     

This green building study and analysis demonstrate attention to cultural vitality and continuity [50].  

The researcher created a home to adapt to changing climate and energy structures and created this 

home to adapt to future energy structures.  For example, he attended to the rugged nature of the 

Texas hill-country geography through inclusion of solar panels, aerobic septic system, and water 

collection.  In addition, the researcher through his personal selection and design attended to 

aesthetic and creative features of the green dwelling.  The home in the current study inspires other 

citizens in the community to commit to a culture of sustainability.   

The individual “green” family dwelling described in the study represents a family’s lifestyle, 

memories, and place of being [50].  In this culture of family being and identity, the green home 

incorporates a spirit of the natural beauty of the Texas Hill Country, including a minimalistic design.  

Because the family was involved in the construction, the family has had the opportunity to adapt 

and be empowered in leading in change relative to sustainable living.  A story exists in the needs, 

learning, adaptation, and success of each “green” family, living in each “green” home.  An 

opportunity exists for future studies to incorporate behavioral assessments and tips for multiple 

“green” families and businesses.    

To develop a culture of sustainability, the beliefs, assumptions, and philosophies must become 

embedded in many citizens so that as a society, we collectively own green construction, learning, 

adaptation, and living. Construction best practices and green living must be perpetuated and owned 

collectively to make a global impact on reducing our footprint and increasing our sustained living on 

our planet.    
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Appendix A 

 

BLS Inflation 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Traditional House & Car 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Lumber (52,800)$            -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Insulation / Vents (10,428)$            -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Windows (12,718)$            -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Well Water (25,500)$            (315)$            (324)$            (334)$            (344)$            (355)$            (365)$            (376)$            (387)$            (399)$            (411)$            (423)$            (436)$            (449)$            (463)$            (476)$            

Electricity (100%) -$                    (3,117)$        (3,211)$        (3,307)$        (3,406)$        (3,508)$        (3,614)$        (3,722)$        (3,834)$        (3,949)$        (4,067)$        (4,189)$        (4,315)$        (4,444)$        (4,578)$        (4,715)$        

Gas for Car (1,348)$               (1,348)$        (1,388)$        (1,430)$        (1,473)$        (1,517)$        (1,562)$        (1,609)$        (1,657)$        (1,707)$        (1,758)$        (1,811)$        (1,865)$        (1,921)$        (1,979)$        (2,038)$        

Anaerobic Septic (3,500)$               (150)$            (155)$            (159)$            (164)$            (169)$            (174)$            (179)$            (184)$            (190)$            (196)$            (202)$            (208)$            (214)$            (220)$            (227)$            

2 x H20 Tank (3,000)$               (1,000)$        (1,030)$        (1,061)$        (1,093)$        (1,126)$        (1,159)$        (1,194)$        (1,230)$        (1,267)$        (1,305)$        (1,344)$        (1,384)$        (1,426)$        (1,469)$        (1,513)$        

Heat Pump (16,255)$            (4,169)$        (4,294)$        (4,423)$        (4,556)$        (4,692)$        (4,833)$        (4,978)$        (5,127)$        (5,281)$        (5,440)$        (5,603)$        (5,771)$        (5,944)$        (6,122)$        (6,306)$        

Tax Credits -$                    -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Net Cash Flows (125,548)$          (10,099)$      (10,402)$      (10,714)$      (11,035)$      (11,366)$      (11,707)$      (12,059)$      (12,420)$      (12,793)$      (13,177)$      (13,572)$      (13,979)$      (14,399)$      (14,830)$      (15,275)$      

Cumulative Cash Flow (125,548)$          (135,647)$   (146,049)$   (156,763)$   (167,798)$   (179,164)$   (190,872)$   (202,930)$   (215,350)$   (228,143)$   (241,320)$   (254,892)$   (268,871)$   (283,270)$   (298,100)$   (313,376)$   

(2,278,943)$      NPV @ 5% assumed cost of capital

With Geothermal Acquisition

Sustainable House & Car 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Engineered Lumber (53,184)$            -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Spray Foam (9,480)$               -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Energy Star Windows* (14,625)$            -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

H20 Harvesting (25,500)$            (100)$            (103)$            (106)$            (109)$            (113)$            (116)$            (119)$            (123)$            (127)$            (130)$            (134)$            (138)$            (143)$            (147)$            (151)$            

Solar (100%)+Electric (64,917)$            (498)$            (513)$            (528)$            (544)$            (561)$            (577)$            (595)$            (612)$            (631)$            (650)$            (669)$            (689)$            (710)$            (731)$            (753)$            

Electric Car Gas -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Aerobic Septic (10,500)$            (200)$            (206)$            (212)$            (219)$            (225)$            (232)$            (239)$            (246)$            (253)$            (261)$            (269)$            (277)$            (285)$            (294)$            (303)$            

2 x Tankless on Solar (3,000)$               -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Geothermal** (26,500)$            

Tax Credits 27,425$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Net Cash Flows (180,281)$          (798)$            (822)$            (847)$            (872)$            (898)$            (925)$            (953)$            (981)$            (1,011)$        (1,041)$        (1,072)$        (1,105)$        (1,138)$        (1,172)$        (1,207)$        

Cumulative Cash Flow (180,281)$          (181,079)$   (181,901)$   (182,747)$   (183,619)$   (184,518)$   (185,443)$   (186,396)$   (187,377)$   (188,388)$   (189,429)$   (190,502)$   (191,606)$   (192,744)$   (193,916)$   (195,123)$   

(2,118,721)$      NPV @ 5% assumed cost of capital

Without Geothermal Acquisition

Sustainable House & Car 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Engineered Lumber (53,184)$            -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Spray Foam (9,480)$               -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Energy Star Windows* (14,625)$            -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

H20 Harvesting (25,500)$            (100)$            (103)$            (106)$            (109)$            (113)$            (116)$            (119)$            (123)$            (127)$            (130)$            (134)$            (138)$            (143)$            (147)$            (151)$            

Solar (100%)+Electric (64,917)$            (498)$            (513)$            (528)$            (544)$            (561)$            (577)$            (595)$            (612)$            (631)$            (650)$            (669)$            (689)$            (710)$            (731)$            (753)$            

Electric Car Gas -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Aerobic Septic (10,500)$            (200)$            (206)$            (212)$            (219)$            (225)$            (232)$            (239)$            (246)$            (253)$            (261)$            (269)$            (277)$            (285)$            (294)$            (303)$            

2 x Tankless on Solar (3,000)$               -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Heat Pump (16,255)$            

Tax Credits 19,475$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              -$              

Net Cash Flows (177,986)$          (798)$            (822)$            (847)$            (872)$            (898)$            (925)$            (953)$            (981)$            (1,011)$        (1,041)$        (1,072)$        (1,105)$        (1,138)$        (1,172)$        (1,207)$        

Cumulative Cash Flow (177,986)$          (178,784)$   (179,606)$   (180,452)$   (181,324)$   (182,223)$   (183,148)$   (184,101)$   (185,082)$   (186,093)$   (187,134)$   (188,207)$   (189,311)$   (190,449)$   (191,621)$   (192,828)$   

*savings in use of solar electric

**ineffective (2,092,604)$      NPV @ 5% assumed cost of capital

(2,278,943)$      NPV Traditional

(2,118,721)$      NPV Sustainable w/Geothermal 160,222$     PV Difference (Traditional - NPV Sustainable w/Geothermal)

(2,092,604)$      NPV Sustainable w/out Geothermal 186,338$     PV Difference (Traditional - NPV Sustainable wout/Geothermal)  
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