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1 Abstract: The term Concept has been a prominent part of investigations in psychology and
> neurobiology where, mostly, it is mathematically or theoretically represented. The Concepts are
s also studied computationally through their symbolic, distributed and hybrid representations. The
«  majority of these approaches focused on addressing concrete concepts notion, but the view of the
s abstract concept is rarely explored. Moreover, most computational approaches have a predefined
s  structure or configurations. The proposed method, Regulated Activation Network (RAN), has an
»  evolving topology and learns representations of Abstract Concepts by exploiting the geometrical
s view of Concepts, without supervision. In the article, the IRIS data was used to demonstrate: the
»  RAN'’s modeling; flexibility in concept identifier choice; and deep hierarchy generation. Data from
1o loT’s Human Activity Recognition problem is used to show automatic identification of alike classes
1 as abstract concepts. The evaluation of RAN with 8 UCI benchmarks and the comparisons with 5
12 Machine Learning models establishes the RANs credibility as a classifier. The classification operation
1z also proved the RAN'’s hypothesis of abstract concept representation. The experiments demonstrate
1« the RANSs ability to simulate psychological processes (like concept creation and learning) and carry
s out effective classification irrespective of training data size.

1 Keywords: unsupervised machine learning; hierarchical learning; computational representation;
1z computational cognitive modeling; contextual modeling; classification; IoT data modeling

s 0. Introduction

I

10 Concepts are of great value to humans because they are one of the building blocks of our
20 recognition process. They enable us to perform cognitive functions such as classification which
a1 is fundamental in decision making and also capacitate us for contextual comprehension. By definition,
22 a concept refers to an ‘idea’” or a combination of several ideas but in the computational domain, a
2 concept can be a feature (object or event) or set of features (objects or events). An individual concept
2a is referred to as a concrete concept (or feature) whereas a generalized form of a set of concepts (or
= features) can be perceived as an abstract concept. There are several conceptual representation theoritical
26 frameworks [1] like modality-specific, localist-distributed, experience-dependent [2].

27 In computational domain, the concepts are mostly represented by three broad categories i.e.
2s  symbolic (eg. ACT-R [3]), distributed (eg. ANN) and spatial (eg. Conceptual Space [4]) representations.
20 Cognitive architecture like CLARION [5] is an example of a hybrid computational representation that
30 combines symbolic and distributed approaches, but there is no hybrid approach that combines all the
a1 three representations. Moreover, the symbolic, distributed, spatial and hybrid (spatial+distributed)
2 representations are mostly used on representing concrete concepts (like object detection) whereas the
ss  notion of an abstract concept is debated [1] but rarely explored.
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Figure 1. A universe of Concepts in six-dimensional feature hyper-space. The ovals in the diagram
depict individual Concepts. Each individual Concept is described by their defining 6-dimensions. The
cluster of Concepts shows the groups formed by similar Concepts represented by a Convex cluster of
Concepts, and the cluster centers depicts the most generic Concept of the cluster.

34 This article proposes a computational method named Regulated Activation Network (RAN)
s which unifies the virtues of symbolic, distributed and spatial representations to represent concepts
36 (both concrete and abstract). RAN has a graph-based topology hence it is distributed, every node in
sz the graph (network) identifies an entity, therefore, it’s symbolic, and every node (or entity) is viewed
;s in an n-dimensional feature space, hence, it’s also spatial. The spatial view of concepts as points
ss  in multidimensional geometric feature space (see Figure 1 for 6-dimensional View of Concepts) is
s inspired by the theory of conceptual spaces [4]. The RAN’s modeling has an evolving topology that
a1 enables it to build a model depicting a hierarchy of concepts. The geometrical associations among
a2 concepts aid in determining the Convex Abstract Concepts. Further, the representatives (nodes) of the
a3 Abstract Concepts form a new layer dynamically, where each node acts as a Convex Abstract Concept
4 representative for the underlying category. Symbolically, the concepts at (relatively) lower level in the
« hierarchy are identified as concrete concepts and the concepts at (relatively) higher level are seen as
s abstract concepts.

a7 The model generation process with RAN and the three cognitive functions (i.e. concept creation,
4« learning and activation propagation) are simulated using a IRIS data. The deep hierarchy generation,
s automatic generic concept modeling simulations are performed using 2 UCI benchmark: IRIS data;
so and IoT data from smartphone sensors. The application of RAN as a classifier is reported along with
s the proof of concept of classification using 8 UCI benchmark datasets. The generated models were
s2 evaluated using metrics precision, recall, F1-score, accuracy and Receiver Operating Characteristic
53 (ROC) curve analysis. The article also reports the RANs classification and feature comparison with five
s« machine learning techniques, Multilayer Perceptron (MLP) [6], Logistic Regression (LR) [7], K Nearest
ss  Neighbors (K-NN) [8], Stochastic Gradient Descent (SGD) [9] and Restrict Boltzmann Machine [10]
s pipelined with Logistic Regression (RBM+).

57 The article is organized in the following order; Section 1 puts forward the work closely related
ss to Abstract Concept representation and models with evolving topology. Section 2 describes the
so background associated with principles, theories, and motivations for RAN’s modeling. RANs
e methodology is detailed using a IRIS data in Section 3. Section 4 shows the experiments with two
&1 datasets acquired from UCI machine learning repository to exhibit (1) flexibility in choosing a suitable
sz concept identifier, (2) building a deep hierarchy of Abstract Concepts, (3) automatic association of
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es input-labels to their respective Abstract Concept nodes. Section 5 provides RANs comparisons with
s five classifiers and proof of concept with eight benchmark datasets. At last, Section 6 summarizes and
es concludes the article with remarks over ongoing and future work.

es 1. Related Work

o7 Abstract Concepts are of immense value because they help in developing unique abilities in
es humans such as relative recognition and effective decision-making. In medical science, there have been
e significant efforts to study Abstract Concepts with the help of technology. One such example is MRI',
70 which is being used to inspect the sections of the brain involved in Abstract Concept identification [11,
7 12]. Research in psychology has also reported investigations over Abstract Concepts, like probing the
=2 role of emotional content in processing and representing Abstract Concepts [13].

73 There has been a notable contribution from cognitive, and psycholinguists in studying languages
7a through Abstract Concept modeling and representations. Internally representing Abstract Concepts
»s via amodal symbols like a feature list, and frames [14,15] is among the preliminary research work
76 in linguistics. The association and context were also established, to relating Abstract and Concrete
7z words [14]. Some research reveals that we internally recognize metaphors as Abstract Concepts [16].
7e  Besides theoretical methods, computational approaches are playing a vital role in comprehending and
7 representing Abstract Concepts. Research in NLP addresses computational learning, comprehension
s and processing of human understandable language, and its components. An interesting article
a1 published a work about the representation of Abstract, and Concrete Concepts in daily written
e2 Language using a text-based multimodal architecture of NLP [17]. Other than NLP, semantic networks
es are also used to study semantic similarity among Abstract, and Concrete nouns (of Greek, and
ss English) [18] with the aid of network-based Distributed Semantic Model [19].

o5 Though the aforementioned computational approaches contribute toward Abstract Concept
s modeling and representation, they have a fixed topology (i.e., the modeling process begins with a
ez fixed structure and configuration). In connectionist computational modeling, there have been efforts to
es develop models that evolve. ANNA ELEONORA (standing for Artificial Neural Networks Adaptation:
e Evolutionary LEaming Of Neural Optimal Running Abilities) [20] demonstrated a way to grow
so neural networks with the aid of parallel genetic algorithms. NEAT (NeuroEvolution of Augmenting
o1 Topologies) [21] is another work that reported evolving neural network modeling, showing how nodes
o2 and weights are added to the model when new features emerge as part of the existing population
o3 and CoDeepNEAT [22] is the most recent member of such evolving models. Markov Brains [23] also
sa belong to the family of evolving neural networks which uses binary variables and arbitrary logic to
os implement deterministic or probabilistic finite state machines. They have been used to investigate
9s behaviors, character recognition and game theory.

o7 This article communicates an approach which is not only hybrid but also has an evolving topology.
os The RANs modeling learns the representation of the Convex Abstract Concepts dynamically, hence
e makes it an evolving topology. RANs approach is connectionist, and each newly created node
w0 corresponds to an Abstract Concept symbolically, thus portraying its hybrid characteristics.

11 2. Background

102 This section provides information about the principles and methodologies related to RANs
13 modeling. It highlights the significance of each approach, along with their applicability in RANs
s modeling.

1 Magnetic Resonance Imaging
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w5 2.1. Principles of Requlated Activation Networks

106 The tenets of RANS modeling, presented in [24], states model should be topologically a
107 connectionist and intends to represent and simulate the dynamic cognitive state of an agent. In
10e  the first version RANs [24] the authors implemented a single-layer version of the model where each
s node had a lateral connection to its same-layer companions. It had a simple learning and reasoning
10 mechanisms, but these showed to be sufficient to simulate several known cognitive phenomena such
11 as the Priming [25], the False Memory [26,27].

112 Two principles of Regulated Activation Networks inspired our proposal. First, the model should
us  be dynamic, and this is achieved by dynamically creating layers (deep representations) of Concepts.
us  Second, the model must be capable of learning and creating an Abstract representation of Concepts.
us This is obtained by viewing associations among the Concepts (at the same level) in n-dimensional
ue geometric space, and learning relationship between the newly created Abstract Concepts, and input
ur level Concepts.

us 2.2, Conceptual Spaces

110 Conceptual Spaces theory [4] is one of the cognitive approaches that form the basis of RANs
120 modeling. This theory views the Concepts as regions within a multi-dimensional space, with the data
11 features representing the dimensions. The similarity among the Concepts can be identified based upon
122 the geometrical distance between the objects. The Conceptual Spaces, thus, serves as a natural way or
123 tool to capture the similarity relationships among Concepts, or Objects. Under this setting, one data
124 instance corresponds to a single point in the space. Formally we can say, the Quality Dimensions, i.e., a
125 set of Dy, ..., Dy, forms the Conceptual Space S. A point in S is represented by a vector v= (dy, ....., dy),
126 Where {1,....n} are the indexes of the dimensions. Atomic Concepts are Convex Regions —a Convex
127 Region C having point x that falls between points x; € C and x, € C also belongs to C. The quality
122 dimension is the basic requirement for Conceptual Spaces [28]. An example is a color space with the
120 dimensions Hue, Saturation, and Brightness. Each quality dimension has a geometrical structure. For
130 example, Hue is circular, whereas brightness and saturation correspond with finite linear scales (see

Figure 2).
W
Y
G
R
B
S
Figure 2. The color space [29]

131
132 The theory of Conceptual Spaces also addresses prototype theory of categorization [30-32]. The

133 main idea of prototype theory is that within a category of objects, like those instantiating a Concept,
134 certain members are judged to be more representative of the group than others. For example, robins
135 are judged to be more representative of the category “bird” than are ravens, penguins, and emus. If
13s  Convex Regions of Conceptual Space describes Concepts, then prototype effect is, indeed, expected,
137 i.e., the most likely central position of a Convex Region describes an Abstract Concept. For example, if
13 color Concepts in a Convex region identified as subsets of the color space, then the central points of
13s these regions would be the most prototypical examples of the color.

140 Clustering is a suitable way of identifying and learning atomic Convex Concepts in conceptual
11 spaces. There are several clustering techniques, like hierarchical clustering, subspace clustering [33],
12 partitioning relocation clustering, density-based clustering, grid-based clustering and many more.
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Table 1. Notations

Notation Description

w Inter-Layer weight matrix

A Output Activation

a Input Activation

g Number of elements in input vector at Layer
)

na Number of elements in output vector at
Layer!+1

l I'th Layer representative

d Normalized Euclidean distance

C Cluster center or Centroids

ijk Variables to represent node index for

input-level, abstract-level, and arbitrary
node index in either of the levels,

respectively

t Iterator variable

f(x) Transfer function to obtain similarity
relation

13 Many are frequently used in the statistical and scientific analysis of data [34,35], and in machine
14s learning for the identification of Concepts/features [36]. On the other hand, the creation of a hierarchy
s of sub/super-Concepts is a way to represent more Abstract Concepts and their taxonomic-like
16 relations. Deep learning techniques [37-40,40,41] found in the literature can also be used to create
17 deep hierarchical representations, but usually do not interpret data as points in Conceptual Spaces.
1es  In the proposed approach, the clustering techniques enable us to identify categories of Concepts in a
s Conceptual Space thus laying the foundation to form a layer of Abstract representation of Concepts.

1o 2.3. Spreading Activation

151 Spreading Activation is a theory of memory [42] based on Collins and Quillian’s computer
152 model [43] which has been widely used for the cognitive modeling of human associative memory and
153 in other domains such as information retrieval [44]. It intends to capture the information representation
154 and how it is processing. According to the theory, long-term Memory is represented by nodes and
155 associative links between them, forming a semantic network of Concepts. The links characterized
16 by a weight denotes the associative or semantic relation between the Concepts. The model assumes
157 activating one Concept implies the spreading of activation to related nodes, making those memory
158 areas more available for further cognitive processing. This activation decays over time as it spreads,
15 which can occur through multiple levels [45], and the further it gets the weaker it becomes. That
10 is usually modeled using a decaying factor for activation. The method of spreading activation has
161 been central in many cognitive models due to its tractability and resemblance of interrelated groups
162 Of neurons in the human brain [46]. This theory of Spreading Activation inspires the activation
163 propagation mechanism in our proposal to propagate (spread) activation in the upward direction, i.e.,
1es from the input-to-abstract layer in the network. The method has its significance, i.e., in the creation of
1es the network, and in understanding the created Abstract Concepts.

1es 3. Abstract Concept Modeling with RANs

167 The data value used with RANs modeling should be between “0” and “1” (both inclusive). This
16s  limitation has its inspiration from biological neurons, a value “0” indicates neuron (or node) is inactive,
10 Whereas “1” shows the neuron is highly active. An additional header is also needed for modeling
170 with RAN. The size of the header is the same as the dimension of the input data vector, and each
11 header element holds the largest value of their corresponding input data attribute. See Section A.1
172 for elaboration. RANs works with multivariate datasets except image because pictures are not ideal
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Figure 3. Parallel coordinate plot of normalized IRIS data. The plot shows the three classes of IRIS data
along with their Cluster Representative Data Points (CRDP).

173 candidates to be interpreted as points in conceptual spaces, (discussed in Section 2.2). For this reason,
17a  our approach will, most probably, underperform on image processing tasks against other models that
s are, individually, designed for this kind of data, such as deep representations built with Convolutional
176 Networks [40,47,48]; our technique is preferably suitable for understanding and simulating cognitive
17z processes like Abstract Concept Identification.

178 The proposed approach models Convex Abstract Concepts through four core steps (i.e., Concept
1o Identification, Concept Creation, Interlayer Learning and Upward Activation Propagation), along with one
10 Optional step (i.e., Abstract Concept Labeling). The RAN’s methodology is explained using benchmark
;1 IRIS dataset. Figure 3 shows the parallel coordinate plot of IRIS data normalized between [0, 1] using
1.2 min-max technique. The plot also shows the Cluster Representative Data Points (CRDPs) for all three
13 classes of IRIS data (the importance of CRDP is detailed in 3.1). The objective of this experiment is
12 to show how RANSs build a hierarchical representation dynamically and simulate cognitive process
s Of concept creation, learning, and activation propagation. For this experiment, it was hypothesized that
1es  the created abstract concepts symbolically represents the three classes of IRIS data. Classification
17 Operations were performed to prove the hypothesis which are reported at the end of this section.

e 3.1. Step 1: Concept Identification (CI) Process

189 The concept identification is the process of identifying convex groups in the input data.
1o This is realized by categorizing the input data based upon their geometrical relationship, i.e.,
11 distance, conforming to the theory of conceptual spaces (see Section 2.2). The quality-dimension
102 (i.e. SepalLength, SepalWidth, PetalLength and PetalWidth attributes of input data) symbolically
103 represents input nodes (i.e. S1, Sy, S3 and Sy see Figure 4). In this experiment, K-means [49] clustering
10s  method is used a concept identifier and applied to determine the convex groups in the IRIS data. The
15 K-means was configured to determine the 3 classes (i.e. Iris-setosa, Iris-virginica, and Iris-Versicolor) of
106 RIS data. The clustering operation also determines the three cluster centers as Cluster Representative
1wz Data Points (CRDPs). According to the theory of prototype (see Section 2.2) these three CRDDPs are the
10s  mMOst probable representative of the three convex groups respectively, therefore are of great importance
109 in learning relationship among concepts in two adjacent layers (see Section 3.3).

200 Any clustering algorithm can act as a Concept Identifier in RANs modeling if it suffices two
201 basic requirements. First, the algorithm is able to determining Convex categories based upon their
202 geometric relationship among the data instances. Second, the algorithm recognizes CRDPs of all the
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Figure 4. Steps in model generation with Regulated Activation Networks. The nodes Sy, Sy, S3 and Sy4
symbolically represents SepalLength, SepalWidth, PetalLength and PetalWidth attributes of input data.

203 identified clusters. This flexibility of choosing a suitable method for Concept Identification process in
20a  RANs modeling is demonstrated by a separate experiment using Affinity propagation [50] clustering
20s algorithm, in Section 4.1.

206 3.2. Step 2: Concept Creation (CC) Process

207 Concept creation is a cognitive process to create representation of a newly identified concept.
20e In RANS this cognitive process is simulated by creating a new layer of concepts dynamically. Each
200 constituent node in the new layer symbolically acts as an abstract representative of their respective
210 categories identified in the CI process. Step-2 in Figure 4 shows the newly created layer (Layer-1),
2 that has 3 nodes (N7, Ny and N3), corresponding to 3 classes (i.e. Iris-setosa, Iris-virginica, and
z2 Iris-Versicolor) of IRIS data (see Figure 3), identified in CI operation.

=3 3.3. Step 3: Inter-Layer Learning (ILL) Process

214 Learning is an important cognitive process it acts as a relationship to associate concepts. In RANs
215 modeling, learning is simulated by an assignment operation. As aforestated in Section 3.2 that each
zs  node in the new layer is an Abstract representative of categories identified in CI process, thus we learn
z17  association among the two-layer such that it substantiates the Abstract representation by the nodes at
22 the new layer. Since CRDPs (see Section 3.1) are the most apparent choice as an Abstract representative
210 of a cluster (and adhere to the inspiration from prototype theory); consequently, the CRDPs assigned
220  as an association between the two layers.
Equation 1 shows the general learning in the form of a matrix, where W is the learned Inter-Layer
Weight (ILW) between node j at new layer (i.e., Layer-1 in Figure 4) and node i at input layer (i.e.,
Layer-0). The set of ILWs, from one node j at new layer to all input nodes i, are the values of CRDP
of jth cluster center (i.e., C;) identified in CI process. For instance, cluster center C; (see Figure 3)
forms the weight vector [Wy 1, W12, W1 3 and Wy 4] (ILWs shown by 4 yellow lines in Step 3 Figure 4)
between the node N; at Layer-1 and all four input nodes Sy, 5,53 and Sy at Layer-0.

Wi, Wi, ..., Wiy, G
W= Wk,l/ Wk,Z/ sy Wk,na = Ck (1)
WnA,lrWnA,Zz---rWnA,na C?’lA

21 Wherej=1,2,..,1ny4,and i=1,2, ..., n,.
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22 3.4. Step 4: Upwards Activation Propagation (LLAP) Process

223 This upward activation propagation is a geometric reasoning operation, i.e., a non-linear projection
22 of an i-dimensional input data vector a;, into a j-dimensional output vector A; (see Step 4 in Figure 4).
225 The UAP operation is carried out in two stages, in the first stage the geometric distance operation takes
226 place, and in the second stage, geometric distance is translated to establish a similarity relation.

22z 3.4.1. Geometric Distance Function (GDF)- Stage 1

In the first phase of the UAP mechanism we determine the geometrical distance between the
learned weight vectors (see Equation 1) and an input instance 4;. The numerator of Equation 2 shows
a function to calculate the Euclidean distance between the j* weight vector and input vector a;. The
denominator of Equation 2 shows the relation that normalizes? the calculated distance between [0, 1].

; Yty (Wi — a;)? )
22s  And consequently, j normalized Euclidean distances d; are obtained between all j weight vectors and
220 input instance 4;.

230 3.4.2. Similarity Translation Function (STF)- Stage 2

231 In the second phase the calculated normalized distance is transformed to obtain a similarity
232 relation such that following requirements are fulfilled:

233 e f(d =0) =1,i.e. when distance is 0 similarity is 100%.
234 e f(d =1) = 0i.e. when distance is 1 similarity is 0%.
238 e f(d = x) is continuous, monotonous, and differentiable in the [0, 1] interval.

f(x) = (1-x)* €))

23s  In RANs modeling Equation 3 is used as the Similarity Translation Function to determine the similarity

27 relation of the previously calculated distance. The non-linearity of STF is depicted in Figure 5,

23s  indicating that the similarity value reduces drastically when the normalized Euclidean distance is
larger than 0.05 (or 5% dissimilar).

1.0 ==0

x=0.0015625

Similarity Relation Trajectory

0.g [fx=0-003125 —_ f(X) =(1-— \3/})2

Similarity Relation Function f(x)

0.0 0.2 0.4 0.6 0.8 1.0
Input Activation (x)

Figure 5. Plot of Similarity Translation Function with respect to varying input values in range [0, 1]

2 InRANSs modeling the activation values are, by definition, real values in the [0, 1] interval — in an n-dimensional space the

maximal possible euclidean distance between any two points is /Y ; (a; — 0)?=/n, where a;=1.


https://doi.org/10.20944/preprints202001.0375.v1
https://doi.org/10.3390/app10061994

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2020 doi:10.20944/preprints202001.0375.v1

9 of 24

Algorithm 1 Upwards Activation Propagation algorithm

Input: Vector [ay, a, ..., ay,] as input at layer [.
Output: New activation vector [Ay, Ay, ..., Ay, ]inlayer ] + 1.
for Eachnode A; in layer [ +1do

Calculate Normalized Euclidean Distance:

g — VI (W i—a;)?
] N
Transform d; through STF Equation 3:
Aj = f(d})
end for
Where:
i=[1,2, ..., ngl.
j=11,2,..,na]

W ;i is ILW see Equation 1.

240 The first three steps generate the RANs model (see Figure 4), later, in the fourth step, this model
2a1  is used via UAP operation by propagating the input activation (4;) upward and obtaining activation
22 (A;) at Convex Abstract Concept layer (inspired by the theory of spreading activation see Section 2.3).
2a3  Algorithm 1 describes the Upward Activation Propagation operation, showing how the inputs and
2as  interlayer learning weights W are used to calculate similarity relation to generating output activation
205 at each Abstract Concept representative nodes. The activation A; in newly created nodes N; also
26 indicate the degree of confidence (DoC) of the identification of a class by its representative node in the
2z New layer (for a given input data instance). For instance, in Figure 4, Step-2, at Layer-0 input vector is
2s [0.1,0.21, 0.12, 0.5] it signifies that the dimensions S, Sy, S3 and S4 has activation 0.1, 0.21, 0.12, and 0.5
2e0  Tespectively. For the, aforementioned, input vector, [0.13, 0.32, 0.89] vector of activation is observed at
20 all nodes (N1, N2 and N3) respectively, at Layer-1. The observed activation vector itself describes that
=1 the input data belongs to Class-3 (Versicolor) with a DoC of 89%.

22 3.5. RANs Proof of Hypothesis

253 In the beginning of this Section 3 it was hypothesized that nodes in the newly created layer
=sa  symbolically represents abstract concepts of the 3 classes (Iris-setosa, Iris-virginica and Iris-versicolor)
25 Of Iris data. This hypothesis can be proven through classification operation using the RAN model
26 generated with IRIS data. The classification experiment setup consists of 30 iterations of an experiment.
=7 Bach experiment consist of 9 Research Design (RD)(see Table A3 in Section A.2), where, in every RD a
2s 10-fold cross-validation procedure was applied. To carry out the evaluation operation True-labels, and
280 lest-labels are determined via Abstract Concept Labeling (ACL) operation of RANs (see Section A.4 for
260 ACL’s description). Further, these labels were used to form a multi-class confusion matrix for the 3
261 Classes of IRIS data. and with the aid of this confusion matrix 4 metrics (i.e. Precision, Recall, F1-Score,
262 and Accuracy) were calculated.

263 Multi-class Receiver Operating Characteristics (ROC) curves were also plotted for the 3 classes to
2ea  support the classification experiment with IRIS data. The binary labels corresponding to the True-labels
265 (obtained via ACL operation) were obtained using the method node-wise binary transformation of
26 input True-label (see Section A.3). Further, the confidence scores for the binary vectors were calculated
26z using the node-wise confidence-score calculation method (described in Section A.3).

268 The Table 2 not only shows the RAN’s comparison with other 5 classifiers but also that RAN
200 indeed preformed well in the classification process with a performance of 95% (ca.) for all classification
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Figure 6. Area Under Curve for the 3 classes of IRIS for nine Research Designs (RD) of varying Test

and Train data sizes

Table 2. RAN'’s classification study with IRIS data

Model Precision (%) Recall (%) F1-Score (%)  Accuracy (%)
RBM 79.81 £11.91 7741 £11.88 70.66 £16.28  77.41 +11.88
K-NN 904142877 928 £21.61 91.00 £27.01  92.80 21.61
LR 9738+ 415 96.64+565 9645+6.12  96.64 £5.65
MLP 9731 £0.71 96.86+1.13 9681 +£1.21  96.86 £1.13
RANs 9542 £0.67 95024094 9498 £098  95.02 £ 0.94
SGD 9447 + 640 9446+520 9331+6.78 9446 £5.20

20 metrics. The ROC curve analysis also observed an Area Under Curve (AUC) of 99.07% (ca.), 99.40%
2 (ca.) and 98.75% (ca.) for IRIS Setosa, Virginica and Versicolor classes respectively. These results shows
22 the ability of RAN’s modeling to identify the abstract concept where the three nodes (Nj, N> and N3)
23 in Layer-1 symbolically represents the classes IRIS Setosa, Virginica and Versicolor, respectively, as
27a  abstract concepts, hence proves the hypothesis.

27s 4. Behavioral Demonstration of RANs

276 This section exhibits two distinct aspects of RANs modeling via separate experiments. Both
27 investigations present a different view of RANs methodology, highlighting the capabilities of the
s RANs approach.

270 4.1. Experiment with IRIS dataset

280 There are two objectives of this probe, first is to demonstrate flexibility in choosing an appropriate
=1 methodology for Concept Identification operation in RANs modeling (see Section 3.1). Second is
22 to show how RANs modeling can be used to build a deep hierarchy of Convex Abstract Concepts
2es  dynamically. This experiment uses Affinity propagation [50] clustering algorithm as a Concept
2ea  Identifier to support the claim of independence in selecting a suitable clustering method for CI process
2es  in RANs modeling. Unlike the K-means algorithm (used to describe the RANs methodology in
26 Section 3), with the Affinity Propagation algorithm, the number of clusters within the data need not
2z be known beforehand. Furthermore, Affinity Propagation conforms to the basic requirements (see
2ss  Section 3.1) for being a Concept Identifier in RANs modeling.

280 The second prospect of this experiment is to illustrate the dynamic topology of RANs approach
200 where the network grows to form several layers representing Convex Abstract Concepts. For this
201 demonstration, an algorithm is developed, named Concept Hierarchy Creation (CHC) algorithm
202 (see 2). The CHC algorithm streamlines all four steps of RANs modeling (i.e., CI, CC, ILL and UAP)
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203 and uses these steps iteratively to build a hierarchy of Convex Abstract Concepts as described through
20a  Algorithm 2. This experiment was also conducted using the IRIS dataset obtained from the UCI
205 machine learning repository [51]. In the CHC algorithm the Affinity propagation clustering algorithm
206 Was initialized with the following parameters: (1) damping_factor (DF) = 0.94 for layers below level 3,
DF = 0.9679 for the layers at level 3 and above; (2) convergence_iteration=15; (3) max_iteration=1000.

Output AJ

attgt

Input 3

Figure 7. The model generated with 90% stratified IRIS data using Concept Hierarchy Creation
Algorithm. Layer-0 is created while initializing the CHC algorithm. The algorithm grew to a
Desired-depth of six Layers (including input Layer-0), and in each iteration of CHC algorithm a new
layer is created dynamically and the Interlayer weights (ILW) are learned between the existing layer

and a newly created layer above it.
297

208 Input layer-0 was created, with four nodes (equal to the dimension of IRIS data), and the RANs
200 hierarchy generation is carried out according to Algorithm 2. The model obtained from CHC process
s0 is depicted by Figure 7, the model was initialized to grow six layers deep. Therefore, hierarchy
;o1 augmentation terminates at Layer-5, with Layer-5 identified as most Abstract layer consisting of three
sz nodes acting as Abstract representatives of three categories of flowers of IRIS dataset. To evaluate the
303 obtained RANSs model, True-labels, and Test-labels were retrieved using an Abstract Concept labeling
s procedure (see Section A.4). A confusion matrix (see Figure 8) was generated using the True and Test
a5 labels. With the aid of the confusion matrix, Precision, Recall, F1-Score and Accuracy were calculated
s0s  to evaluate the model. The model performed quite decently with an observed accuracy of 93.33 (ca.),
sz the results of precision, recall and F1-Score are reported in Table 3. The ROC curve analysis of the
ss  RANs model, as shown in Figure 9, displays the various operating characteristic and the observed Area
a0 Under Curve for all the classes of IRIS data. In this experiment, it is worth mentioning the application
a0 of RANs modeling for data dimension transformation and data visualization. In Figure 7 we can
su observe that the dimension of Layer-0 is four, whereas the size of the other layers either expands or
a1z reduces when the network grows. This dimension transformation operation is helpful in addressing
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Algorithm 2 Concept Hierarchy Creation Algorithm

Input: Multi-variate data with values between [0,1].
Output: Set of layers of Concepts — concept hierarchy.

Initialization: Create input layer layer-0 having dimension equal to that of input data.
Set Current-layer-size CLS = i, dimension of input-data vector.
Set Layer-count L= 0.
Set Desired-depth= 6.
Select Clustering algorithm and initialize.
Set current-data = input-data.
repeat
Run clustering algorithm on current-data to identify set of cluster centers C.
Create a new-layer above current-layer, with no nodes.
for each cluster center C; € C do
Create new node j in new layer I+1.
for each node i in current-layer do
Create a new weighted connection W, ;
between ¢; and i such that W, ; is the
coordinate of ¢ along the i dimension.
end for
end for
Set new-data = empty data set.
for each datum in current-data do
Inject datum in current-layer
Propagate activation from current-layer to new-layer using algorithm 1.
Add activation pattern produced in new-layer to new-data.
end for
SetL=L+1.
Set CLS = number of clusters in current-layer.
Set current-data = new-data.
Set current-layer = new-layer.
until CLS=1 OR Desired-depth= L.

Predicted Labels
Class-0 Class-1 Class-2
Class-0 100% 0% 0% 5
-
2 Classt 0% 100% 0% 5
Class-2 0% 20% 80% 5
5 6 4 15

Figure 8. Confusion Matrix generated to validate RANs model with IRIS data (having 9 : 1 train, and
test data ratio) for Class-0 (Setosa), Class-1 (Verisicolour), and Class-2 (Virginica).

a3 the issue of the cures of dimensionality. Besides, the transformed data can be plotted to extract useful
ae  information from the data.

ss 4.2, Experiment with Human Activity Recognition Data

316 This experiment aims to show the ability of the RANs approach to build the representation of
a1z generic Concepts. The experiment uses UCIHAR [52] dataset for home activity recognition using the
as smartphone, obtained from the UCI machine learning repository. The data captured six activities
a0 Walking, Walking_upstairs, Walking_downstairs, Sitting, Standing, and Laying. The hypothesis of
20 this experiment is that the labels Walking, Walking_upstairs, Walking_downstairs are identified by an
sz abstract concept (say) Mobile and the other 3 labels Sitting, Standing, and Laying by abstract concept
sz (say) Immobile. In this experiment also classification operation can be used to prove the hypothesis.

323 The UCIHAR dataset was normalized and a header was attached. In CHC algorithm K-means
;24 is chosen as concept identifier and the parameter Desired-depth was set to 1 so that model has only
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Table 3. Evaluation of RANs Model generated through IRIS data

Precision Recall F1-Score

Class (%) (%) (%) Support
Setosa 100 100 100 5
Versicolour 83.33 100 90.91 5
Virginica 100 80 88.89 5
Avg/Total 94.44 93.33 93.26 15

ROC Analysis I

10} 7
p
.
.
.
.
-
0.8} e
.
@ s
g 06| ’,ﬂ_ Class-0 (AUC=100%)
= L7 = Class-1 (AUC=92%)
£ o7 — Class-2 (AUC=94%)
.
% 04+ L . 4
& Lt
L
p
0.2+ e
L
.
p
-
-
0.0 2 L L L L
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 9. ROC curve analysis with IRIS dataset (having 9 : 1 train, and test data ratio), for Class-0
(Setosa), Class-1 (Verisicolour), and Class-2 (Virginica)
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Figure 10. Model generated with RANs approach. Nodes Nj and Nj at Layer-1 represents either
of the two Abstract Concepts, i.e. Mobile and Immobile. Each node at Layer-0 represents individual
dimensions of input data vector

a2s  two layers. The K-means was configured with K=2 because the model was hypothesized to have 2
;26 abstract concepts at Layer-1. Having fulfilled the initialization part of the CHC algorithm modeling
s27  is performed, generating a two-layered model as depicted in Figure 10. In Figure 10 Layer-0 shows
s2e  input-layer and Layer-1 corresponds to Abstract Concept layer where both nodes (N7, and N») represents
a20  either of the two Abstract Concepts (i.e. Mobile and Immobile Abstract Concepts).

330 Among captured six activities (Walking, Walking_upstairs, Walking_downstairs, Sitting, Standing
s and Laying), Walking, Walking_upstairs, Walking_downstairs are the actions of motion, whereas the
sz remaining three represents static states. Based upon these two facts, we expect that one of the Abstract
s nodes in Layer-1 conjointly represents Walking, Walking_upstairs and Walking_downstairs as one
:3a  class. The other node in Layer-1 stages the other three categories (i.e., Sitting, Standing and Laying)
;s together. Upon performing the labeling of nodes at Layer-1 through ACL procedure (see Section A.4
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Table 4. RAN’s Comparative Study for UCIHAR dataset

Model Precision (%) Recall (%)  F1-Score (%) Accuracy (%)

RBM 99.68 £0.14  99.68 +£0.14 99.68 £0.14 99.68 £0.14
K-NN 99.96 £0.02  99.96 +£0.02 99.96 £0.02 99.96 £0.02
LR 99.97 £0.02  99.97 +£0.02 99.97 £0.02 99.97 £0.02
MLP 99.96 £0.02  99.96 £0.02 99.96 £0.02 99.96 £0.02
RANSs 99.85 £0.01  99.85 +0.01 99.85 +0.01 99.85 £0.01
SGD 99.98 £0.01  99.98 +0.01 99.98 +0.01 99.98 +0.01

ass  for ACL process elaboration), it was observed that Walking, Walking_upstairs, Walking_downstairs
:37  classes were mapped to one node of Layer-1. Whereas, the labels Sitting, Standing and Laying traced
:3s  to the other node in Layer-1. Interestingly, this outcome commensurate with the expectations from
330 this experiment and shows the RANs capability to identify Abstract Concepts in an unsupervised

manner naturally. The True-label and Test-label obtained through ACL operation were used to form

Area Under Curve (AUC) Analysis

M Mobile ® Immobile
100

99.98

- #ﬂ #ﬂﬂ

AUC (%)

99.92

99.9
RD-1 RD-2 RD-3 RD-4 RD-5 RD6 RD-7 RD-8 RD-9

Research Design(RD)

Figure 11. Area Under Curve observed during ROC curve analysis of UCIHAR data in order to
determining operational points of two Abstract Concepts (i.e. Mobile and Immobile) for all nine Research
Designs (RD)

340

s the confusion matrix, which is later referred to calculate Precision, Recall, F1-Score, and Accuracy for
sz evaluating the generated model. Node-wise binary labels and confidence scores were determined (as
sa3  described in Section A.3) for both Abstract nodes at Layer-1. Figure 11 shows the Area Under Curve
s (AUC) observed during the ROC curve analysis of all 10-Folds in different Research Designs. With
as  both these evaluations it is deduced that, apart from building the representation of Abstract Concepts,
ass  the model generated with RANs performed satisfactorily.

347 The RANs modeling was compared with five different types of approaches based upon their
sas  Classification operation. To carry out the comparative study it was essential to transform the six
a0 Labels into binary Labels, because RANs modeling was identifying two Abstract Concept, and its
0 performance was measured based upon them. Thus, with these five approaches, the Labels of the
1 dataset were merged to form two groups, i.e., Walking, Walking_upstairs, Walking_downstairs in
ss2  Class-1, and Sitting, Standing, and Laying in Class-2. Later the modeling was performed followed by
ss3 validation and evaluation. Table 4 displays the comparison of all five approaches with RANs modeling.
s« Itis observed that RANs approach is competent to these five techniques, with an added advantage of
355 being an unsupervised approach, and ability to build representations of Abstract Concepts.

s 5. RANs Applicability and Observations

357 This section highlights the scope of RANs modeling as a classifier w.r.t. distinct domains. To
s support this ambit of RANs usability, experimental results are reported using eight datasets concerning
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RAN's Performance With Different Datasets
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(a) RANs performance with eight different datasets depicting RANs appositeness with data belonging
to distinct domains.

Area Under Curve Analysis
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(b) Observed Area Under Curve (AUC) while performing ROC curve analysis for RANs model
generated with eight different datasets.

Figure 12. RANs performance with eight datasets using Precision, Recall, F1-Score and Accuracy
along with ROC-AUC analysis with Eight benchmark datasets [ Mice Protein (MP), Breast Cancer 669
(BC1), Breast Cancer 569 (BC2), Credit Approval (CA), IRIS data (ID), Mamographic Mass (MM), Wine
Recognition (WR) and Glass Identification (GI)]. The graph 12b shows the plot of percentage AUC
for classes 1 to 8. For each dataset class labels of the graph is serially mapped as: Mice protein (c-CS-s
[Class-1], c-CS-m [Class-2], c-SC-s [Class-3], c-SC-m [Class-4], t-CS-s [Class-5], t-CS-m [Class-6], t-SC-s
[Class-7] and t-SC-m [Class-8]); Mammographic Mass (Benign [Class-1] and Malignant [Class-2]); Credit
Approval (Postitive [Class-1] and Negative [Class-2]); IRIS) (Setosa [Class-1], Versicolar [Class-2] and Verginica
[Class-3]); Breast Cancer 569 (Benign [Class-1] and Malignant [Class-2]); Breast Cancer 669 (Benign [Class-1]
and Malignant [Class-2]), Wine Recognition (Class-1, Class-2 and Class-3) Glass Identification (Window Glass
[Class-1] and Non-Window Glass [Class-2]).


https://doi.org/10.20944/preprints202001.0375.v1
https://doi.org/10.3390/app10061994

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2020 doi:10.20944/preprints202001.0375.v1

16 of 24

Table 5. RANs comparison with eight datasets belonging to different domains

Data | Algo Precision (%) Recall (%) | F1-Score (%) | Accuracy (%) | Data | Algo Precision (%) Recall (%) | F1-Score (%) | Accuracy (%)

RBM+ | 43.45 +44.07 | 53.50 £38.23 | 45.46 £43.36 | 53.50 £38.23 RBM+ 93.60 £2.69 | 93.51 +£2.77 | 93.46 £ 2.86 93.51 +£2.77

c KNN 98.63+3.97 | 98344484 | 98.07 £5.65 9834 £ 484 | § KNN 99.80+£0.59 | 99.794+0.62 | 99.78 & 0.63 99.79 & 0.62
£33 [ LR 98.99+£1.94 | 98284338 | 98.14 £3.71 98284338 | & = | LR 99.89 +£0.07 | 99.89 +0.07 | 99.89 & 0.07 99.89 &+ 0.07
= 2 | MLP 9854219 | 98234271 | 97.83 334 98.23 £2.71 g 2 | MLP 98.67 £0.94 | 98.654+0.96 | 98.64 &= 0.96 99.89 &+ 0.07
&~ RAN 99.98 £0.06 | 99.97 £0.06 | 99.89 £ 0.06 99.97 + 0.06 S | RAN 93.17+£0.36 | 9297 +0.36 | 92.87 £ 042 92.97 + 0.36
SGD 99.11 £ 1.84 | 98.84 +2.46 | 98.68 +2.81 98.84 +2.46 SGD 99.87 £0.13 | 99.85+0.18 | 99.83 £0.20 99.85 4+ 0.18

RBM+ 95.72+3.62 | 953444.60 | 9513 £5.16 95.34 + 4.60 RBM+ | 76.44 £12.50 | 75.63 £12.98 | 74.04 £14.59 | 75.63 £12.98

- 2 | KNN 99.46 +0.88 | 99.4440.93 | 99.43 £ 0.94 9944 +£093 | = | KNN 9548 £0.16 | 95464+ 0.17 | 9546 £ 0.17 95.46 + 0.17
a ; LR 99.16 £0.17 | 99144017 | 99.15 £0.17 99.14 £0.17 | 5 § LR 95.06 +0.38 | 95.0440.39 | 95.04 & 0.39 95.04 + 0.39
E 2 | MLP 98.96 0.76 | 98.95+0.76 | 98.95 £ 0.77 98.95 + 0.76 5 2 | MLP 98.02+1.32 | 98.00+1.34 | 9799 £1.34 98.00 & 1.34
S | RAN 95.18 £0.25 | 95.15+0.24 | 95.11£0.25 95.15 + 0.24 < | RAN 80.67 £1.37 | 79.58 £1.05 | 79.66 £1.13 79.58 + 1.05

SGD 99.88+£0.16 | 99.884+0.16 | 99.18 £ 0.16 99.88 £ 0.16 SGD 99.77 £0.39 | 99.754+040 | 99.75 £ 0.40 99.75 + 0.40

£ RBM+ | 8258 £10.29 | 84.194+4.90 | 80.61 & 8.42 84.19 4 4.90 E RBM+ | 84.85£16.54 | 85.18 £14.98 | 82.42 +20.30 | 85.18 £14.98

k= KNN 94.08 £12.12 | 95.97 +7.32 | 94.82 £10.59 95.97£7.32 | & KNN 99.65 +0.88 | 99.64 +0.89 | 99.64 & 0.89 99.64 & 0.89

§ & | LR 99.52+£0.18 | 9949 £0.18 | 99.49 £0.18 99.49+0.18 | & § LR 99.41+£0.30 | 9940+ 0.30 | 99.40 £0.30 99.40 & 0.30
7] ‘E MLP 93.78 £1.40 | 9328 £1.52 | 92.85 £ 1.64 93.28 + 1.52 g s | MLP 98.91 £2.11 | 98.79+£2.35 | 98.79 £2.35 98.79 4 2.35
< | RAN 90.07 043 | 89184123 | 89.32+1.10 89.18 +1.23 g RAN 80.28+0.18 | 79.204+0.23 | 79.08 £ 0.24 79.20+0.23

~ | SGD 9795+ 0.66 | 97.87 £0.69 | 97.82 £0.70 97.87 £ 0.69 SGD 99.96 £0.03 | 99.9440.07 | 99.93 £ 0.09 99.94 & 0.07
RBM+ | 79.81 £11.91 | 77.41 £11.88 | 70.66 +16.28 | 77.41 £11.88 - RBM+ | 56.00 £25.66 | 67.05 £16.91 | 59.07 £21.91 | 67.05 £16.91

KNN 90.41 £28.77 | 92.80 £21.61 | 91.00 £27.01 | 92.80 +21.61 S | KNN 90.74 £26.00 | 92.88 £19.48 | 91.14 £24.70 | 92.88 +19.48

2] LR 97.38 £4.15 | 96.64 £5.65 | 96.45 £6.12 96.64 £5.65 | E LR 9414 +£1.55 | 9313 +1.82 | 93.00 £1.92 93.13 + 1.82
& MLP 97314071 | 96864+ 113 | 96.81 =121 96.86 + 1.13 § @ [ MLP 97.44 +£0.51 | 97.334+0.59 | 97.32 £0.59 97.33 &+ 0.59
RAN 9543 +0.67 | 95.024+0.94 | 94.98 +0.98 95.02 £ 0.94 E RAN 94.87 £0.91 | 94344+1.00 | 9429+ 1.01 94.34 + 1.00

SGD 9447 £ 640 | 9446 +520 | 9331+6.78 | 9446 £5.20 SGD 9813+ 070 [ 9791 +£0.75 | 9791+£0.76 | 9791 £0.75
RBM+- Restricted Boltzmann Machine + Pipelined with Logistic Regression; KNN- K Nearest Neighbor; LR- Logistic Regression; MLP- Multi Layer Perceptron;
RAN- Regulated Activation Network; SGD- Stochastic Gradient Descent

0 with different areas. A comparative study was also carried out using these datasets to match RANs
se0  classification ability with five different classifiers.

361 Among the eight datasets, the Mice Protein [53], Mammographic Mass [54], Breast Cancer 569 &
2 669 [55,56] data pertain to the medical field, Glass Identification [57] data representing forensic science,
ses  Credit Approval [58] represents economic data, Iris [59] is a botanical data, and Wine Recognition [60]
see is a data for chemical composition analysis. The experiments performed with these datasets were
ses  akin to the investigations done with Toy-data (in Section 3), and UCIHAR data (in Section 4.2), i.e.,
s K-means algorithm used as concept identifier, where ‘K’ is the number of class labels of each dataset,
se7 the hierarchy is set to have a depth of two layers (one Input and one Abstract Concept layer). For
s every dataset, models were generated using thirty iterations in nine Research Designs (RD) (refer
a0 the Table A3 in Section A.2). In every RD 10-Fold cross-validation was applied to determine the
a0 performance of the models. An aggregate of Precision, Recall, F1-Score, and Accuracy of all folds
snn in all RDs was calculated for all the datasets, as shown in Figure 12a. From the Figure 12a it can be
sz observed that with Mice Protein data RANSs scores 99.99%(ca.) for all evaluation metric, whereas for Iris,
a3 Glass Identification, Breast Cancer, and Wine Recognitions the observations were convincing, i.e., above
sz 89.00% (ca.). In all the folds of nine RDs ROC curves were also plotted for each class label of the eight
srs  datasets, the mean AUC for each class of the datasets is shown in Figure 12b. The evaluation metrics
aze and ROC-AUC analysis (Figure 12a & 12b respectively) displays the RANs capability in machine
sz learning tasks with different kind of datasets.

378 The same procedure was applied to obtain average Precision, Recall, F1-Score and Accuracy for all
s7e  the datasets with five other classifiers (i.e. RBM+, KNN, LR, MLP, and SGD). Table 5 shows the overall
;0 comparison. It is worth noting that being dynamic and unsupervised RANs modeling performed
se1  quite satisfactorily especially with Mice Protein data, where it outperformed SGD and RBM+, was
2 found competent with LR, KNN and MLP classifiers. Figure 13 shows four graphs depicting RANs
;e performance with different benchmark data sets. These graphs display an important aspect of RANs
;s modeling and its performance behavior when evaluated to different research design 13. The Precision,
ses  Recall, F1-Score, and Accuracy trajectories of Human Activity Recognition (HAR), Breast Cancer 669
s (BC1), Toy-data (TD) and Mice Protein (MP) Data is almost straight. The evaluation plots of Glass
se7  Identification (GI), Wine Recognition (WR), Mammographic Mass (MM), Breast cancer 569 (BC2) and
sss  Mice Protein (MP) datasets show a minimal decline in observations w.r.t RD-1 and RD-9 Research
;0 Design. On the contrary, results from IRIS Data (ID) and Credit Approval (CA) dataset depicted
s0  a higher value while comparing the evaluation of RD-1 with RD-9 Research Designs of these data
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Table 6. Feature based comparative study of RANs with 5 modeling techniques

Features\Models RBM K-NN LR MLP RANs SGD
Graph-Based Yes No No Yes Yes No
Dynamic Topology No No No No Yes No
Dimension Reduction Yes Yes No Yes Yes No
Dimension Expansion =~ May be No No May be Yes No
Unisupervised Yes No No No Yes No
Supports Classification Yes Yes  Yes Yes Yes Yes
Bio-inspired Yes No No Yes Yes No

301 sets. Principally, the results of all four metrics of evaluation obtained similar results (with marginal
302 variation) irrespective of the Test and Train data ratio. This is a notable observation because it shows
s0s that RANs approach obtains a satisfactory result even when trained with a small amount of data.

304 Besides classification comparison, the RAN’s modeling is compared with the 5 classifiers based
s0s upon 7 features: (1) Whether the modeling in graph based; (2) whether the modeling has a dynamic
ss topology; (3) and (4) whether modeling can reduce or expand the dimension of the data; (5) whether
sz modeling can perform classification; and (7) whether modeling is biologically inspired or not. Tabel 6
ss details this comparative study. It can be observed from this table that RAN is closely related to the
39 models that are biologically inspired i.e. RBM and MLP.

w0 6. Conclusions and Future work

401 To comprehend and reasoning for emotions, ideas, etc., it is evident to understand Abstract
sz Concepts because they are perceived differently from Concrete Concepts. There have been notable
03 efforts to study Concrete Concepts (features like walking or ingredients), but progress in investigating
s0s  Abstract Concepts (generic features such as is-moving or recipe) is relatively less. This article
s0s proposes an unsupervised computational modeling approach, named Regulated Activation Networks
a6 (RANS), that has an evolving topology and learns a representation of Abstract Concepts. The RAN’s
«07  methodology was exemplified through a UCI’s IRIS dataset, yielding a satisfactory performance
208 evaluation of 95% (ca.) for Precision, Recall, F1-Score and Accuracy metrics, along with an average
a0 AUC of 99% (ca.) for all the three classes in the dataset. These evaluation result not only showed the
a0 classification capability of RANs but also proved the hypothesis of the experiment i.e. the 3 newly
a1 created nodes in the Layer-1 symbolically represent the 3 classes of IRIS data as abstract concepts.

a12 Another experiment with IRIS data displayed the characteristic of RAN’s deep hierarchy
a3 generation and independence in choosing Concept Identifier. With the aid of Concept Hierarchy
aa Creation algorithm (proposed in Section 4.1), evolving nature of RAN’s modeling is shown using
a5 Affinity Propagation clustering algorithm (as an alternate Concept Identifier instead of the K-means
a6 algorithm as used in modeling with Toy-data problem). With the generated model it was shown that
a7z the model dynamically grew to a depth of six layers and performed with Precision of 94.44% (ca.),
as Recall of 93.33% (ca.), F1-Score of 93.26% (ca.) and Accuracy of 93.33% (ca.), along with an observed
a9 AUC of 100% (ca.), 92% (ca.) and 94% (ca.) for the three classes of data. This experiment also highlights
a0 the application of RANs modeling in data dimension transformation and data visualization.

a2 Modeling with UCI’s IoT based Home Activity Recognition (UCIHAR) smartphone sensor
sz dataset exhibited the RAN’s behavior of natural identification of generic Concepts. The experiment
a2z hypothesize that six data labels (activity of Walking, Walking_upstairs, Walking_downstairs, Sitting,
«2« Standing and Laying) of the dataset are to be identified as Mobile (Walking, Walking_upstairs and
a2 Walking_downstairs) and Immobile (Sitting, Standing and Laying) Abstract Concepts. This hypothesis
a2 Was also proven using classification operation, where, the evaluation of the model shown a performance
a2z 0f 99.85% (ca.) for all four metrics and AUC of 99.9% (ca.) for both Abstract Concepts. The experiment
a2s  also demonstrates how RAN can be used to model the data from IoT domain in an unsupervised
420  Manner.
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Figure 13. RANSs evaluation metric (Precision, Recall, F1-Score and Acuracy) value behavior w.r.t.
varying test and train data ratio over ten datasets [ Mice Protein (MP), Breast Cancer 669 (BC1), Breast
Cancer 569 (BC2), Credit Approval (CA), IRIS data (ID), Mamographic Mass (MM), Human Activity
Recognition (HAR), Toy-data(TD), Wine Recognition (WR) and Glass Identification (GI)].
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Table 7. Acronyms used in the Article

Acronym  Description Acronym  Description Acronym  Description

ACL Abstract Concept Labeling DoC Degree of Confidence MM Mammography Mass Dataset

AUC Area Under Curve GDF Geometric Distance Function MP Mice Protein Dataset

BC1 Breast Cancer 669 Dataset GI Glass Identification Dataset MRI Magnetic Resonance Imaging

BC2 Breast Cancer 569 Dataset HAR Human Activity Recognition Data RANSs Regulated Activation Networks

CA Credit Approval Dataset D IRIS Dataset RBM Restricted Boltzmann Machine

CcC Concept Creation ILL Inter Layer Learning RD Research Design

CHC Concept Hierarchy Creation Iw Inter Layer Weights ROC Receiver Operating Characteristic

CI Concept Identification K-NN K Nearest Neighbor SGD Stochastic Gradient Descent

CLS Current Layer Size LR Logistic Regression STF Similarity Translation Function

CRDP Cluster Representative Data Point MLP Multilayer Perceptron UAP Upward Activation Propagation
430 The proof of concept of RAN’s modeling as a Machine Learning classifier was also provided with

a1 eight UCI benchmarks. It was identified that RAN’s approach performed satisfactorily displaying
a2 the best outcome of 98.9% (ca.) with Mice Protein dataset (for all metrics). The comparison of RAN’s
«3 modeling with five classifiers substantiated the effectiveness of the proposed methodology. We also
a3 observed that the RAN’s performance remained similar irrespective of the size of train data. RAN was
a5 also compared with the 5 classifiers based upon its features and it was observed that RAN was similar
a6 to bio-inspired models. During the simulations, a non-convexity was observed in several datasets. As
a7 future work, we intend to improve RAN’s modeling that can capture the non-convexity in the data
a3s  and enhance the modeling to build non-convex abstract concepts.

430 Funding: “The work presented in this paper was partially carried out in the scope of the SOCIALITE
a0 Project (PTDC/EEI-SCR/2072/2014), co-financed by COMPETE 2020, Portugal 2020 - Operational Program

aa1 for Competitiveness and Internationalization (POCI), European Union’s ERDF (European Regional Development
42 Fund), and the Portuguese Foundation for Science and Technology (FCT).

aa3  Conflicts of Interest: “The authors declare no conflict of interest.”
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a5 The abbreviations are used in this manuscript are listed in Table 7:

sz Appendix A Supplementary Materials

as  Appendix A.1 Data & Scripts

as0 This section provides links to download the data and python script used to perform RANs
aso modeling experiments, mentioned in this article. The data and script folders can be downloaded
451 from the web URL mentioned in Table A1l. The data folder contains many files and the direct path
a2 to the files are provided in the Table Al. Similarly, the script folder RAN_V2.0 also contains many
a3 folders where Folder RAN consist of the python scripts. The folder Observations is for storing the
ssa  outcome of the experiments, at the beginning of each experiment the empty folder in directory
a5 empty_passes_for_Experiment_Observations must be copied into the Observation directory. The python
ass  script related to RANs modeling is in folder RAN, the description is mentioned in the Table AT.

as7 The implemented RANs modeling tool in python takes input data in a specific format (shown in
ass  Table A2). Besides the data, the inputs require a header as the first row stacked over the original data.
aso  Bach header element, [H — 1, H — 2, ....... , H — n], is the Maximum value possible for their respective

w0 column (feature, or dimension). It is assumed that the minimum value of the column is zero, if it is
s1  not then the data must be transformed between zero and the maximum positive value as described in
sz Section 3.
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Table Al. Data and Python Script of RANs modeling
Type | Description File-path
Download link https:/ /www.dropbox.com/sh/34100zeru3o50pm/AAA24aUGtUS1i7xHKp9kyzRKa?d1=0
IRIS Data data/iris_with_label.csv
Mice Protein data data/Data_cortex_Nuclear/mice_with_class_label.csv
Glass Identification data data/newDataToExplore/new /GlassldentificationDatabase /RANsform.csv
Wine Recognition data data/newDataToExplore /new/WineRecognitionData/RansForm.csv
Data | Breast cancer 669 data data/newDataToExplore /new /breastCancerDatabases /699RansForm.csv
Breast Cancer 559 data data/newDataToExplore/new /breastCancerDatabases /569RansForm.csv
UCIHAR data data/UCI_HAR_Dataset.csv
Mamographic Mass data data/newDataToExplore/new /MammographicMassData/RansForm1
Credit Approval data data/newDataToExplore/new /CreditApproval/RansForm.csv
Toy-data data data/toydataSclustersRAN.csv
Download Link https:/ /www.dropbox.com/sh/rcwlcjdcelf3zic/ AAAm6wVTj2qsLZ11bc3kn4MPa?dl=0
Script | RANSs classes and methods RAN_V2-0/RAN/RAN_kfold.py
Methods RAN_V2-0/RAN/Layer.py
Utilities like Labeling and plotting | RAN_V2-0/RAN/UtilsRAN.py
Python Script for using RANs RAN_V2-0/RAN/RAN_input_T1.py
Table A2. Input Data Format for implemented RANs Modeling
Header | H-1 H-2 ... H-n
D-1 D-2 D-n
w | D1 D2 D
g
<
=5
A%
= .
—
D-1 D2 ... D-n
w3 Appendix A.2 Model Configurations and Research Design
464 Various experiments, reported in this article, were conducted with several datasets, using six

ass modeling techniques including the proposed methodology i.e. RANs modeling. Table A4 in Section A.2
sss shows configurations of all the models for all the experiments. The experiments were carried out
«7 using python programing language, and implementations of Restricted Boltzmann Machine pipelined
ass  with Logistic Regression (RBM+), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Multilayer
a0 Perceptron (MLP), and Stochastic Gradient Descent (SGD) models of Scikit-learn library [? ]. It is to be
a7zo  noted that experiments with RBM were carried out, pipelined with the LR algorithm using the default
ann  configuration of its implementation in scikit-learn library. The Table A3 lists the nine Research Designs
a2 (RD) used in the experiments of this article. In every RD the ratio of the Train and Test data is varied to
473 capture the ability of the classifier being inspected. The Table 7 lists the acronyms used in this article.

ara  Appendix A.3 Multi-class ROC analysis with RANs Modeling

478 This study is carried out by two processes, first the input true-labels are transformed into a
a7e  separate vector of binary labels, individually for all Abstract nodes (i.e. 1 for class c1, 0 for all other
a7z classes), second, calculating the confidence score for each instance of the input data (or test-data). Both
a7s  processes are described as follows:

a9 1 Node-wise binary transformation of True-Labels: For example, suppose there are three classes
480 (c1, c2, c3) represented by three abstract nodes (n1, n2, and n3) in RANs model at Layer-1, and

Table A3. Train & Test data distributions in nine Research Designs (RD)

RD-1 RD-2 RD-3 RD-4 RD-5
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test
90% | 10% | 80% | 20% | 70% | 30% | 60% | 40% 50% | 50%
RD-1 RD-7 RD-8 RD-9
Train | Test | Train | Test | Train | Test | Train | Test | ——— | —
40% | 60% | 30% | 70% | 20% | 80% 10% | 90% | —— | ——
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Table A4. Dataset specific configuration details of models

Data | Algo Configurations Data | Algo Configurations
RBM + | Lr=0.000001, iter=500, comp=20 RBM + | Lr=0.06, iter=500, comp=10
LR max_iter=30, C=70 LR max_iter=10, C=1
g K-NN n_neighbors=30 ~ K-NN n_neighbors= 15
K LR max_iter=10, C=1 = LR max_iter=30, C=1
'g\ MLP Rs=1, hls=10, iter=250 o MLP Rs=1, hls=10, iter=400
= RANs CLS=5, Desired_depth=1 = RANSs CLS=2, Desired_depth=1
SGD alpha=0.0001, n_iter=>5, epsilon=0.25 SGD alpha=0.1, n_iter=10, epsilon=0.25
RBM + | Lr=0.1, iter=500, comp=20 RBM + | Lr=0.006, iter=100, comp=10
LR max_iter=30, C=30 LR max_iter=30, C=1
¢ | KNN | n_neighbors=15 - % K-NN | n_neighbors=30
§ '_§ LR max_iter=4, C=0.00001 2 P LR max_iter=10, C=0.001
S 8 | MLP Rs=1, hls=10, iter=300 E 2 MLP Rs=1, hls=10, iter=200
&~ ["RANs CLS=8, Desired_depth=1 L')“ RANSs CLS=2, Desired_depth=1
SGD alpha=0.1, n_iter=10, epsilon=0.25 SGD alpha=,0.0001 n_iter=>5, epsilon=0.25
RBM + | Lr=0.001, iter=100, comp=10 RBM + | Lr=0.006, iter=100, comp=10
LR max_iter=30, C=1 LR max_iter=30, C=1
- % K-NN | n_neighbors=10 . ® | KNN | n_neighbors=30
2] by LR max_iter=10, C=0.001 ;?j E LR max_iter=10, C=0.001
% g | MLP Rs=1, hls=10, iter=200 3 & MLP Rs=1, hls=10, iter=200
S | RANs CLS=2, Desired_depth=1 < | RANs CLS=2, Desired_depth=1
SGD alpha=0.0001, n_iter=>5, epsilon=0.25 SGD alpha=0.0001, n_iter=>5, epsilon=0.25
RBM + | Lr=0.001, iter=400, comp=10 RBM + | Lr=0.01, iter=500, comp=20
g LR max_iter=30, C=5 E LR max_iter=30, C=5
= K-NN | n_neighbors=15 = K-NN | n_neighbors=30
28 [ LR max_iter=5, C=0.00001 B | LR max_iter=5, C=1
O “é MLP Rs=1, hls=10, iter=200 g s | MLP Rs=1, hls=10, iter=250
< | RANs CLS=2, Desired_depth=1 'E“ RANs CLS=2, Desired_depth=1
= | SGD alpha=0.01, n_iter=10, epsilon=0.25 SGD alpha=0.0001, n_iter=>5, epsilon=0.25
RBM + | Lr=0.01, iter=1000, comp=20 RBM + | Lr=0.01, iter=500, comp=20
LR max_iter=30, C=5 : LR max_iter=30, C=50
K-NN n_neighbors=15 S K-NN n_neighbors=15
2! LR max_iter=10, C=1 & E LR max_iter=10, C=0.01
= MLP [ Rs=1, hls=10, iter=400 2 & [ MLP | Rs=I, his=10, iter=300
RANSs CLS=3, Desired_depth=1 E RANs CLS=3, Desired_depth=1
SGD alpha=0.01, n_iter=10, epsilon=0.25 SGD alpha=0.01, n_iter=10, epsilon=0.25
Lr-Learning Rate; iter-Iterations; comp-Number of Hidden Components of RBM; RS-Random State
hls=Hidden Layer Sizes; CLS-Number of clusters at the input layer of RANs

let true-label be [c1, 2, c2, c1, c2, 3, c3] for 7 test instances, then for node n1 label will be [1, 0, 0,
1,0, 0, 0] where 1 represents class c1, and 0 depicts others (i.e. ¢2, and c3).

2 Node-wise confidence-score calculation: This is calculated by averaging activation-value and
confidence-indicator of activation for an input instance at an Abstract node. Activation-value
is an individual activation of an activation vector obtained by propagating up the data using
UAP mechanism of RANs whereas, confidence-indicator is calculated by min-max normalization
operation of activation vector. For example, after UAP operation each node (nl, n2, and n3)
receives activation [0.89, 0.34, 0.11] (a vector of activation), and confidence-indicator is min-max
([0.89, 0.34, 0.11]) = [1.0, 0.29, 0.0]. and the confidence-score for nodes n1= (0.89 + 1.0) /2.0 = 0.95,
n2=(0.34 + 0.29)/2.0 = 0.32, and n3= (0.11 + 0.11) /2.0 = 0.05.

Appendix A.4 Abstract Concept Labeling (ACL)

This method is optional and useful when the input data is labeled. With this mechanism, we
associate an identifier to every Abstract Concept node N;. Having generated the RANs model with CI,
then trough CC, ILL, input data is sorted label-wise, and perform UAP operation. The propagated data
is inspected class-wise, and label node N]- with a class-name for which it got the maximum count of
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a6 the highest activation. For example, suppose input data for class-X has 100 instances, after inspecting
a7 the propagated data, it is observed that node N received highest activation 74-times, whereas, with
s0s remaining 26 cases other nodes experienced maximum activation, therefore, we recognize node N as
a0 Trepresentative of class-X. True-Labels are identified by mapping each class of the input instance directly
soo  to its respective node representative Observed-Labels are obtained by propagating every test-instance
so1 through UAP operation, inspecting which Abstract node received the highest activation for that
so2 data-unit, and label it with the class represented by that node. True-Labels and Observed-Labels are
sos used to validate the model’s performance.
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