

Article

Exploring Geometric Feature Hyper-Space in Data to Learn Representations of Abstract Concepts

Rahul Sharma ^{1,‡}, Bernardete Ribeiro ¹ Alexandre Miguel Pinto ^{1,‡} and F. Amílcar Cardoso ¹

¹ CISUC - University of Coimbra, Portugal; rahul@dei.uc.pt, bribeiro@dei.uc.pt, ampinto@dei.uc.pt, amilcar@dei.uc.pt

‡ These authors contributed equally to this work.

Abstract: The term Concept has been a prominent part of investigations in psychology and neurobiology where, mostly, it is mathematically or theoretically represented. The Concepts are also studied computationally through their symbolic, distributed and hybrid representations. The majority of these approaches focused on addressing concrete concepts notion, but the view of the abstract concept is rarely explored. Moreover, most computational approaches have a predefined structure or configurations. The proposed method, Regulated Activation Network (RAN), has an evolving topology and learns representations of Abstract Concepts by exploiting the geometrical view of Concepts, without supervision. In the article, the IRIS data was used to demonstrate: the RAN's modeling; flexibility in concept identifier choice; and deep hierarchy generation. Data from IoT's Human Activity Recognition problem is used to show automatic identification of alike classes as abstract concepts. The evaluation of RAN with 8 UCI benchmarks and the comparisons with 5 Machine Learning models establishes the RANs credibility as a classifier. The classification operation also proved the RAN's hypothesis of abstract concept representation. The experiments demonstrate the RANs ability to simulate psychological processes (like concept creation and learning) and carry out effective classification irrespective of training data size.

Keywords: unsupervised machine learning; hierarchical learning; computational representation; computational cognitive modeling; contextual modeling; classification; IoT data modeling

0. Introduction

Concepts are of great value to humans because they are one of the building blocks of our recognition process. They enable us to perform cognitive functions such as classification which is fundamental in decision making and also capacitate us for contextual comprehension. By definition, a concept refers to an 'idea' or a combination of several ideas but in the computational domain, a concept can be a feature (object or event) or set of features (objects or events). An individual concept is referred to as a concrete concept (or feature) whereas a generalized form of a set of concepts (or features) can be perceived as an abstract concept. There are several conceptual representation theoretical frameworks [1] like *modality-specific, localist-distributed, experience-dependent* [2].

In computational domain, the concepts are mostly represented by three broad categories i.e. symbolic (eg. ACT-R [3]), distributed (eg. ANN) and spatial (eg. Conceptual Space [4]) representations. Cognitive architecture like CLARION [5] is an example of a hybrid computational representation that combines symbolic and distributed approaches, but there is no hybrid approach that combines all the three representations. Moreover, the symbolic, distributed, spatial and hybrid (spatial+distributed) representations are mostly used on representing concrete concepts (like object detection) whereas the notion of an abstract concept is debated [1] but rarely explored.

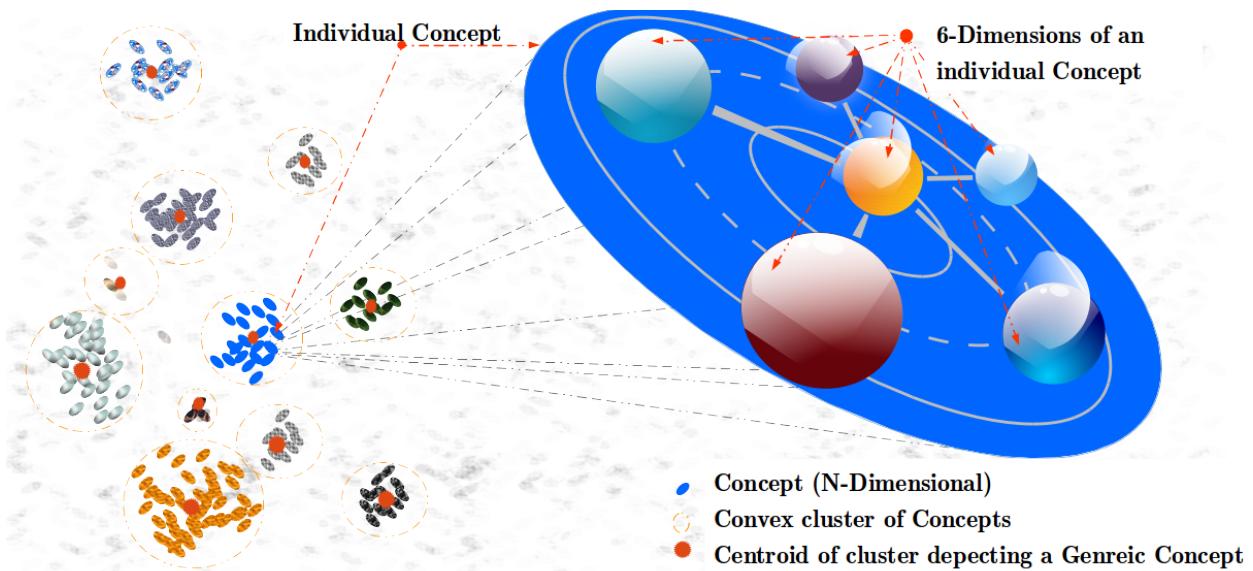


Figure 1. A universe of Concepts in six-dimensional feature hyper-space. The ovals in the diagram depict individual Concepts. Each *individual Concept* is described by their defining 6-dimensions. The cluster of Concepts shows the groups formed by similar Concepts represented by a *Convex cluster of Concepts*, and the *cluster centers* depicts the most generic Concept of the cluster.

34 This article proposes a computational method named Regulated Activation Network (RAN)
 35 which unifies the virtues of symbolic, distributed and spatial representations to represent concepts
 36 (both concrete and abstract). RAN has a graph-based topology hence it is distributed, every node in
 37 the graph (network) identifies an entity, therefore, it's symbolic, and every node (or entity) is viewed
 38 in an n-dimensional feature space, hence, it's also spatial. The spatial view of concepts as points
 39 in multidimensional geometric feature space (see Figure 1 for 6-dimensional View of Concepts) is
 40 inspired by the theory of conceptual spaces [4]. The RAN's modeling has an evolving topology that
 41 enables it to build a model depicting a hierarchy of concepts. The geometrical associations among
 42 concepts aid in determining the Convex Abstract Concepts. Further, the representatives (nodes) of the
 43 Abstract Concepts form a new layer dynamically, where each node acts as a Convex Abstract Concept
 44 representative for the underlying category. Symbolically, the concepts at (relatively) lower level in the
 45 hierarchy are identified as concrete concepts and the concepts at (relatively) higher level are seen as
 46 abstract concepts.

47 The model generation process with RAN and the three cognitive functions (i.e. concept creation,
 48 learning and activation propagation) are simulated using a IRIS data. The deep hierarchy generation,
 49 automatic generic concept modeling simulations are performed using 2 UCI benchmark: IRIS data;
 50 and IoT data from smartphone sensors. The application of RAN as a classifier is reported along with
 51 the proof of concept of classification using 8 UCI benchmark datasets. The generated models were
 52 evaluated using metrics precision, recall, F1-score, accuracy and Receiver Operating Characteristic
 53 (ROC) curve analysis. The article also reports the RANs classification and feature comparison with five
 54 machine learning techniques, Multilayer Perceptron (MLP) [6], Logistic Regression (LR) [7], K Nearest
 55 Neighbors (K-NN) [8], Stochastic Gradient Descent (SGD) [9] and Restrict Boltzmann Machine [10]
 56 pipelined with Logistic Regression (RBM+).

57 The article is organized in the following order; Section 1 puts forward the work closely related
 58 to Abstract Concept representation and models with evolving topology. Section 2 describes the
 59 background associated with principles, theories, and motivations for RAN's modeling. RANs
 60 methodology is detailed using a IRIS data in Section 3. Section 4 shows the experiments with two
 61 datasets acquired from UCI machine learning repository to exhibit (1) flexibility in choosing a suitable
 62 concept identifier, (2) building a deep hierarchy of Abstract Concepts, (3) automatic association of

63 input-labels to their respective Abstract Concept nodes. Section 5 provides RANs comparisons with
64 five classifiers and proof of concept with eight benchmark datasets. At last, Section 6 summarizes and
65 concludes the article with remarks over ongoing and future work.

66 1. Related Work

67 Abstract Concepts are of immense value because they help in developing unique abilities in
68 humans such as relative recognition and effective decision-making. In medical science, there have been
69 significant efforts to study Abstract Concepts with the help of technology. One such example is MRI¹,
70 which is being used to inspect the sections of the brain involved in Abstract Concept identification [11],
71 [12]. Research in psychology has also reported investigations over Abstract Concepts, like probing the
72 role of emotional content in processing and representing Abstract Concepts [13].

73 There has been a notable contribution from cognitive, and psycholinguists in studying languages
74 through Abstract Concept modeling and representations. Internally representing Abstract Concepts
75 via amodal symbols like a feature list, and frames [14,15] is among the preliminary research work
76 in linguistics. The association and context were also established, to relating Abstract and Concrete
77 words [14]. Some research reveals that we internally recognize metaphors as Abstract Concepts [16].
78 Besides theoretical methods, computational approaches are playing a vital role in comprehending and
79 representing Abstract Concepts. Research in NLP addresses computational learning, comprehension
80 and processing of human understandable language, and its components. An interesting article
81 published a work about the representation of Abstract, and Concrete Concepts in daily written
82 Language using a text-based multimodal architecture of NLP [17]. Other than NLP, semantic networks
83 are also used to study semantic similarity among Abstract, and Concrete nouns (of Greek, and
84 English) [18] with the aid of network-based Distributed Semantic Model [19].

85 Though the aforementioned computational approaches contribute toward Abstract Concept
86 modeling and representation, they have a fixed topology (i.e., the modeling process begins with a
87 fixed structure and configuration). In connectionist computational modeling, there have been efforts to
88 develop models that evolve. ANNA ELEONORA (standing for Artificial Neural Networks Adaptation:
89 Evolutionary LEarning Of Neural Optimal Running Abilities) [20] demonstrated a way to grow
90 neural networks with the aid of parallel genetic algorithms. NEAT (NeuroEvolution of Augmenting
91 Topologies) [21] is another work that reported evolving neural network modeling, showing how nodes
92 and weights are added to the model when new features emerge as part of the existing population
93 and CoDeepNEAT [22] is the most recent member of such evolving models. Markov Brains [23] also
94 belong to the family of evolving neural networks which uses binary variables and arbitrary logic to
95 implement deterministic or probabilistic finite state machines. They have been used to investigate
96 behaviors, character recognition and game theory.

97 This article communicates an approach which is not only hybrid but also has an evolving topology.
98 The RANs modeling learns the representation of the Convex Abstract Concepts dynamically, hence
99 makes it an evolving topology. RANs approach is connectionist, and each newly created node
100 corresponds to an Abstract Concept symbolically, thus portraying its hybrid characteristics.

101 2. Background

102 This section provides information about the principles and methodologies related to RANs
103 modeling. It highlights the significance of each approach, along with their applicability in RANs
104 modeling.

¹ Magnetic Resonance Imaging

105 **2.1. Principles of Regulated Activation Networks**

106 The tenets of RANS modeling, presented in [24], states model should be topologically a
 107 connectionist and intends to represent and simulate the dynamic cognitive state of an agent. In
 108 the first version RANS [24] the authors implemented a single-layer version of the model where each
 109 node had a lateral connection to its same-layer companions. It had a simple learning and reasoning
 110 mechanisms, but these showed to be sufficient to simulate several known cognitive phenomena such
 111 as the Priming [25], the False Memory [26,27].

112 Two principles of Regulated Activation Networks inspired our proposal. First, the model should
 113 be dynamic, and this is achieved by dynamically creating layers (deep representations) of Concepts.
 114 Second, the model must be capable of learning and creating an Abstract representation of Concepts.
 115 This is obtained by viewing associations among the Concepts (at the same level) in n-dimensional
 116 geometric space, and learning relationship between the newly created Abstract Concepts, and input
 117 level Concepts.

118 **2.2. Conceptual Spaces**

119 Conceptual Spaces theory [4] is one of the cognitive approaches that form the basis of RANS
 120 modeling. This theory views the Concepts as regions within a multi-dimensional space, with the data
 121 features representing the dimensions. The *similarity* among the Concepts can be identified based upon
 122 the geometrical distance between the objects. The Conceptual Spaces, thus, serves as a natural way or
 123 tool to capture the similarity relationships among Concepts, or Objects. Under this setting, one data
 124 instance corresponds to a single point in the space. Formally we can say, the *Quality Dimensions*, i.e., a
 125 set of D_1, \dots, D_n , forms the Conceptual Space S . A point in S is represented by a vector $v = \langle d_1, \dots, d_n \rangle$,
 126 where $\{1, \dots, n\}$ are the indexes of the dimensions. Atomic Concepts are Convex Regions –a Convex
 127 Region C having point x that falls between points $x_1 \in C$ and $x_2 \in C$ also belongs to C . The quality
 128 dimension is the basic requirement for Conceptual Spaces [28]. An example is a color space with the
 129 dimensions Hue, Saturation, and Brightness. Each quality dimension has a geometrical structure. For
 130 example, Hue is circular, whereas brightness and saturation correspond with finite linear scales (see
 Figure 2).

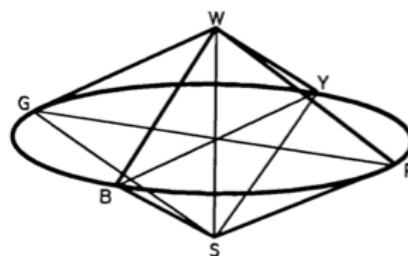


Figure 2. The color space [29]

131 The theory of Conceptual Spaces also addresses *prototype theory* of categorization [30–32]. The
 132 main idea of prototype theory is that within a category of objects, like those instantiating a Concept,
 133 certain members are judged to be more representative of the group than others. For example, robins
 134 are judged to be more representative of the category “bird” than are ravens, penguins, and emus. If
 135 Convex Regions of Conceptual Space describes Concepts, then prototype effect is, indeed, expected,
 136 i.e., the most likely central position of a Convex Region describes an Abstract Concept. For example, if
 137 color Concepts in a Convex region identified as subsets of the color space, then the central points of
 138 these regions would be the most prototypical examples of the color.

139 Clustering is a suitable way of identifying and learning atomic Convex Concepts in conceptual
 140 spaces. There are several clustering techniques, like hierarchical clustering, subspace clustering [33],
 141 partitioning relocation clustering, density-based clustering, grid-based clustering and many more.

Table 1. Notations

Notation	Description
W	Inter-Layer weight matrix
A	Output Activation
a	Input Activation
n_a	Number of elements in input vector at Layer l
n_A	Number of elements in output vector at Layer $l + 1$
l	l 'th Layer representative
d	Normalized Euclidean distance
C	Cluster center or Centroids
i, j, k	Variables to represent node index for input-level, abstract-level, and arbitrary node index in either of the levels, respectively
t	Iterator variable
$f(x)$	Transfer function to obtain similarity relation

143 Many are frequently used in the statistical and scientific analysis of data [34,35], and in machine
 144 learning for the identification of Concepts/features [36]. On the other hand, the creation of a hierarchy
 145 of sub/super-Concepts is a way to represent more Abstract Concepts and their taxonomic-like
 146 relations. Deep learning techniques [37–40,40,41] found in the literature can also be used to create
 147 deep hierarchical representations, but usually do not interpret data as points in Conceptual Spaces.
 148 In the proposed approach, the clustering techniques enable us to identify categories of Concepts in a
 149 Conceptual Space thus laying the foundation to form a layer of Abstract representation of Concepts.

150 2.3. Spreading Activation

151 Spreading Activation is a theory of memory [42] based on Collins and Quillian's computer
 152 model [43] which has been widely used for the cognitive modeling of human associative memory and
 153 in other domains such as information retrieval [44]. It intends to capture the information representation
 154 and how it is processing. According to the theory, long-term Memory is represented by nodes and
 155 associative links between them, forming a semantic network of Concepts. The links characterized
 156 by a weight denotes the associative or semantic relation between the Concepts. The model assumes
 157 activating one Concept implies the spreading of activation to related nodes, making those memory
 158 areas more available for further cognitive processing. This activation decays over time as it spreads,
 159 which can occur through multiple levels [45], and the further it gets the weaker it becomes. That
 160 is usually modeled using a decaying factor for activation. The method of spreading activation has
 161 been central in many cognitive models due to its tractability and resemblance of interrelated groups
 162 of neurons in the human brain [46]. This theory of Spreading Activation inspires the activation
 163 propagation mechanism in our proposal to propagate (spread) activation in the upward direction, i.e.,
 164 from the input-to-abstract layer in the network. The method has its significance, i.e., in the creation of
 165 the network, and in understanding the created Abstract Concepts.

166 3. Abstract Concept Modeling with RANs

167 The data value used with RANs modeling should be between "0" and "1" (both inclusive). This
 168 limitation has its inspiration from biological neurons, a value "0" indicates neuron (or node) is inactive,
 169 whereas "1" shows the neuron is highly active. An additional header is also needed for modeling
 170 with RAN. The size of the header is the same as the dimension of the input data vector, and each
 171 header element holds the largest value of their corresponding input data attribute. See Section A.1
 172 for elaboration. RANs works with multivariate datasets except image because pictures are not ideal

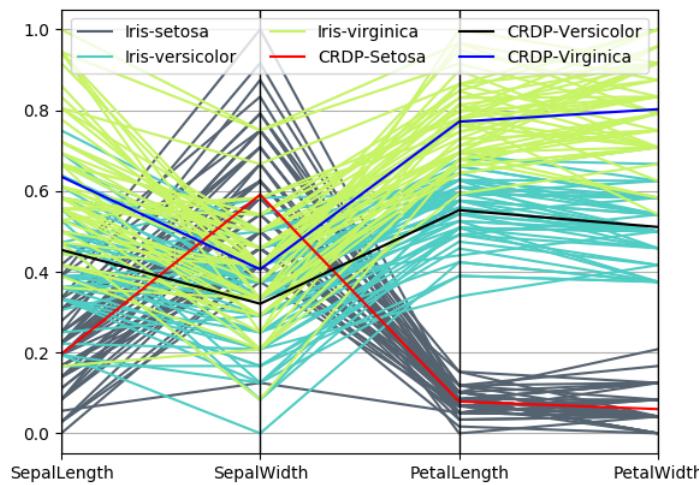


Figure 3. Parallel coordinate plot of normalized IRIS data. The plot shows the three classes of IRIS data along with their Cluster Representative Data Points (CRDP).

173 candidates to be interpreted as points in conceptual spaces, (discussed in Section 2.2). For this reason,
 174 our approach will, most probably, underperform on image processing tasks against other models that
 175 are, individually, designed for this kind of data, such as deep representations built with Convolutional
 176 Networks [40,47,48]; our technique is preferably suitable for understanding and simulating cognitive
 177 processes like Abstract Concept Identification.

178 The proposed approach models Convex Abstract Concepts through four core steps (i.e., *Concept*
 179 *Identification, Concept Creation, Interlayer Learning and Upward Activation Propagation*), along with one
 180 optional step (i.e., *Abstract Concept Labeling*). The RAN's methodology is explained using benchmark
 181 IRIS dataset. Figure 3 shows the parallel coordinate plot of IRIS data normalized between [0, 1] using
 182 min-max technique. The plot also shows the Cluster Representative Data Points (CRDPs) for all three
 183 classes of IRIS data (the importance of CRDP is detailed in 3.1). The objective of this experiment is
 184 to show how RANs build a hierarchical representation dynamically and simulate cognitive process
 185 of *concept creation, learning, and activation propagation*. For this experiment, it was hypothesized that
 186 the created abstract concepts symbolically represents the three classes of IRIS data. Classification
 187 operations were performed to prove the hypothesis which are reported at the end of this section.

188 *3.1. Step 1: Concept Identification (CI) Process*

189 The concept identification is the process of identifying convex groups in the input data.
 190 This is realized by categorizing the input data based upon their geometrical relationship, i.e.,
 191 distance, conforming to the theory of conceptual spaces (see Section 2.2). The quality-dimension
 192 (i.e. SepalLength, SepalWidth, PetalLength and PetalWidth attributes of input data) symbolically
 193 represents input nodes (i.e. S_1, S_2, S_3 and S_4 see Figure 4). In this experiment, K-means [49] clustering
 194 method is used a concept identifier and applied to determine the convex groups in the IRIS data. The
 195 K-means was configured to determine the 3 classes (i.e. Iris-setosa, Iris-virginica, and Iris-Versicolor) of
 196 IRIS data. The clustering operation also determines the three cluster centers as Cluster Representative
 197 Data Points (CRDPs). According to the theory of prototype (see Section 2.2) these three CRDPs are the
 198 most probable representative of the three convex groups respectively, therefore are of great importance
 199 in learning relationship among concepts in two adjacent layers (see Section 3.3).

200 Any clustering algorithm can act as a Concept Identifier in RANs modeling if it suffices two
 201 basic requirements. First, the algorithm is able to determining Convex categories based upon their
 202 geometric relationship among the data instances. Second, the algorithm recognizes CRDPs of all the

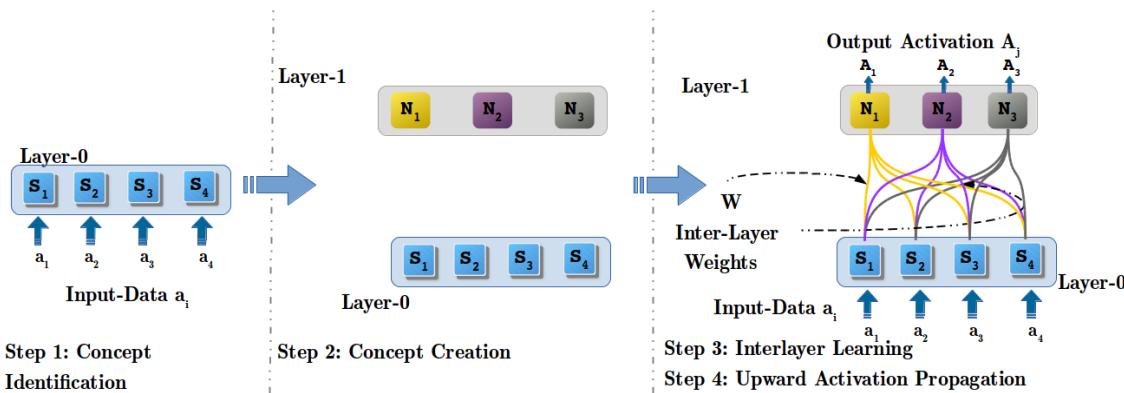


Figure 4. Steps in model generation with Regulated Activation Networks. The nodes S_1, S_2, S_3 and S_4 symbolically represents SepalLength, SepalWidth, PetalLength and PetalWidth attributes of input data.

203 identified clusters. This flexibility of choosing a suitable method for Concept Identification process in
 204 RANs modeling is demonstrated by a separate experiment using Affinity propagation [50] clustering
 205 algorithm, in Section 4.1.

206 3.2. Step 2: Concept Creation (CC) Process

207 Concept creation is a cognitive process to create representation of a newly identified concept.
 208 In RANs this cognitive process is simulated by creating a new layer of concepts dynamically. Each
 209 constituent node in the new layer symbolically acts as an abstract representative of their respective
 210 categories identified in the CI process. Step-2 in Figure 4 shows the newly created layer (Layer-1),
 211 that has 3 nodes (N_1, N_2 and N_3), corresponding to 3 classes (i.e. Iris-setosa, Iris-virginica, and
 212 Iris-Versicolor) of IRIS data (see Figure 3), identified in CI operation.

213 3.3. Step 3: Inter-Layer Learning (ILL) Process

214 Learning is an important cognitive process it acts as a relationship to associate concepts. In RANs
 215 modeling, learning is simulated by an assignment operation. As aforesighted in Section 3.2 that each
 216 node in the new layer is an Abstract representative of categories identified in CI process, thus we learn
 217 association among the two-layer such that it substantiates the Abstract representation by the nodes at
 218 the new layer. Since CRDPs (see Section 3.1) are the most apparent choice as an Abstract representative
 219 of a cluster (and adhere to the inspiration from prototype theory); consequently, the CRDPs assigned
 220 as an association between the two layers.

Equation 1 shows the general learning in the form of a matrix, where W is the learned Inter-Layer
 Weight (ILW) between node j at new layer (i.e., Layer-1 in Figure 4) and node i at input layer (i.e.,
 Layer-0). The set of ILWs, from one node j at new layer to all input nodes i , are the values of CRDP
 of j^{th} cluster center (i.e., C_j) identified in CI process. For instance, cluster center C_1 (see Figure 3)
 forms the weight vector $[W_{1,1}, W_{1,2}, W_{1,3} \text{ and } W_{1,4}]$ (ILWs shown by 4 yellow lines in Step 3 Figure 4)
 between the node N_1 at Layer-1 and all four input nodes S_1, S_2, S_3 and S_4 at Layer-0.

$$W = \begin{bmatrix} W_{1,1}, W_{1,2}, \dots, W_{1,n_a} \\ \vdots \\ W_{k,1}, W_{k,2}, \dots, W_{k,n_a} \\ \vdots \\ W_{n_A,1}, W_{n_A,2}, \dots, W_{n_A,n_a} \end{bmatrix} = \begin{bmatrix} C_1 \\ \vdots \\ C_k \\ \vdots \\ C_{n_A} \end{bmatrix} \quad (1)$$

221 Where $j=1, 2, \dots, n_A$, and $i=1, 2, \dots, n_a$.

222 3.4. Step 4: Upwards Activation Propagation (UAP) Process

223 This upward activation propagation is a geometric reasoning operation, i.e., a non-linear projection
 224 of an i -dimensional input data vector a_i , into a j -dimensional output vector A_j (see Step 4 in Figure 4).
 225 The UAP operation is carried out in two stages, in the first stage the geometric distance operation takes
 226 place, and in the second stage, geometric distance is translated to establish a similarity relation.

227 3.4.1. Geometric Distance Function (GDF)- Stage 1

In the first phase of the UAP mechanism we determine the geometrical distance between the learned weight vectors (see Equation 1) and an input instance a_i . The numerator of Equation 2 shows a function to calculate the Euclidean distance between the j^{th} weight vector and input vector a_i . The denominator of Equation 2 shows the relation that normalizes² the calculated distance between [0, 1].

$$d_j = \frac{\sqrt{\sum_{i=1}^{n_a} (W_{j,i} - a_i)^2}}{\sqrt{n_a}} \quad (2)$$

228 And consequently, j normalized Euclidean distances d_j are obtained between all j weight vectors and
 229 input instance a_i .

230 3.4.2. Similarity Translation Function (STF)- Stage 2

231 In the second phase the calculated normalized distance is transformed to obtain a similarity
 232 relation such that following requirements are fulfilled:

233 • $f(d = 0) = 1$, i.e. when distance is 0 similarity is 100%.
 234 • $f(d = 1) = 0$ i.e. when distance is 1 similarity is 0%.
 235 • $f(d = x)$ is continuous, monotonous, and differentiable in the $[0, 1]$ interval.

$$f(x) = (1 - \sqrt[3]{x})^2 \quad (3)$$

236 In RANs modeling Equation 3 is used as the Similarity Translation Function to determine the similarity
 237 relation of the previously calculated distance. The non-linearity of STF is depicted in Figure 5,
 238 indicating that the similarity value reduces drastically when the normalized Euclidean distance is
 larger than 0.05 (or 5% dissimilar).

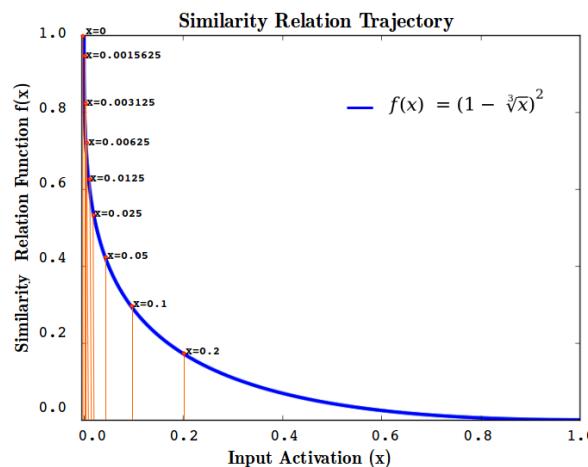


Figure 5. Plot of Similarity Translation Function with respect to varying input values in range $[0, 1]$

² In RANs modeling the activation values are, by definition, real values in the $[0, 1]$ interval – in an n -dimensional space the maximal possible euclidean distance between any two points is $\sqrt{\sum_{i=1}^n (a_i - 0)^2} = \sqrt{n}$, where $a_i=1$.

Algorithm 1 Upwards Activation Propagation algorithm

Input: Vector $[a_1, a_2, \dots, a_{n_a}]$ as input at layer l .

Output: New activation vector $[A_1, A_2, \dots, A_{n_A}]$ in layer $l + 1$.

for Each node A_j in layer $l + 1$ **do**

 Calculate Normalized Euclidean Distance:

$$d_j = \frac{\sqrt{\sum_{i=1}^{n_a} (W_{j,i} - a_i)^2}}{\sqrt{n_a}}$$

 Transform d_j through STF Equation 3:

$$A_j = f(d_j^2)$$

end for

Where:

$i = [1, 2, \dots, n_a]$.

$j = [1, 2, \dots, n_A]$.

$W_{j,i}$ is ILW see Equation 1.

239 The first three steps generate the RANs model (see Figure 4), later, in the fourth step, this model
 240 is used via UAP operation by propagating the input activation (a_i) upward and obtaining activation
 241 (A_j) at Convex Abstract Concept layer (inspired by the theory of spreading activation see Section 2.3).
 242 Algorithm 1 describes the Upward Activation Propagation operation, showing how the inputs and
 243 interlayer learning weights W are used to calculate similarity relation to generating output activation
 244 at each Abstract Concept representative nodes. The activation A_j in newly created nodes N_j also
 245 indicate the degree of confidence (DoC) of the identification of a class by its representative node in the
 246 new layer (for a given input data instance). For instance, in Figure 4, Step-2, at Layer-0 input vector is
 247 $[0.1, 0.21, 0.12, 0.5]$ it signifies that the dimensions S_1, S_2, S_3 and S_4 has activation 0.1, 0.21, 0.12, and 0.5
 248 respectively. For the, aforementioned, input vector, $[0.13, 0.32, 0.89]$ vector of activation is observed at
 249 all nodes (N_1, N_2 and N_3) respectively, at Layer-1. The observed activation vector itself describes that
 250 the input data belongs to Class-3 (Versicolor) with a DoC of 89%.

252 *3.5. RANs Proof of Hypothesis*

253 In the beginning of this Section 3 it was hypothesized that nodes in the newly created layer
 254 symbolically represents abstract concepts of the 3 classes (Iris-setosa, Iris-virginica and Iris-versicolor)
 255 of Iris data. This hypothesis can be proven through classification operation using the RAN model
 256 generated with IRIS data. The classification experiment setup consists of 30 iterations of an experiment.
 257 Each experiment consist of 9 Research Design (RD)(see Table A3 in Section A.2), where, in every RD a
 258 10-fold cross-validation procedure was applied. To carry out the evaluation operation *True-labels*, and
 259 *Test-labels* are determined via Abstract Concept Labeling (ACL) operation of RANs (see Section A.4 for
 260 ACL's description). Further, these labels were used to form a multi-class confusion matrix for the 3
 261 classes of IRIS data. and with the aid of this confusion matrix 4 metrics (i.e. Precision, Recall, F1-Score,
 262 and Accuracy) were calculated.

263 Multi-class Receiver Operating Characteristics (ROC) curves were also plotted for the 3 classes to
 264 support the classification experiment with IRIS data. The binary labels corresponding to the True-labels
 265 (obtained via ACL operation) were obtained using the method node-wise binary transformation of
 266 input True-label (see Section A.3). Further, the confidence scores for the binary vectors were calculated
 267 using the node-wise confidence-score calculation method (described in Section A.3).

268 The Table 2 not only shows the RAN's comparison with other 5 classifiers but also that RAN
 269 indeed preformed well in the classification process with a performance of 95% (ca.) for all classification

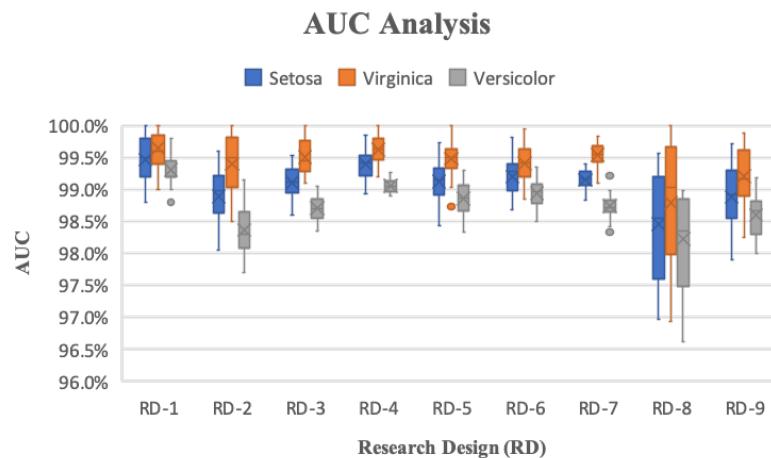


Figure 6. Area Under Curve for the 3 classes of IRIS for nine Research Designs (RD) of varying Test and Train data sizes

Table 2. RAN's classification study with IRIS data

Model	Precision (%)	Recall (%)	F1-Score (%)	Accuracy (%)
RBM	79.81 ± 11.91	77.41 ± 11.88	70.66 ± 16.28	77.41 ± 11.88
K-NN	90.41 ± 28.77	92.8 ± 21.61	91.00 ± 27.01	92.80 ± 21.61
LR	97.38 ± 4.15	96.64 ± 5.65	96.45 ± 6.12	96.64 ± 5.65
MLP	97.31 ± 0.71	96.86 ± 1.13	96.81 ± 1.21	96.86 ± 1.13
RANs	95.42 ± 0.67	95.02 ± 0.94	94.98 ± 0.98	95.02 ± 0.94
SGD	94.47 ± 6.40	94.46 ± 5.20	93.31 ± 6.78	94.46 ± 5.20

270 metrics. The ROC curve analysis also observed an Area Under Curve (AUC) of 99.07% (ca.), 99.40%
 271 (ca.) and 98.75% (ca.) for IRIS Setosa, Virginica and Versicolor classes respectively. These results shows
 272 the ability of RAN's modeling to identify the abstract concept where the three nodes (N_1 , N_2 and N_3)
 273 in Layer-1 symbolically represents the classes IRIS Setosa, Virginica and Versicolor, respectively, as
 274 abstract concepts, hence proves the hypothesis.

275 4. Behavioral Demonstration of RANs

276 This section exhibits two distinct aspects of RANs modeling via separate experiments. Both
 277 investigations present a different view of RANs methodology, highlighting the capabilities of the
 278 RANs approach.

279 4.1. Experiment with IRIS dataset

280 There are two objectives of this probe, first is to demonstrate flexibility in choosing an appropriate
 281 methodology for Concept Identification operation in RANs modeling (see Section 3.1). Second is
 282 to show how RANs modeling can be used to build a deep hierarchy of Convex Abstract Concepts
 283 dynamically. This experiment uses Affinity propagation [50] clustering algorithm as a Concept
 284 Identifier to support the claim of independence in selecting a suitable clustering method for CI process
 285 in RANs modeling. Unlike the K-means algorithm (used to describe the RANs methodology in
 286 Section 3), with the Affinity Propagation algorithm, the number of clusters within the data need not
 287 be known beforehand. Furthermore, Affinity Propagation conforms to the basic requirements (see
 288 Section 3.1) for being a Concept Identifier in RANs modeling.

289 The second prospect of this experiment is to illustrate the dynamic topology of RANs approach
 290 where the network grows to form several layers representing Convex Abstract Concepts. For this
 291 demonstration, an algorithm is developed, named Concept Hierarchy Creation (CHC) algorithm
 292 (see 2). The CHC algorithm streamlines all four steps of RANs modeling (i.e., CI, CC, ILL and UAP)

293 and uses these steps iteratively to build a hierarchy of Convex Abstract Concepts as described through
 294 Algorithm 2. This experiment was also conducted using the IRIS dataset obtained from the UCI
 295 machine learning repository [51]. In the CHC algorithm the Affinity propagation clustering algorithm
 296 was initialized with the following parameters: (1) damping_factor (DF) = 0.94 for layers below level 3,
 DF = 0.9679 for the layers at level 3 and above; (2) convergence_iteration=15; (3) max_iteration=1000.

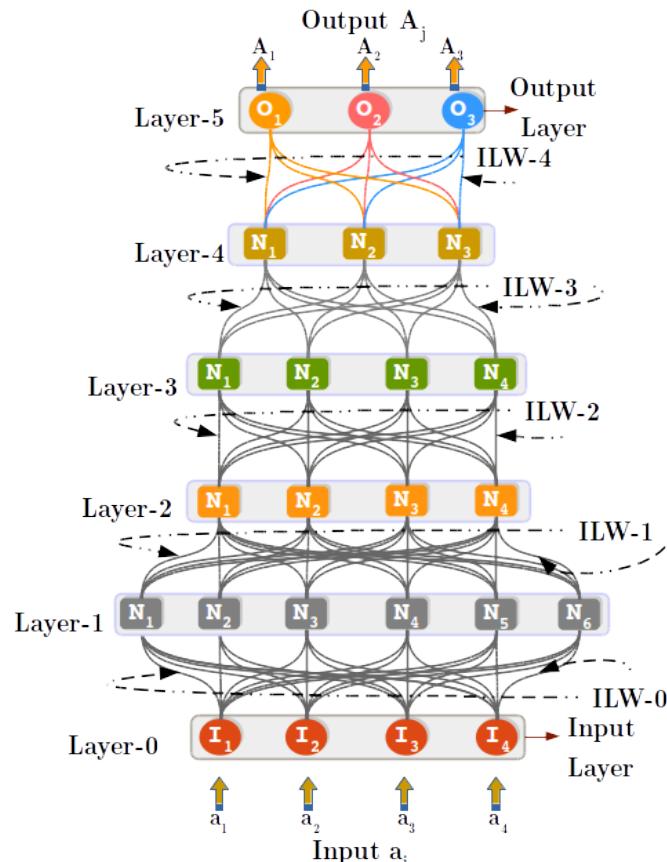


Figure 7. The model generated with 90% stratified IRIS data using Concept Hierarchy Creation Algorithm. Layer-0 is created while initializing the CHC algorithm. The algorithm grew to a *Desired-depth* of six Layers (including input Layer-0), and in each iteration of CHC algorithm a new layer is created dynamically and the Interlayer weights (ILW) are learned between the existing layer and a newly created layer above it.

297
 298 Input layer-0 was created, with four nodes (equal to the dimension of IRIS data), and the RANs
 299 hierarchy generation is carried out according to Algorithm 2. The model obtained from CHC process
 300 is depicted by Figure 7, the model was initialized to grow six layers deep. Therefore, hierarchy
 301 augmentation terminates at Layer-5, with Layer-5 identified as most Abstract layer consisting of three
 302 nodes acting as Abstract representatives of three categories of flowers of IRIS dataset. To evaluate the
 303 obtained RANs model, *True-labels*, and *Test-labels* were retrieved using an Abstract Concept labeling
 304 procedure (see Section A.4). A confusion matrix (see Figure 8) was generated using the True and Test
 305 labels. With the aid of the confusion matrix, Precision, Recall, F1-Score and Accuracy were calculated
 306 to evaluate the model. The model performed quite decently with an observed accuracy of 93.33 (ca.),
 307 the results of precision, recall and F1-Score are reported in Table 3. The ROC curve analysis of the
 308 RANs model, as shown in Figure 9, displays the various operating characteristic and the observed Area
 309 Under Curve for all the classes of IRIS data. In this experiment, it is worth mentioning the application
 310 of RANs modeling for data dimension transformation and data visualization. In Figure 7 we can
 311 observe that the dimension of Layer-0 is four, whereas the size of the other layers either expands or
 312 reduces when the network grows. This dimension transformation operation is helpful in addressing

Algorithm 2 Concept Hierarchy Creation Algorithm

Input: Multi-variate data with values between [0,1].
Output: Set of layers of Concepts – concept hierarchy.

Initialization: Create input layer layer-0 having dimension equal to that of input data.
Set *Current-layer-size* $CLS = i$, dimension of *input-data* vector.

Set *Layer-count* $L = 0$.

Set *Desired-depth* = 6.

Select Clustering algorithm and initialize.

Set *current-data* = *input-data*.

repeat

Run clustering algorithm on *current-data* to identify set of cluster centers C .

Create a *new-layer* above *current-layer*, with no nodes.

for each cluster center $C_j \in C$ **do**

 Create new node j in *new layer* $l+1$.

for each node i in *current-layer* **do**

 Create a new weighted connection $W_{c_j,i}$
 between c_j and i such that $W_{c_j,i}$ is the
 coordinate of c along the i dimension.

end for

end for

Set *new-data* = empty data set.

for each *datum* in *current-data* **do**

 Inject *datum* in *current-layer*

 Propagate activation from *current-layer* to *new-layer* using algorithm 1.

 Add activation pattern produced in *new-layer* to *new-data*.

end for

Set $L = L + 1$.

Set CLS = number of clusters in *current-layer*.

Set *current-data* = *new-data*.

Set *current-layer* = *new-layer*.

until $CLS=1$ **OR** *Desired-depth* = L .

		Predicted Labels			5
		Class-0	Class-1	Class-2	
True label	Class-0	100%	0%	0%	5
	Class-1	0%	100%	0%	5
	Class-2	0%	20%	80%	5
		5	6	4	15

Figure 8. Confusion Matrix generated to validate RANs model with IRIS data (having 9 : 1 *train*, and *test* data ratio) for Class-0 (Setosa), Class-1 (Verisicolour), and Class-2 (Virginica).

313 the issue of the cures of dimensionality. Besides, the transformed data can be plotted to extract useful
314 information from the data.

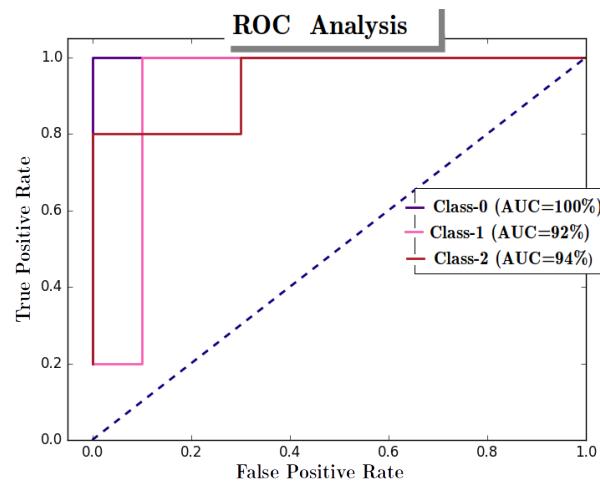
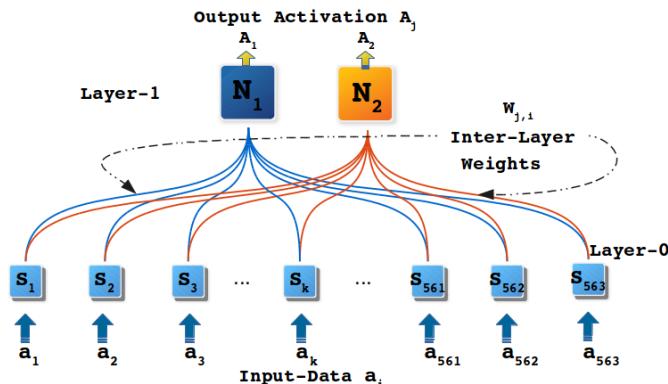
315 *4.2. Experiment with Human Activity Recognition Data*

316 This experiment aims to show the ability of the RANs approach to build the representation of
317 generic Concepts. The experiment uses UCIHAR [52] dataset for home activity recognition using the
318 smartphone, obtained from the UCI machine learning repository. The data captured six activities
319 Walking, Walking_upstairs, Walking_downstairs, Sitting, Standing, and Laying. The hypothesis of
320 this experiment is that the labels Walking, Walking_upstairs, Walking_downstairs are identified by an
321 abstract concept (say) *Mobile* and the other 3 labels Sitting, Standing, and Laying by abstract concept
322 (say) *Immobile*. In this experiment also classification operation can be used to prove the hypothesis.

323 The UCIHAR dataset was normalized and a header was attached. In CHC algorithm K-means
324 is chosen as concept identifier and the parameter *Desired-depth* was set to 1 so that model has only

Table 3. Evaluation of RANs Model generated through IRIS data

Class	Precision (%)	Recall (%)	F1-Score (%)	Support
<i>Setosa</i>	100	100	100	5
<i>Versicolour</i>	83.33	100	90.91	5
<i>Virginica</i>	100	80	88.89	5
<i>Avg/Total</i>	94.44	93.33	93.26	15

**Figure 9.** ROC curve analysis with IRIS dataset (having 9 : 1 train, and test data ratio), for Class-0 (Setosa), Class-1 (Verisicolour), and Class-2 (Virginica)**Figure 10.** Model generated with RANs approach. Nodes N_1 and N_2 at Layer-1 represents either of the two Abstract Concepts, i.e. *Mobile* and *Immobile*. Each node at Layer-0 represents individual dimensions of input data vector

325 two layers. The K-means was configured with K=2 because the model was hypothesized to have 2
 326 abstract concepts at Layer-1. Having fulfilled the initialization part of the CHC algorithm modeling
 327 is performed, generating a two-layered model as depicted in Figure 10. In Figure 10 Layer-0 shows
 328 *input-layer* and Layer-1 corresponds to *Abstract Concept layer* where both nodes (N_1 , and N_2) represents
 329 either of the two Abstract Concepts (i.e. *Mobile* and *Immobile* Abstract Concepts).

330 Among captured six activities (Walking, Walking_upstairs, Walking_downstairs, Sitting, Standing
 331 and Laying), Walking, Walking_upstairs, Walking_downstairs are the actions of motion, whereas the
 332 remaining three represents static states. Based upon these two facts, we expect that one of the Abstract
 333 nodes in Layer-1 conjointly represents Walking, Walking_upstairs and Walking_downstairs as one
 334 class. The other node in Layer-1 stages the other three categories (i.e., Sitting, Standing and Laying)
 335 together. Upon performing the labeling of nodes at Layer-1 through ACL procedure (see Section A.4

Table 4. RAN's Comparative Study for UCIHAR dataset

Model	Precision (%)	Recall (%)	F1-Score (%)	Accuracy (%)
RBM	99.68 \pm 0.14	99.68 \pm 0.14	99.68 \pm 0.14	99.68 \pm 0.14
K-NN	99.96 \pm 0.02	99.96 \pm 0.02	99.96 \pm 0.02	99.96 \pm 0.02
LR	99.97 \pm 0.02	99.97 \pm 0.02	99.97 \pm 0.02	99.97 \pm 0.02
MLP	99.96 \pm 0.02	99.96 \pm 0.02	99.96 \pm 0.02	99.96 \pm 0.02
RANs	99.85 \pm 0.01	99.85 \pm 0.01	99.85 \pm 0.01	99.85 \pm 0.01
SGD	99.98 \pm 0.01	99.98 \pm 0.01	99.98 \pm 0.01	99.98 \pm 0.01

336 for ACL process elaboration), it was observed that Walking, Walking_upstairs, Walking_downstairs
 337 classes were mapped to one node of Layer-1. Whereas, the labels Sitting, Standing and Laying traced
 338 to the other node in Layer-1. Interestingly, this outcome commensurate with the expectations from
 339 this experiment and shows the RANs capability to identify Abstract Concepts in an unsupervised
 manner naturally. The True-label and Test-label obtained through ACL operation were used to form

Area Under Curve (AUC) Analysis

■ Mobile ■ Immobile

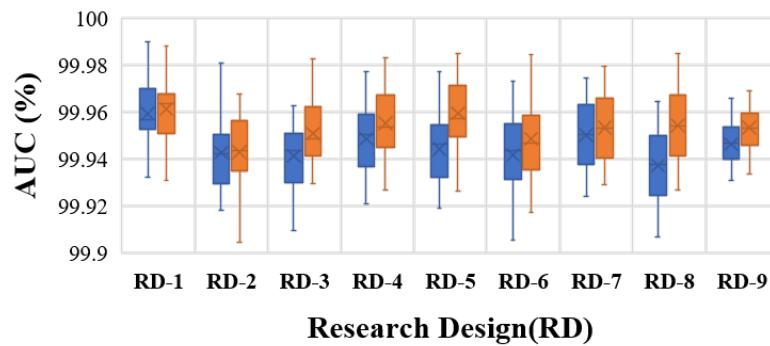


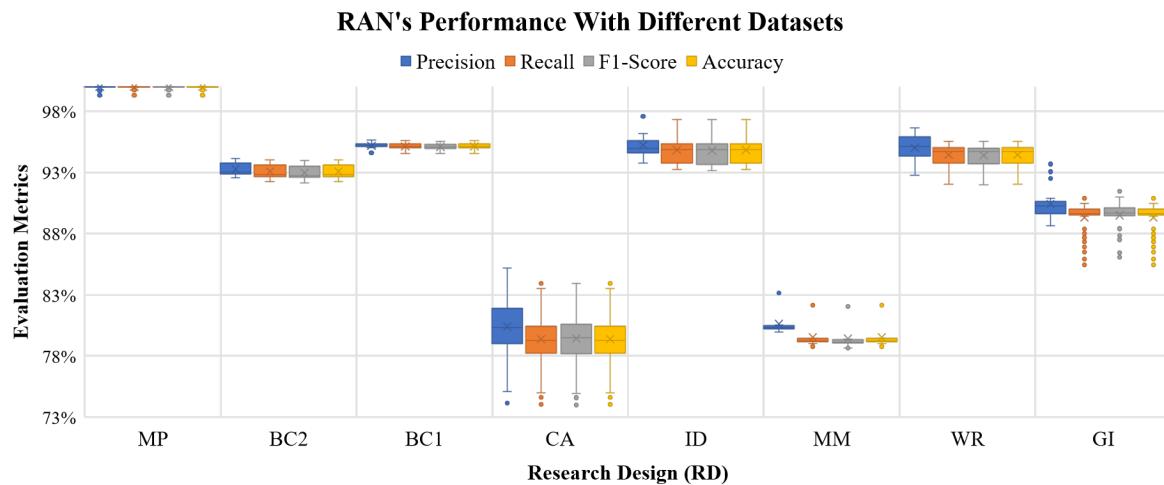
Figure 11. Area Under Curve observed during ROC curve analysis of UCIHAR data in order to determining operational points of two Abstract Concepts (i.e. *Mobile* and *Immobil*e) for all nine Research Designs (RD)

340
 341 the confusion matrix, which is later referred to calculate Precision, Recall, F1-Score, and Accuracy for
 342 evaluating the generated model. Node-wise binary labels and confidence scores were determined (as
 343 described in Section A.3) for both Abstract nodes at Layer-1. Figure 11 shows the Area Under Curve
 344 (AUC) observed during the ROC curve analysis of all 10-Folds in different Research Designs. With
 345 both these evaluations it is deduced that, apart from building the representation of Abstract Concepts,
 346 the model generated with RANs performed satisfactorily.

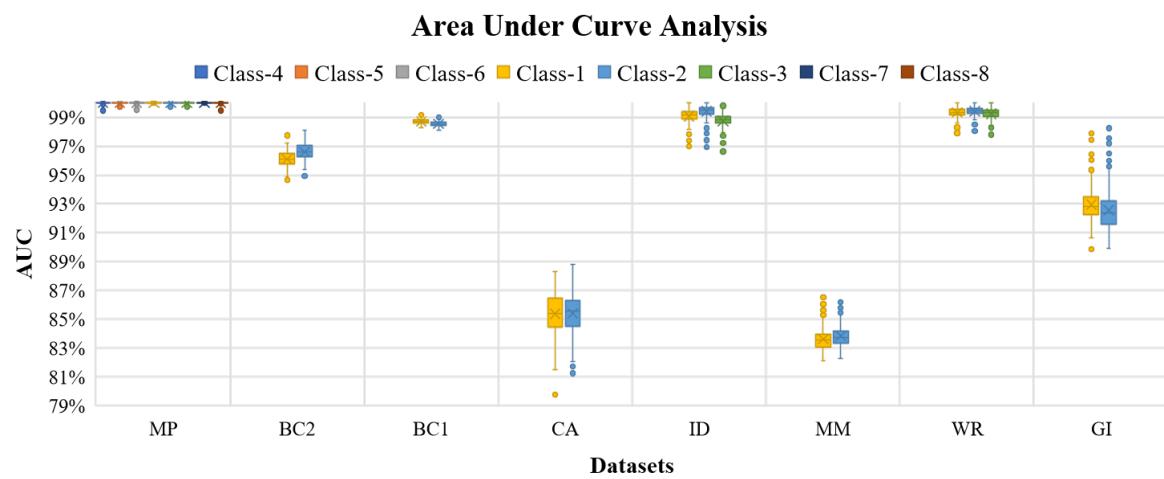
347 The RANs modeling was compared with five different types of approaches based upon their
 348 classification operation. To carry out the comparative study it was essential to transform the six
 349 Labels into binary Labels, because RANs modeling was identifying two Abstract Concept, and its
 350 performance was measured based upon them. Thus, with these five approaches, the Labels of the
 351 dataset were merged to form two groups, i.e., Walking, Walking_upstairs, Walking_downstairs in
 352 Class-1, and Sitting, Standing, and Laying in Class-2. Later the modeling was performed followed by
 353 validation and evaluation. Table 4 displays the comparison of all five approaches with RANs modeling.
 354 It is observed that RANs approach is competent to these five techniques, with an added advantage of
 355 being an unsupervised approach, and ability to build representations of Abstract Concepts.

356 5. RANs Applicability and Observations

357 This section highlights the scope of RANs modeling as a classifier w.r.t. distinct domains. To
 358 support this ambit of RANs usability, experimental results are reported using eight datasets concerning



(a) RANs performance with eight different datasets depicting RANs appositeness with data belonging to distinct domains.



(b) Observed Area Under Curve (AUC) while performing ROC curve analysis for RANs model generated with eight different datasets.

Figure 12. RANs performance with eight datasets using Precision, Recall, F1-Score and Accuracy along with ROC-AUC analysis with Eight benchmark datasets [Mice Protein (MP), Breast Cancer 669 (BC1), Breast Cancer 569 (BC2), Credit Approval (CA), IRIS data (ID), Mamographic Mass (MM), Wine Recognition (WR) and Glass Identification (GI)]. The graph 12b shows the plot of percentage AUC for classes 1 to 8. For each dataset class labels of the graph is serially mapped as: Mice protein (c-CS-s [Class-1], c-CS-m [Class-2], c-SC-s [Class-3], c-SC-m [Class-4], t-CS-s [Class-5], t-CS-m [Class-6], t-SC-s [Class-7] and t-SC-m [Class-8]); Mammographic Mass (Benign [Class-1] and Malignant [Class-2]); Credit Approval (Postitive [Class-1] and Negative [Class-2]); IRIS) (Setosa [Class-1], Versicolor [Class-2] and Virginica [Class-3]); Breast Cancer 569 (Benign [Class-1] and Malignant [Class-2]); Breast Cancer 669 (Benign [Class-1] and Malignant [Class-2]), Wine Recognition (Class-1, Class-2 and Class-3) Glass Identification (Window Glass [Class-1] and Non-Window Glass [Class-2]).

Table 5. RANs comparison with eight datasets belonging to different domains

Data	Algo	Precision (%)	Recall (%)	F1-Score (%)	Accuracy (%)	Data	Algo	Precision (%)	Recall (%)	F1-Score (%)	Accuracy (%)
Mice Protein	RBM+	43.45 ±44.07	53.50 ±38.23	45.46 ±43.36	53.50 ±38.23	Breast Cancer 569	RBM+	93.60 ± 2.69	93.51 ± 2.77	93.46 ± 2.86	93.51 ± 2.77
	KNN	98.63 ± 3.97	98.34 ± 4.84	98.07 ± 5.65	98.34 ± 4.84		KNN	99.80 ± 0.59	99.79 ± 0.62	99.78 ± 0.63	99.79 ± 0.62
	LR	98.99 ± 1.94	98.28 ± 3.38	98.14 ± 3.71	98.28 ± 3.38		LR	99.89 ± 0.07	99.89 ± 0.07	99.89 ± 0.07	99.89 ± 0.07
	MLP	98.54 ± 2.19	98.23 ± 2.71	97.83 ± 3.34	98.23 ± 2.71		MLP	98.67 ± 0.94	98.65 ± 0.96	98.64 ± 0.96	99.89 ± 0.07
	RAN	99.98 ± 0.06	99.97 ± 0.06	99.89 ± 0.06	99.97 ± 0.06		RAN	93.17 ± 0.36	92.97 ± 0.36	92.87 ± 0.42	92.97 ± 0.36
	SGD	99.11 ± 1.84	98.84 ± 2.46	98.68 ± 2.81	98.84 ± 2.46		SGD	99.87 ± 0.13	99.85 ± 0.18	99.83 ± 0.20	99.85 ± 0.18
Breast Cancer 669	RBM+	95.72 ± 3.62	95.34 ± 4.60	95.13 ± 5.16	95.34 ± 4.60	Credit Approval	RBM+	76.44 ±12.50	75.63 ±12.98	74.04 ±14.59	75.63 ±12.98
	KNN	99.46 ± 0.88	99.44 ± 0.93	99.43 ± 0.94	99.44 ± 0.93		KNN	95.48 ± 0.16	95.46 ± 0.17	95.46 ± 0.17	95.46 ± 0.17
	LR	99.16 ± 0.17	99.14 ± 0.17	99.15 ± 0.17	99.14 ± 0.17		LR	95.06 ± 0.38	95.04 ± 0.39	95.04 ± 0.39	95.04 ± 0.39
	MLP	98.96 ± 0.76	98.95 ± 0.76	98.95 ± 0.77	98.95 ± 0.76		MLP	98.02 ± 1.32	98.00 ± 1.34	97.99 ± 1.34	98.00 ± 1.34
	RAN	95.18 ± 0.25	95.15 ± 0.24	95.11 ± 0.25	95.15 ± 0.24		RAN	80.67 ± 1.37	79.58 ± 1.05	79.66 ± 1.13	79.58 ± 1.05
	SGD	99.88 ± 0.16	99.88 ± 0.16	99.18 ± 0.16	99.88 ± 0.16		SGD	99.77 ± 0.39	99.75 ± 0.40	99.75 ± 0.40	99.75 ± 0.40
Glass Identification	RBM+	82.58 ±10.29	84.19 ± 4.90	80.61 ± 8.42	84.19 ± 4.90	Mammographic Mass	RBM+	84.85 ±16.54	85.18 ±14.98	82.42 ±20.30	85.18 ±14.98
	KNN	94.08 ±12.12	95.97 ± 7.32	94.82 ±10.59	95.97 ± 7.32		KNN	99.65 ± 0.88	99.64 ± 0.89	99.64 ± 0.89	99.64 ± 0.89
	LR	99.52 ± 0.18	99.49 ± 0.18	99.49 ± 0.18	99.49 ± 0.18		LR	99.41 ± 0.30	99.40 ± 0.30	99.40 ± 0.30	99.40 ± 0.30
	MLP	93.78 ± 1.40	93.28 ± 1.52	92.85 ± 1.64	93.28 ± 1.52		MLP	98.91 ± 2.11	98.79 ± 2.35	98.79 ± 2.35	98.79 ± 2.35
	RAN	90.07 ± 0.43	89.18 ± 1.23	89.32 ± 1.10	89.18 ± 1.23		RAN	80.28 ± 0.18	79.20 ± 0.23	79.08 ± 0.24	79.20 ± 0.23
	SGD	97.95 ± 0.66	97.87 ± 0.69	97.82 ± 0.70	97.87 ± 0.69		SGD	99.96 ± 0.03	99.94 ± 0.07	99.93 ± 0.09	99.94 ± 0.07
IRIS	RBM+	79.81 ±11.91	77.41 ±11.88	70.66 ±16.28	77.41 ±11.88	Wine Recognition	RBM+	56.00 ±25.66	67.05 ±16.91	59.07 ±21.91	67.05 ±16.91
	KNN	90.41 ±28.77	92.80 ±21.61	91.00 ±27.01	92.80 ±21.61		KNN	90.74 ±26.00	92.88 ±19.48	91.14 ±24.70	92.88 ±19.48
	LR	97.38 ± 4.15	96.64 ± 5.65	96.45 ± 6.12	96.64 ± 5.65		LR	94.14 ± 1.55	93.13 ± 1.82	93.00 ± 1.92	93.13 ± 1.82
	MLP	97.31 ± 0.71	96.86 ± 1.13	96.81 ± 1.21	96.86 ± 1.13		MLP	97.44 ± 0.51	97.33 ± 0.59	97.32 ± 0.59	97.33 ± 0.59
	RAN	95.43 ± 0.67	95.02 ± 0.94	94.98 ± 0.98	95.02 ± 0.94		RAN	94.87 ± 0.91	94.34 ± 1.00	94.29 ± 1.01	94.34 ± 1.00
	SGD	94.47 ± 6.40	94.46 ± 5.20	93.31 ± 6.78	94.46 ± 5.20		SGD	98.13 ± 0.70	97.91 ± 0.75	97.91 ± 0.76	97.91 ± 0.75

RBM+ - Restricted Boltzmann Machine + Pipelined with Logistic Regression; KNN- K Nearest Neighbor; LR- Logistic Regression; MLP- Multi Layer Perceptron; RAN- Regulated Activation Network; SGD- Stochastic Gradient Descent

359 with different areas. A comparative study was also carried out using these datasets to match RANs
 360 classification ability with five different classifiers.

361 Among the eight datasets, the *Mice Protein* [53], *Mammographic Mass* [54], *Breast Cancer 569 &*

362 669

[55,56] data pertain to the medical field, *Glass Identification* [57] data representing forensic science,
 363 *Credit Approval* [58] represents economic data, *Iris* [59] is a botanical data, and *Wine Recognition* [60]
 364 is a data for chemical composition analysis. The experiments performed with these datasets were
 365 akin to the investigations done with Toy-data (in Section 3), and UCIHAR data (in Section 4.2), i.e.,
 366 K-means algorithm used as concept identifier, where 'K' is the number of class labels of each dataset,
 367 the hierarchy is set to have a depth of two layers (one Input and one Abstract Concept layer). For
 368 every dataset, models were generated using thirty iterations in nine Research Designs (RD) (refer
 369 the Table A3 in Section A.2). In every RD 10-Fold cross-validation was applied to determine the
 370 performance of the models. An aggregate of Precision, Recall, F1-Score, and Accuracy of all folds
 371 in all RDs was calculated for all the datasets, as shown in Figure 12a. From the Figure 12a it can be
 372 observed that with *Mice Protein* data RANs scores 99.99%(ca.) for all evaluation metric, whereas for *Iris*,
 373 *Glass Identification*, *Breast Cancer*, and *Wine Recognition* the observations were convincing, i.e., above
 374 89.00% (ca.). In all the folds of nine RDs ROC curves were also plotted for each class label of the eight
 375 datasets, the mean AUC for each class of the datasets is shown in Figure 12b. The evaluation metrics
 376 and ROC-AUC analysis (Figure 12a & 12b respectively) displays the RANs capability in machine
 377 learning tasks with different kind of datasets.

378 The same procedure was applied to obtain average Precision, Recall, F1-Score and Accuracy for all
 379 the datasets with five other classifiers (i.e. *RBM+*, *KNN*, *LR*, *MLP*, and *SGD*). Table 5 shows the overall
 380 comparison. It is worth noting that being dynamic and unsupervised RANs modeling performed
 381 quite satisfactorily especially with *Mice Protein* data, where it outperformed SGD and *RBM+*, was
 382 found competent with *LR*, *KNN* and *MLP* classifiers. Figure 13 shows four graphs depicting RANs
 383 performance with different benchmark data sets. These graphs display an important aspect of RANs
 384 modeling and its performance behavior when evaluated to different research design 13. The Precision,
 385 Recall, F1-Score, and Accuracy trajectories of Human Activity Recognition (HAR), Breast Cancer 669
 386 (BC1), Toy-data (TD) and *Mice Protein* (MP) Data is almost straight. The evaluation plots of *Glass*
 387 *Identification* (GI), *Wine Recognition* (WR), *Mammographic Mass* (MM), *Breast cancer 569* (BC2) and
 388 *Mice Protein* (MP) datasets show a minimal decline in observations w.r.t RD-1 and RD-9 Research
 389 Design. On the contrary, results from *IRIS* Data (ID) and *Credit Approval* (CA) dataset depicted
 390 a higher value while comparing the evaluation of RD-1 with RD-9 Research Designs of these data

Table 6. Feature based comparative study of RANs with 5 modeling techniques

Features \ Models	RBM	K-NN	LR	MLP	RANs	SGD
Graph-Based	Yes	No	No	Yes	Yes	No
Dynamic Topology	No	No	No	No	Yes	No
Dimension Reduction	Yes	Yes	No	Yes	Yes	No
Dimension Expansion	May be	No	No	May be	Yes	No
Unsupervised	Yes	No	No	No	Yes	No
Supports Classification	Yes	Yes	Yes	Yes	Yes	Yes
Bio-inspired	Yes	No	No	Yes	Yes	No

391 sets. Principally, the results of all four metrics of evaluation obtained similar results (with marginal
 392 variation) irrespective of the Test and Train data ratio. This is a notable observation because it shows
 393 that RANs approach obtains a satisfactory result even when trained with a small amount of data.

394 Besides classification comparison, the RAN's modeling is compared with the 5 classifiers based
 395 upon 7 features: (1) Whether the modeling in graph based; (2) whether the modeling has a dynamic
 396 topology; (3) and (4) whether modeling can reduce or expand the dimension of the data; (5) whether
 397 modeling can perform classification; and (7) whether modeling is biologically inspired or not. Tabel 6
 398 details this comparative study. It can be observed from this table that RAN is closely related to the
 399 models that are biologically inspired i.e. RBM and MLP.

400 6. Conclusions and Future work

401 To comprehend and reasoning for emotions, ideas, etc., it is evident to understand Abstract
 402 Concepts because they are perceived differently from Concrete Concepts. There have been notable
 403 efforts to study Concrete Concepts (features like walking or ingredients), but progress in investigating
 404 Abstract Concepts (generic features such as is-moving or recipe) is relatively less. This article
 405 proposes an unsupervised computational modeling approach, named Regulated Activation Networks
 406 (RANs), that has an evolving topology and learns a representation of Abstract Concepts. The RAN's
 407 methodology was exemplified through a UCI's IRIS dataset, yielding a satisfactory performance
 408 evaluation of 95% (ca.) for Precision, Recall, F1-Score and Accuracy metrics, along with an average
 409 AUC of 99% (ca.) for all the three classes in the dataset. These evaluation result not only showed the
 410 classification capability of RANs but also proved the hypothesis of the experiment i.e. the 3 newly
 411 created nodes in the Layer-1 symbolically represent the 3 classes of IRIS data as abstract concepts.

412 Another experiment with IRIS data displayed the characteristic of RAN's deep hierarchy
 413 generation and independence in choosing Concept Identifier. With the aid of Concept Hierarchy
 414 Creation algorithm (proposed in Section 4.1), evolving nature of RAN's modeling is shown using
 415 Affinity Propagation clustering algorithm (as an alternate Concept Identifier instead of the K-means
 416 algorithm as used in modeling with Toy-data problem). With the generated model it was shown that
 417 the model dynamically grew to a depth of six layers and performed with Precision of 94.44% (ca.),
 418 Recall of 93.33% (ca.), F1-Score of 93.26% (ca.) and Accuracy of 93.33% (ca.), along with an observed
 419 AUC of 100% (ca.), 92% (ca.) and 94% (ca.) for the three classes of data. This experiment also highlights
 420 the application of RANs modeling in data dimension transformation and data visualization.

421 Modeling with UCI's IoT based Home Activity Recognition (UCIHAR) smartphone sensor
 422 dataset exhibited the RAN's behavior of natural identification of generic Concepts. The experiment
 423 hypothesize that six data labels (activity of Walking, Walking_upstairs, Walking_downstairs, Sitting,
 424 Standing and Laying) of the dataset are to be identified as *Mobile* (Walking, Walking_upstairs and
 425 Walking_downstairs) and *Immobile* (Sitting, Standing and Laying) Abstract Concepts. This hypothesis
 426 was also proven using classification operation, where, the evaluation of the model shown a performance
 427 of 99.85% (ca.) for all four metrics and AUC of 99.9% (ca.) for both Abstract Concepts. The experiment
 428 also demonstrates how RAN can be used to model the data from IoT domain in an unsupervised
 429 manner.

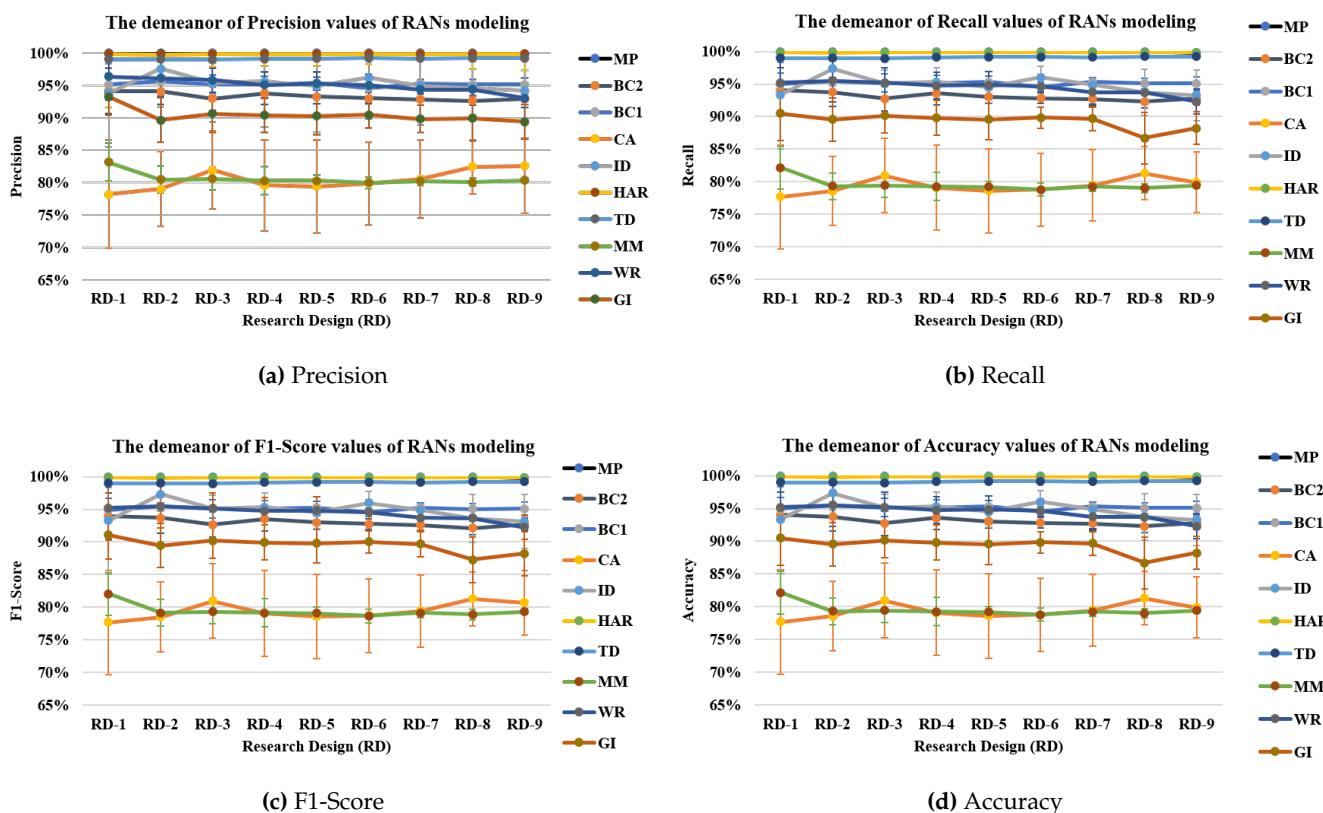


Figure 13. RANs evaluation metric (Precision, Recall, F1-Score and Accuracy) value behavior w.r.t. varying test and train data ratio over ten datasets [Mice Protein (MP), Breast Cancer 669 (BC1), Breast Cancer 569 (BC2), Credit Approval (CA), IRIS data (ID), Mamographic Mass (MM), Human Activity Recognition (HAR), Toy-data(TD), Wine Recognition (WR) and Glass Identification (GI)].

Table 7. Acronyms used in the Article

Acronym	Description	Acronym	Description	Acronym	Description
ACL	Abstract Concept Labeling	DoC	Degree of Confidence	MM	Mammography Mass Dataset
AUC	Area Under Curve	GDF	Geometric Distance Function	MP	Mice Protein Dataset
BC1	Breast Cancer 669 Dataset	GI	Glass Identification Dataset	MRI	Magnetic Resonance Imaging
BC2	Breast Cancer 569 Dataset	HAR	Human Activity Recognition Data	RANs	Regulated Activation Networks
CA	Credit Approval Dataset	ID	IRIS Dataset	RBM	Restricted Boltzmann Machine
CC	Concept Creation	ILL	Inter Layer Learning	RD	Research Design
CHC	Concept Hierarchy Creation	ILW	Inter Layer Weights	ROC	Receiver Operating Characteristic
CI	Concept Identification	K-NN	K Nearest Neighbor	SGD	Stochastic Gradient Descent
CLS	Current Layer Size	LR	Logistic Regression	STF	Similarity Translation Function
CRDP	Cluster Representative Data Point	MLP	Multilayer Perceptron	UAP	Upward Activation Propagation

430 The proof of concept of RAN's modeling as a Machine Learning classifier was also provided with
 431 eight UCI benchmarks. It was identified that RAN's approach performed satisfactorily displaying
 432 the best outcome of 98.9% (ca.) with *Mice Protein* dataset (for all metrics). The comparison of RAN's
 433 modeling with five classifiers substantiated the effectiveness of the proposed methodology. We also
 434 observed that the RAN's performance remained similar irrespective of the size of train data. RAN was
 435 also compared with the 5 classifiers based upon its features and it was observed that RAN was similar
 436 to bio-inspired models. During the simulations, a non-convexity was observed in several datasets. As
 437 future work, we intend to improve RAN's modeling that can capture the non-convexity in the data
 438 and enhance the modeling to build non-convex abstract concepts.

439 **Funding:** “The work presented in this paper was partially carried out in the scope of the SOCIALITE
 440 Project (PTDC/EEI-SCR/2072/2014), co-financed by COMPETE 2020, Portugal 2020 - Operational Program
 441 for Competitiveness and Internationalization (POCI), European Union’s ERDF (European Regional Development
 442 Fund), and the Portuguese Foundation for Science and Technology (FCT).

443 **Conflicts of Interest:** “The authors declare no conflict of interest.”

444 Abbreviations

445 The abbreviations are used in this manuscript are listed in Table 7:

446

447 Appendix A Supplementary Materials

448 Appendix A.1 Data & Scripts

449 This section provides links to download the data and python script used to perform RANs
 450 modeling experiments, mentioned in this article. The data and script folders can be downloaded
 451 from the web URL mentioned in Table A1. The data folder contains many files and the direct path
 452 to the files are provided in the Table A1. Similarly, the script folder *RAN_V2.0* also contains many
 453 folders where Folder *RAN* consist of the python scripts. The folder *Observations* is for storing the
 454 outcome of the experiments, at the beginning of each experiment the empty folder in directory
 455 *empty_passes_for_Experiment_Observations* must be copied into the *Observation* directory. The python
 456 script related to RANs modeling is in folder *RAN*, the description is mentioned in the Table A1.

457 The implemented RANs modeling tool in python takes input data in a specific format (shown in
 458 Table A2). Besides the data, the inputs require a header as the first row stacked over the original data.
 459 Each header element, $[H - 1, H - 2, \dots, H - n]$, is the Maximum value possible for their respective
 460 column (feature, or dimension). It is assumed that the minimum value of the column is zero, if it is
 461 not then the data must be transformed between zero and the maximum positive value as described in
 462 Section 3.

Table A1. Data and Python Script of RANs modeling

Type	Description	File-path
Data	Download link	https://www.dropbox.com/sh/3410ozeru3o5opm/AAA24aUGtUS1i7xHKp9kyzRKA?dl=0
	IRIS Data	data/iris_with_label.csv
	Mice Protein data	data/Data_cortex_Nuclear/mice_with_class_label.csv
	Glass Identification data	data/newDataToExplore/new/GlassIdentificationDatabase/RANsform.csv
	Wine Recognition data	data/newDataToExplore/new/WineRecognitionData/RansForm.csv
	Breast cancer 669 data	data/newDataToExplore/new/breastCancerDatabases/699RansForm.csv
	Breast Cancer 559 data	data/newDataToExplore/new/breastCancerDatabases/569RansForm.csv
	UCIHAR data	data/UCI_HAR_Dataset.csv
	Mamographic Mass data	data/newDataToExplore/new/MammographicMassData/RansForm1
	Credit Approval data	data/newDataToExplore/new/CreditApproval/RansForm.csv
Script	Toy-data data	data/toydata5clustersRAN.csv
	Download Link	https://www.dropbox.com/sh/rcw1cj4ce1f3zic/AAAm6wVTj2qsLZ1lbc3kn4MPa?dl=0
	RANs classes and methods	RAN_V2-0/RAN/RAN_kfold.py
	Methods	RAN_V2-0/RAN/Layer.py
	Utilities like Labeling and plotting	RAN_V2-0/RAN/UtilsRAN.py
	Python Script for using RANs	RAN_V2-0/RAN/RAN_input_T1.py

Table A2. Input Data Format for implemented RANs Modeling

Header	H-1	H-2	H-n
Data Instances	D-1	D-2	D-n
	D-1	D-2	D-n

	D-1	D-2	D-n

463 Appendix A.2 Model Configurations and Research Design

464 Various experiments, reported in this article, were conducted with several datasets, using six
 465 modeling techniques including the proposed methodology i.e. RANs modeling. Table A4 in Section A.2
 466 shows configurations of all the models for all the experiments. The experiments were carried out
 467 using python programming language, and implementations of Restricted Boltzmann Machine pipelined
 468 with Logistic Regression (RBM+), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Multilayer
 469 Perceptron (MLP), and Stochastic Gradient Descent (SGD) models of Scikit-learn library [?]. It is to be
 470 noted that experiments with RBM were carried out, pipelined with the LR algorithm using the default
 471 configuration of its implementation in scikit-learn library. The Table A3 lists the nine Research Designs
 472 (RD) used in the experiments of this article. In every RD the ratio of the Train and Test data is varied to
 473 capture the ability of the classifier being inspected. The Table 7 lists the acronyms used in this article.

474 Appendix A.3 Multi-class ROC analysis with RANs Modeling

475 This study is carried out by two processes, first the input true-labels are transformed into a
 476 separate vector of binary labels, individually for all Abstract nodes (i.e. 1 for class c1, 0 for all other
 477 classes), second, calculating the confidence score for each instance of the input data (or test-data). Both
 478 processes are described as follows:

479 1 **Node-wise binary transformation of True-Labels:** For example, suppose there are three classes
 480 (c1, c2, c3) represented by three abstract nodes (n1, n2, and n3) in RANs model at Layer-1, and

Table A3. Train & Test data distributions in nine Research Designs (RD)

RD-1		RD-2		RD-3		RD-4		RD-5	
Train	Test								
90%	10%	80%	20%	70%	30%	60%	40%	50%	50%
RD-1		RD-7		RD-8		RD-9			
Train	Test	Train	Test	Train	Test	Train	Test	—	—
40%	60%	30%	70%	20%	80%	10%	90%	—	—

Table A4. Dataset specific configuration details of models

Data	Algo	Configurations	Data	Algo	Configurations
Toy-data	RBM +	Lr=0.000001, iter=500, comp=20	UCI HAR	RBM +	Lr=0.06, iter=500, comp=10
	LR	max_iter=30, C=70		LR	max_iter=10, C=1
	K-NN	n_neighbors=30		K-NN	n_neighbors= 15
	LR	max_iter=10, C=1		LR	max_iter=30, C=1
	MLP	Rs=1, hls=10, iter=250		MLP	Rs=1, hls=10, iter=400
	RANs	CLS=5, Desired_depth=1		RANs	CLS=2, Desired_depth=1
Mice Protein	SGD	alpha=0.0001, n_iter=5, epsilon=0.25		SGD	alpha=0.1, n_iter=10, epsilon=0.25
	RBM +	Lr=0.1, iter=500, comp=20	Breast Cancer 569	RBM +	Lr=0.006, iter=100, comp=10
	LR	max_iter=30, C=30		LR	max_iter=30, C=1
	K-NN	n_neighbors=15		K-NN	n_neighbors=30
	LR	max_iter=4, C=0.00001		LR	max_iter=10, C=0.001
	MLP	Rs=1, hls=10, iter=300		MLP	Rs=1, hls=10, iter=200
Breast Cancer 669	RANs	CLS=8, Desired_depth=1		RANs	CLS=2, Desired_depth=1
	SGD	alpha=0.1, n_iter=10, epsilon=0.25		SGD	alpha=0.0001 n_iter=5, epsilon=0.25
	RBM +	Lr=0.001, iter=100, comp=10	Credit Approval	RBM +	Lr=0.006, iter=100, comp=10
	LR	max_iter=30, C=1		LR	max_iter=30, C=1
	K-NN	n_neighbors=10		K-NN	n_neighbors=30
	LR	max_iter=10, C=0.001		LR	max_iter=10, C=0.001
Glass Identification	MLP	Rs=1, hls=10, iter=200		MLP	Rs=1, hls=10, iter=200
	RANs	CLS=2, Desired_depth=1		RANs	CLS=2, Desired_depth=1
	SGD	alpha=0.0001, n_iter=5, epsilon=0.25		SGD	alpha=0.0001, n_iter=5, epsilon=0.25
	RBM +	Lr=0.001, iter=400, comp=10	Mammographic Mass	RBM +	Lr=0.01, iter=500, comp=20
	LR	max_iter=30, C=5		LR	max_iter=30, C=5
	K-NN	n_neighbors=15		K-NN	n_neighbors=30
IRIS	LR	max_iter=5, C=0.00001		LR	max_iter=5, C=1
	MLP	Rs=1, hls=10, iter=200		MLP	Rs=1, hls=10, iter=250
	RANs	CLS=2, Desired_depth=1		RANs	CLS=2, Desired_depth=1
	SGD	alpha=0.01, n_iter=10, epsilon=0.25		SGD	alpha=0.0001, n_iter=5, epsilon=0.25
	RBM +	Lr=0.01, iter=1000, comp=20	Wine Recognition	RBM +	Lr=0.01, iter=500, comp=20
	LR	max_iter=30, C=5		LR	max_iter=30, C=50

Lr-Learning Rate; iter-Iterations; comp-Number of Hidden Components of RBM; RS-Random State
hls=Hidden Layer Sizes; CLS-Number of clusters at the input layer of RANs

481 let true-label be [c1, c2, c2, c1, c2, c3, c3] for 7 test instances, then for node n1 label will be [1, 0, 0,
482 1, 0, 0, 0] where 1 represents class c1, and 0 depicts others (i.e. c2, and c3).

483 2 **Node-wise confidence-score calculation:** This is calculated by averaging activation-value and
484 confidence-indicator of activation for an input instance at an Abstract node. Activation-value
485 is an individual activation of an activation vector obtained by propagating up the data using
486 UAP mechanism of RANs whereas, confidence-indicator is calculated by min-max normalization
487 operation of activation vector. For example, after UAP operation each node (n1, n2, and n3)
488 receives activation [0.89, 0.34, 0.11] (a vector of activation), and confidence-indicator is min-max
489 ([0.89, 0.34, 0.11]) = [1.0, 0.29, 0.0]. and the confidence-score for nodes n1= (0.89 + 1.0)/2.0 = 0.95,
490 n2= (0.34 + 0.29)/2.0 = 0.32, and n3= (0.11 + 0.11)/2.0 = 0.05.

491 *Appendix A.4 Abstract Concept Labeling (ACL)*

492 This method is optional and useful when the input data is labeled. With this mechanism, we
493 associate an identifier to every Abstract Concept node N_j . Having generated the RANs model with CI,
494 then through CC, ILL, input data is sorted label-wise, and perform UAP operation. The propagated data
495 is inspected class-wise, and label node N_j with a class-name for which it got the maximum count of

496 the highest activation. For example, suppose input data for class-X has 100 instances, after inspecting
497 the propagated data, it is observed that node N_1 received highest activation 74-times, whereas, with
498 remaining 26 cases other nodes experienced maximum activation, therefore, we recognize node N_1 as
499 representative of class-X. *True-Labels* are identified by mapping each class of the input instance directly
500 to its respective node representative. *Observed-Labels* are obtained by propagating every test-instance
501 through UAP operation, inspecting which Abstract node received the highest activation for that
502 data-unit, and label it with the class represented by that node. *True-Labels* and *Observed-Labels* are
503 used to validate the model's performance.

504 References

- 505 1. Kiefer, M.; Pulvermüller, F. Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. *Cortex* **2012**, *48*, 805–825.
- 506 2. Xiao, P.; Toivonen, H.; Gross, O.; Cardoso, A.; Correia, J.a.; Machado, P.; Martins, P.; Oliveira, H.G.; Sharma, R.; Pinto, A.M.; Díaz, A.; Francisco, V.; Gervás, P.; Hervás, R.; León, C.; Forth, J.; Purver, M.; Wiggins, G.A.; Miljković, D.; Podpečan, V.; Pollak, S.; Kralj, J.; Žnidaršič, M.; Bohanec, M.; Lavrač, N.; Urbančič, T.; Velde, F.V.D.; Battersby, S. Conceptual Representations for Computational Concept Creation. *ACM Computing Survey* **2019**, *52*, 1–33.
- 507 3. Anderson, J.R.; Matessa, M.; Lebiere, C. ACT-R: A theory of higher level cognition and its relation to visual attention. *Human-Computer Interaction* **1997**, *12*, 439–462.
- 508 4. Gärdenfors, P. *Conceptual spaces: The geometry of thought*; MIT press, 2004.
- 509 5. Sun, R.; Peterson, T. Learning in reactive sequential decision tasks: The CLARION model. IEEE International Conference on Neural Networks. IEEE, 1996, Vol. 2, pp. 1073–1078.
- 510 6. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
- 511 7. Freedman, D.A. *Statistical models: theory and practice*; Cambridge University Press, 2009; chapter 7.
- 512 8. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. *The American Statistician* **1992**, *46*, 175–185.
- 513 9. Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. Proceedings of the twenty-first international conference on Machine learning. ACM, 2004, p. 116.
- 514 10. Hinton, G. A practical guide to training Restricted Boltzmann Machines. *Momentum* **2010**, *9*, 926.
- 515 11. Binder, J.R.; Westbury, C.F.; McKiernan, K.A.; Possing, E.T.; Medler, D.A. Distinct brain systems for processing concrete and abstract concepts. *Journal of Cognitive Neuroscience* **2005**, *17*, 905–917.
- 516 12. Gao, C.; Baucom, L.B.; Kim, J.; Wang, J.; Wedell, D.H.; Shinkareva, S.V. Distinguishing Abstract from Concrete concepts in Supramodal Brain Regions. *Neuropsychologia* **2019**, *131*, 102 – 110.
- 517 13. Kousta, S.T.; Vigliocco, G.; Vinson, D.P.; Andrews, M.; Del Campo, E. The representation of abstract words: Why emotion matters. *Journal of Experimental Psychology: General* **2011**, *140*, 14.
- 518 14. Barsalou, L.W.; Wiemer-Hastings, K. Situating abstract concepts. *Grounding cognition: The role of perception and action in memory, language, and thought* **2005**, pp. 129–163.
- 519 15. Löhr, G. Embodied cognition and abstract concepts: Do concept empiricists leave anything out? *Philosophical Psychology* **2019**, *32*, 161–185.
- 520 16. Gibbs Jr, R.W. Why many concepts are metaphorical. *Cognition* **1996**, *61*, 309–319.
- 521 17. Hill, F.; Korhonen, A. Learning Abstract Concept Embeddings from Multi-Modal Data: Since You Probably Can't See What I Mean. *Empirical Methods in Natural Language Processing*, 2014, pp. 255–265.
- 522 18. Iosif, E.; Potamianos, A.; Giannoudaki, M.; Zervanou, K. Semantic similarity computation for abstract and concrete nouns using network-based distributional semantic models. Proceedings of the 10th International Conference on Computational Semantics. Potsdam, Germany:[sn], 2013, pp. 328–334.
- 523 19. Iosif, E. Network-based distributional semantic models. PhD thesis, Technical University of Crete, Chania, Greece, 2013.
- 524 20. Maniezzo, V. Genetic evolution of the topology and weight distribution of neural networks. *IEEE Transactions on Neural Networks* **1994**, *5*, 39–53.
- 525 21. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. *Evolutionary computation* **2002**, *10*, 99–127.

547 22. Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.;
548 Navruzyan, A.; Duffy, N.; others. Evolving deep neural networks. In *Artificial Intelligence in the Age of*
549 *Neural Networks and Brain Computing*; Elsevier, 2019; pp. 293–312.

550 23. Hintze, A.; Edlund, J.A.; Olson, R.S.; Knoester, D.B.; Schossau, J.; Albantakis, L.; Tehrani-Saleh, A.; Kvam, P.;
551 Sheneman, L.; Goldsby, H.; others. Markov Brains: A technical introduction. *arXiv preprint arXiv:1709.05601*
552 2017.

553 24. Pinto, A.M.; Barroso, L. Principles of Regulated Activation Networks. In *Graph-Based Representation and*
554 *Reasoning*; Springer, 2014; pp. 231–244.

555 25. Jacoby, L. Perceptual enhancement: persistent effects of an experience. *Journal of Experimental Psychology.*
556 *Learning, Memory and Cognition* **1983**, *9*, 21–38.

557 26. Roediger, H.; Blaxton, T. Effects of varying modality, surface features, and retention interval on priming in
558 word-fragment completion. *Memory & Cognition* **1987**, *15*, 379–388.

559 27. Roediger, H.; Mcdermott, K. Creating false memories: Remembering words not presented in lists. *Journal*
560 *of Experimental Psychology. Learning, Memory, and Cognition* **1995**, *21*, 803–814.

561 28. Gärdenfors, P. Conceptual spaces as a framework for knowledge representation. *Mind and Matter* **2004**,
562 *2*, 9–27.

563 29. Sivik, L.; Taft, C. Color naming: A mapping in the IMCS of common color terms. *Scandinavian Journal of*
564 *Psychology* **1994**, *35*, 144–164.

565 30. Rosch, E. Cognitive representations of semantic categories. *Journal of Experimental Psychology: General* **1975**,
566 *104*, 192.

567 31. Mervis, C.B.; Rosch, E. Categorization of natural objects. *Annual Review of Psychology* **1981**, *32*, 89–115.

568 32. Rosch, E. Prototype classification and logical classification: The two systems. *New trends in conceptual*
569 *representation: Challenges to Piaget's theory* **1983**, pp. 73–86.

570 33. Parsons, L. Evaluating subspace clustering algorithms. in Workshop on Clustering High Dimensional
571 Data and its Applications, SIAM International Conference on Data Mining, 2004, pp. 48–56.

572 34. Livingstone, D. *Unsupervised Learning*; John Wiley & Sons, Ltd, 2009; pp. 119–144.

573 35. Yoon, J.; Raghavan, V.; Chakilam, V. BitCube: clustering and statistical analysis for XML documents.
574 *Journal of Intelligent Information Systems* **2001**.

575 36. Van Deursen, A.; Kuipers, T. Identifying Objects Using Cluster and Concept Analysis. Proceedings of the
576 21st International Conference on Software Engineering. ACM, 1999, pp. 246–255.

577 37. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. *Nature* **2015**, *521*, 436–444.

578 38. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. *Neural Networks* **2015**, *61*, 85–117.
579 Published online 2014; based on TR arXiv:1404.7828 [cs.NE].

580 39. Bengio, Y. Learning Deep Architectures for AI. *Foundations and Trends® in Machine Learning* **2009**, *2*, 1–127.

581 40. Eigen, D.; Rolfe, J.; Fergus, R.; LeCun, Y. Understanding Deep Architectures using a Recursive
582 Convolutional Network. International Conference on Learning Representations. CBLS, 2014.

583 41. Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. *IEEE*
584 *Transactions on Pattern Analysis and Machine Intelligence* **2013**, *35*, 1798–1828.

585 42. Anderson, J. A spreading activation theory of memory. *Journal of Verbal Learning and Verbal Behavior* **1983**,
586 *22*, 261–295.

587 43. Collins, A.; Quillian, M. Retrieval time from semantic memory. *Journal of Verbal Learning and Verbal Behavior*
588 **1969**, *8*, 240 – 247.

589 44. Crestani, F. Application of Spreading Activation Techniques in Information Retrieval. *Artificial Intelligence*
590 *Review* **1997**, *11*, 453–482.

591 45. McNamara, T.; Altarriba, J. Depth of spreading activation revisited: Semantic mediated priming occurs in
592 lexical decisions. *Journal of Memory and Language* **1988**, *27*, 545 – 559.

593 46. Roediger, H.; Balota, D.; Watson, J. Spreading activation and arousal of false memories. *The nature of*
594 *remembering: Essays in honor of Robert G. Crowder* **2001**, pp. 95–115.

595 47. Kavukcuoglu, K.; Sermanet, P.; Boureau, Y.; Gregor, K.; Mathieu, M.; LeCun, Y. Learning Convolutional
596 Feature Hierarchies for Visual Recognition. *Advances in Neural Information Processing Systems (NIPS*
597 *2010)*, 2010, Vol. 23.

598 48. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. OverFeat: Integrated Recognition,
599 Localization and Detection using Convolutional Networks. International Conference on Learning
600 Representations. CBLS, 2014.

601 49. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-means Clustering Algorithm. *Journal of the Royal
602 Statistical Society. Series C (Applied Statistics)* **1979**, *28*, 100–108.

603 50. Frey, B.J.; Dueck, D. Clustering by Passing Messages Between Data Points. *Science* **2007**, *315*, 972–976.

604 51. Lichman, M. UCI Machine Learning Repository, 2013.

605 52. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A Public Domain Dataset for Human Activity
606 Recognition using Smartphones. Empirical Methods in Natural Language Processing, 2013.

607 53. Higuera, C.; Gardiner, K.J.; Cios, K.J. Self-organizing feature maps identify proteins critical to learning in a
608 mouse model of down syndrome. *PLOS ONE* **2015**, *10*, e0129126.

609 54. Elter, M.; Schulz-Wendtland, R.; Wittenberg, T. The prediction of breast cancer biopsy outcomes using two
610 CAD approaches that both emphasize an intelligible decision process. *Medical Physics* **2007**, *34*, 4164–4172.

611 55. Street, W.N.; Wolberg, W.H.; Mangasarian, O.L. Nuclear feature extraction for breast tumor diagnosis.
612 Biomedical Image Processing and Biomedical Visualization. International Society for Optics and Photonics,
613 1993, Vol. 1905, pp. 861–871.

614 56. Bennett, K.P.; Mangasarian, O.L. Robust linear programming discrimination of two linearly inseparable
615 sets. *Optimization methods and software* **1992**, *1*, 23–34.

616 57. Evett, I.W.; Spiehler, E.J. Rule induction in forensic science. Technical report, Central Research
617 Establishment, Home Office Forensic Science Service, 1987.

618 58. Quinlan, J.R. Simplifying decision trees. *International Journal of Human-Computer Studies* **1999**, *51*, 497–510.

619 59. Fisher, R.A. The use of multiple measurements in taxonomic problems. *Annals of Human Genetics* **1936**,
620 *7*, 179–188.

621 60. Forina, M.; Leardi, R.; Armanino, C.; Lanteri, S.; Conti, P.; Princi, P. PARVUS: An extendable package of
622 programs for data exploration, classification and correlation. *Journal of Chemometrics* **1988**, *4*, 191–193.