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Abstract: The term Concept has been a prominent part of investigations in psychology and 
neurobiology where, mostly, it is mathematically or theoretically represented. The Concepts are 
also studied computationally through their symbolic, distributed and hybrid representations. The 
majority of these approaches focused on addressing concrete concepts notion, but the view of the 
abstract concept is rarely explored. Moreover, most computational approaches have a predefined 
structure or configurations. The proposed method, Regulated Activation Network (RAN), has an 
evolving topology and learns representations of Abstract Concepts by exploiting the geometrical 
view of Concepts, without supervision. In the article, the IRIS data was used to demonstrate: the 
RAN’s modeling; flexibility in concept identifier choice; and deep hierarchy generation. Data from 
IoT’s Human Activity Recognition problem is used to show automatic identification of alike classes 
as abstract concepts. The evaluation of RAN with 8 UCI benchmarks and the comparisons with 5 
Machine Learning models establishes the RANs credibility as a classifier. The classification operation 
also proved the RAN’s hypothesis of abstract concept representation. The experiments demonstrate 
the RANs ability to simulate psychological processes (like concept creation and learning) and carry 
out effective classification irrespective of training data size.

Keywords: unsupervised machine learning; hierarchical learning; computational representation; 
computational cognitive modeling; contextual modeling; classification; IoT data modeling17

0. Introduction18

Concepts are of great value to humans because they are one of the building blocks of our19

recognition process. They enable us to perform cognitive functions such as classification which20

is fundamental in decision making and also capacitate us for contextual comprehension. By definition,21

a concept refers to an ‘idea’ or a combination of several ideas but in the computational domain, a22

concept can be a feature (object or event) or set of features (objects or events). An individual concept23

is referred to as a concrete concept (or feature) whereas a generalized form of a set of concepts (or24

features) can be perceived as an abstract concept. There are several conceptual representation theoritical25

frameworks [1] like modality-specific, localist-distributed, experience-dependent [2].26

In computational domain, the concepts are mostly represented by three broad categories i.e.27

symbolic (eg. ACT-R [3]), distributed (eg. ANN) and spatial (eg. Conceptual Space [4]) representations.28

Cognitive architecture like CLARION [5] is an example of a hybrid computational representation that29

combines symbolic and distributed approaches, but there is no hybrid approach that combines all the30

three representations. Moreover, the symbolic, distributed, spatial and hybrid (spatial+distributed)31

representations are mostly used on representing concrete concepts (like object detection) whereas the32

notion of an abstract concept is debated [1] but rarely explored.33
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Figure 1. A universe of Concepts in six-dimensional feature hyper-space. The ovals in the diagram
depict individual Concepts. Each individual Concept is described by their defining 6-dimensions. The
cluster of Concepts shows the groups formed by similar Concepts represented by a Convex cluster of
Concepts, and the cluster centers depicts the most generic Concept of the cluster.

This article proposes a computational method named Regulated Activation Network (RAN)34

which unifies the virtues of symbolic, distributed and spatial representations to represent concepts35

(both concrete and abstract). RAN has a graph-based topology hence it is distributed, every node in36

the graph (network) identifies an entity, therefore, it’s symbolic, and every node (or entity) is viewed37

in an n-dimensional feature space, hence, it’s also spatial. The spatial view of concepts as points38

in multidimensional geometric feature space (see Figure 1 for 6-dimensional View of Concepts) is39

inspired by the theory of conceptual spaces [4]. The RAN’s modeling has an evolving topology that40

enables it to build a model depicting a hierarchy of concepts. The geometrical associations among41

concepts aid in determining the Convex Abstract Concepts. Further, the representatives (nodes) of the42

Abstract Concepts form a new layer dynamically, where each node acts as a Convex Abstract Concept43

representative for the underlying category. Symbolically, the concepts at (relatively) lower level in the44

hierarchy are identified as concrete concepts and the concepts at (relatively) higher level are seen as45

abstract concepts.46

The model generation process with RAN and the three cognitive functions (i.e. concept creation,47

learning and activation propagation) are simulated using a IRIS data. The deep hierarchy generation,48

automatic generic concept modeling simulations are performed using 2 UCI benchmark: IRIS data;49

and IoT data from smartphone sensors. The application of RAN as a classifier is reported along with50

the proof of concept of classification using 8 UCI benchmark datasets. The generated models were51

evaluated using metrics precision, recall, F1-score, accuracy and Receiver Operating Characteristic52

(ROC) curve analysis. The article also reports the RANs classification and feature comparison with five53

machine learning techniques, Multilayer Perceptron (MLP) [6], Logistic Regression (LR) [7], K Nearest54

Neighbors (K-NN) [8], Stochastic Gradient Descent (SGD) [9] and Restrict Boltzmann Machine [10]55

pipelined with Logistic Regression (RBM+).56

The article is organized in the following order; Section 1 puts forward the work closely related57

to Abstract Concept representation and models with evolving topology. Section 2 describes the58

background associated with principles, theories, and motivations for RAN’s modeling. RANs59

methodology is detailed using a IRIS data in Section 3. Section 4 shows the experiments with two60

datasets acquired from UCI machine learning repository to exhibit (1) flexibility in choosing a suitable61

concept identifier, (2) building a deep hierarchy of Abstract Concepts, (3) automatic association of62
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63 input-labels to their respective Abstract Concept nodes. Section 5 provides RANs comparisons with 
64 five classifiers and proof of concept with eight benchmark datasets. At last, Section 6 summarizes and 
65 concludes the article with remarks over ongoing and future work.

66 1. Related Work

67 Abstract Concepts are of immense value because they help in developing unique abilities in 
68 humans such as relative recognition and effective decision-making. In medical science, there have been 
69 significant efforts to study Abstract Concepts with the help of technology. One such example is MRI1, 
70 which is being used to inspect the sections of the brain involved in Abstract Concept identification [11, 
71 12]. Research in psychology has also reported investigations over Abstract Concepts, like probing the 
72 role of emotional content in processing and representing Abstract Concepts [13].

There has been a notable contribution from cognitive, and psycholinguists in studying languages73

through Abstract Concept modeling and representations. Internally representing Abstract Concepts74

via amodal symbols like a feature list, and frames [14,15] is among the preliminary research work75

in linguistics. The association and context were also established, to relating Abstract and Concrete76

words [14]. Some research reveals that we internally recognize metaphors as Abstract Concepts [16].77

Besides theoretical methods, computational approaches are playing a vital role in comprehending and78

representing Abstract Concepts. Research in NLP addresses computational learning, comprehension79

and processing of human understandable language, and its components. An interesting article80

published a work about the representation of Abstract, and Concrete Concepts in daily written81

Language using a text-based multimodal architecture of NLP [17]. Other than NLP, semantic networks82

are also used to study semantic similarity among Abstract, and Concrete nouns (of Greek, and83

English) [18] with the aid of network-based Distributed Semantic Model [19].84

Though the aforementioned computational approaches contribute toward Abstract Concept85

modeling and representation, they have a fixed topology (i.e., the modeling process begins with a86

fixed structure and configuration). In connectionist computational modeling, there have been efforts to87

develop models that evolve. ANNA ELEONORA (standing for Artificial Neural Networks Adaptation:88

Evolutionary LEaming Of Neural Optimal Running Abilities) [20] demonstrated a way to grow89

neural networks with the aid of parallel genetic algorithms. NEAT (NeuroEvolution of Augmenting90

Topologies) [21] is another work that reported evolving neural network modeling, showing how nodes91

and weights are added to the model when new features emerge as part of the existing population92

and CoDeepNEAT [22] is the most recent member of such evolving models. Markov Brains [23] also93

belong to the family of evolving neural networks which uses binary variables and arbitrary logic to94

implement deterministic or probabilistic finite state machines. They have been used to investigate95

behaviors, character recognition and game theory.96

This article communicates an approach which is not only hybrid but also has an evolving topology.97

The RANs modeling learns the representation of the Convex Abstract Concepts dynamically, hence98

makes it an evolving topology. RANs approach is connectionist, and each newly created node99

corresponds to an Abstract Concept symbolically, thus portraying its hybrid characteristics.100

2. Background101

This section provides information about the principles and methodologies related to RANs102

modeling. It highlights the significance of each approach, along with their applicability in RANs103

modeling.104

1 Magnetic Resonance Imaging
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2.1. Principles of Regulated Activation Networks105

The tenets of RANS modeling, presented in [24], states model should be topologically a106

connectionist and intends to represent and simulate the dynamic cognitive state of an agent. In107

the first version RANs [24] the authors implemented a single-layer version of the model where each108

node had a lateral connection to its same-layer companions. It had a simple learning and reasoning109

mechanisms, but these showed to be sufficient to simulate several known cognitive phenomena such110

as the Priming [25], the False Memory [26,27].111

Two principles of Regulated Activation Networks inspired our proposal. First, the model should112

be dynamic, and this is achieved by dynamically creating layers (deep representations) of Concepts.113

Second, the model must be capable of learning and creating an Abstract representation of Concepts.114

This is obtained by viewing associations among the Concepts (at the same level) in n-dimensional115

geometric space, and learning relationship between the newly created Abstract Concepts, and input116

level Concepts.117

2.2. Conceptual Spaces118

Conceptual Spaces theory [4] is one of the cognitive approaches that form the basis of RANs119

modeling. This theory views the Concepts as regions within a multi-dimensional space, with the data120

features representing the dimensions. The similarity among the Concepts can be identified based upon121

the geometrical distance between the objects. The Conceptual Spaces, thus, serves as a natural way or122

tool to capture the similarity relationships among Concepts, or Objects. Under this setting, one data123

instance corresponds to a single point in the space. Formally we can say, the Quality Dimensions, i.e., a124

set of D1, .....,Dn, forms the Conceptual Space S. A point in S is represented by a vector v= 〈d1, ....., dn〉,125

where {1,....n} are the indexes of the dimensions. Atomic Concepts are Convex Regions –a Convex126

Region C having point x that falls between points x1 ∈ C and x2 ∈ C also belongs to C. The quality127

dimension is the basic requirement for Conceptual Spaces [28]. An example is a color space with the128

dimensions Hue, Saturation, and Brightness. Each quality dimension has a geometrical structure. For129

example, Hue is circular, whereas brightness and saturation correspond with finite linear scales (see130

Figure 2).

Figure 2. The color space [29]
131

The theory of Conceptual Spaces also addresses prototype theory of categorization [30–32]. The132

main idea of prototype theory is that within a category of objects, like those instantiating a Concept,133

certain members are judged to be more representative of the group than others. For example, robins134

are judged to be more representative of the category “bird” than are ravens, penguins, and emus. If135

Convex Regions of Conceptual Space describes Concepts, then prototype effect is, indeed, expected,136

i.e., the most likely central position of a Convex Region describes an Abstract Concept. For example, if137

color Concepts in a Convex region identified as subsets of the color space, then the central points of138

these regions would be the most prototypical examples of the color.139

Clustering is a suitable way of identifying and learning atomic Convex Concepts in conceptual140

spaces. There are several clustering techniques, like hierarchical clustering, subspace clustering [33],141

partitioning relocation clustering, density-based clustering, grid-based clustering and many more.142
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Table 1. Notations

Notation Description

W Inter-Layer weight matrix
A Output Activation
a Input Activation
na Number of elements in input vector at Layer

l
nA Number of elements in output vector at

Layer l + 1
l l’th Layer representative
d Normalized Euclidean distance
C Cluster center or Centroids
i, j, k Variables to represent node index for

input-level, abstract-level, and arbitrary
node index in either of the levels,
respectively

t Iterator variable
f (x) Transfer function to obtain similarity

relation

Many are frequently used in the statistical and scientific analysis of data [34,35], and in machine143

learning for the identification of Concepts/features [36]. On the other hand, the creation of a hierarchy144

of sub/super-Concepts is a way to represent more Abstract Concepts and their taxonomic-like145

relations. Deep learning techniques [37–40,40,41] found in the literature can also be used to create146

deep hierarchical representations, but usually do not interpret data as points in Conceptual Spaces.147

In the proposed approach, the clustering techniques enable us to identify categories of Concepts in a148

Conceptual Space thus laying the foundation to form a layer of Abstract representation of Concepts.149

2.3. Spreading Activation150

Spreading Activation is a theory of memory [42] based on Collins and Quillian’s computer151

model [43] which has been widely used for the cognitive modeling of human associative memory and152

in other domains such as information retrieval [44]. It intends to capture the information representation153

and how it is processing. According to the theory, long-term Memory is represented by nodes and154

associative links between them, forming a semantic network of Concepts. The links characterized155

by a weight denotes the associative or semantic relation between the Concepts. The model assumes156

activating one Concept implies the spreading of activation to related nodes, making those memory157

areas more available for further cognitive processing. This activation decays over time as it spreads,158

which can occur through multiple levels [45], and the further it gets the weaker it becomes. That159

is usually modeled using a decaying factor for activation. The method of spreading activation has160

been central in many cognitive models due to its tractability and resemblance of interrelated groups161

of neurons in the human brain [46]. This theory of Spreading Activation inspires the activation162

propagation mechanism in our proposal to propagate (spread) activation in the upward direction, i.e.,163

from the input-to-abstract layer in the network. The method has its significance, i.e., in the creation of164

the network, and in understanding the created Abstract Concepts.165

3. Abstract Concept Modeling with RANs166

The data value used with RANs modeling should be between “0” and “1” (both inclusive). This167

limitation has its inspiration from biological neurons, a value “0” indicates neuron (or node) is inactive,168

whereas “1” shows the neuron is highly active. An additional header is also needed for modeling169

with RAN. The size of the header is the same as the dimension of the input data vector, and each170

header element holds the largest value of their corresponding input data attribute. See Section A.1171

for elaboration. RANs works with multivariate datasets except image because pictures are not ideal172
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Figure 3. Parallel coordinate plot of normalized IRIS data. The plot shows the three classes of IRIS data
along with their Cluster Representative Data Points (CRDP).

candidates to be interpreted as points in conceptual spaces, (discussed in Section 2.2). For this reason,173

our approach will, most probably, underperform on image processing tasks against other models that174

are, individually, designed for this kind of data, such as deep representations built with Convolutional175

Networks [40,47,48]; our technique is preferably suitable for understanding and simulating cognitive176

processes like Abstract Concept Identification.177

The proposed approach models Convex Abstract Concepts through four core steps (i.e., Concept178

Identification, Concept Creation, Interlayer Learning and Upward Activation Propagation), along with one179

optional step (i.e., Abstract Concept Labeling). The RAN’s methodology is explained using benchmark180

IRIS dataset. Figure 3 shows the parallel coordinate plot of IRIS data normalized between [0, 1] using181

min-max technique. The plot also shows the Cluster Representative Data Points (CRDPs) for all three182

classes of IRIS data (the importance of CRDP is detailed in 3.1). The objective of this experiment is183

to show how RANs build a hierarchical representation dynamically and simulate cognitive process184

of concept creation, learning, and activation propagation. For this experiment, it was hypothesized that185

the created abstract concepts symbolically represents the three classes of IRIS data. Classification186

operations were performed to prove the hypothesis which are reported at the end of this section.187

3.1. Step 1: Concept Identification (CI) Process188

The concept identification is the process of identifying convex groups in the input data.189

This is realized by categorizing the input data based upon their geometrical relationship, i.e.,190

distance, conforming to the theory of conceptual spaces (see Section 2.2). The quality-dimension191

(i.e. SepalLength, SepalWidth, PetalLength and PetalWidth attributes of input data) symbolically192

represents input nodes (i.e. S1, S2, S3 and S4 see Figure 4). In this experiment, K-means [49] clustering193

method is used a concept identifier and applied to determine the convex groups in the IRIS data. The194

K-means was configured to determine the 3 classes (i.e. Iris-setosa, Iris-virginica, and Iris-Versicolor) of195

IRIS data. The clustering operation also determines the three cluster centers as Cluster Representative196

Data Points (CRDPs). According to the theory of prototype (see Section 2.2) these three CRDPs are the197

most probable representative of the three convex groups respectively, therefore are of great importance198

in learning relationship among concepts in two adjacent layers (see Section 3.3).199

Any clustering algorithm can act as a Concept Identifier in RANs modeling if it suffices two200

basic requirements. First, the algorithm is able to determining Convex categories based upon their201

geometric relationship among the data instances. Second, the algorithm recognizes CRDPs of all the202
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Figure 4. Steps in model generation with Regulated Activation Networks. The nodes S1, S2, S3 and S4

symbolically represents SepalLength, SepalWidth, PetalLength and PetalWidth attributes of input data.

identified clusters. This flexibility of choosing a suitable method for Concept Identification process in203

RANs modeling is demonstrated by a separate experiment using Affinity propagation [50] clustering204

algorithm, in Section 4.1.205

3.2. Step 2: Concept Creation (CC) Process206

Concept creation is a cognitive process to create representation of a newly identified concept.207

In RANs this cognitive process is simulated by creating a new layer of concepts dynamically. Each208

constituent node in the new layer symbolically acts as an abstract representative of their respective209

categories identified in the CI process. Step-2 in Figure 4 shows the newly created layer (Layer-1),210

that has 3 nodes (N1, N2 and N3), corresponding to 3 classes (i.e. Iris-setosa, Iris-virginica, and211

Iris-Versicolor) of IRIS data (see Figure 3), identified in CI operation.212

3.3. Step 3: Inter-Layer Learning (ILL) Process213

Learning is an important cognitive process it acts as a relationship to associate concepts. In RANs214

modeling, learning is simulated by an assignment operation. As aforestated in Section 3.2 that each215

node in the new layer is an Abstract representative of categories identified in CI process, thus we learn216

association among the two-layer such that it substantiates the Abstract representation by the nodes at217

the new layer. Since CRDPs (see Section 3.1) are the most apparent choice as an Abstract representative218

of a cluster (and adhere to the inspiration from prototype theory); consequently, the CRDPs assigned219

as an association between the two layers.220

Equation 1 shows the general learning in the form of a matrix, where W is the learned Inter-Layer
Weight (ILW) between node j at new layer (i.e., Layer-1 in Figure 4) and node i at input layer (i.e.,
Layer-0). The set of ILWs, from one node j at new layer to all input nodes i, are the values of CRDP
of jth cluster center (i.e., Cj) identified in CI process. For instance, cluster center C1 (see Figure 3)
forms the weight vector [W1,1, W1,2, W1,3 and W1,4] (ILWs shown by 4 yellow lines in Step 3 Figure 4)
between the node N1 at Layer-1 and all four input nodes S1, S2,S3 and S4 at Layer-0.

W =


W1,1, W1,2, . . . , W1,na

. . .
Wk,1, Wk,2, . . . , Wk,na

. . .
WnA ,1, WnA ,2, . . . , WnA ,na

 =


C1

. . .
Ck
. . .

CnA

 (1)

Where j=1, 2, ..., nA, and i=1, 2, ..., na.221
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3.4. Step 4: Upwards Activation Propagation (UAP) Process222

This upward activation propagation is a geometric reasoning operation, i.e., a non-linear projection223

of an i-dimensional input data vector ai, into a j-dimensional output vector Aj (see Step 4 in Figure 4).224

The UAP operation is carried out in two stages, in the first stage the geometric distance operation takes225

place, and in the second stage, geometric distance is translated to establish a similarity relation.226

3.4.1. Geometric Distance Function (GDF)- Stage 1227

In the first phase of the UAP mechanism we determine the geometrical distance between the
learned weight vectors (see Equation 1) and an input instance ai. The numerator of Equation 2 shows
a function to calculate the Euclidean distance between the jth weight vector and input vector ai. The
denominator of Equation 2 shows the relation that normalizes2 the calculated distance between [0, 1].

dj =

√
∑na

i=1(Wj,i − ai)2

√
na

(2)

And consequently, j normalized Euclidean distances dj are obtained between all j weight vectors and228

input instance ai.229

3.4.2. Similarity Translation Function (STF)- Stage 2230

In the second phase the calculated normalized distance is transformed to obtain a similarity231

relation such that following requirements are fulfilled:232

• f (d = 0) = 1, i.e. when distance is 0 similarity is 100%.233

• f (d = 1) = 0 i.e. when distance is 1 similarity is 0%.234

• f (d = x) is continuous, monotonous, and differentiable in the [0, 1] interval.235

f (x) = (1− 3
√

x)2 (3)

In RANs modeling Equation 3 is used as the Similarity Translation Function to determine the similarity236

relation of the previously calculated distance. The non-linearity of STF is depicted in Figure 5,237

indicating that the similarity value reduces drastically when the normalized Euclidean distance is238

larger than 0.05 (or 5% dissimilar).

Figure 5. Plot of Similarity Translation Function with respect to varying input values in range [0, 1]

2 In RANs modeling the activation values are, by definition, real values in the [0, 1] interval – in an n-dimensional space the
maximal possible euclidean distance between any two points is

√
∑n

i=1(ai − 0)2=
√

n, where ai=1.
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Algorithm 1 Upwards Activation Propagation algorithm

Input: Vector [a1, a2, ..., ana ] as input at layer l.

Output: New activation vector [A1, A2, ..., AnA ] in layer l + 1.

for Each node Aj in layer l + 1 do

Calculate Normalized Euclidean Distance:

dj =

√
∑na

i=1(Wj,i−ai)2
√

na

Transform dj through STF Equation 3:

Aj = f (d2
j )

end for

Where:

i= [1, 2, ...., na].

j= [1, 2, ...., nA].

Wj,i is ILW see Equation 1.

239

The first three steps generate the RANs model (see Figure 4), later, in the fourth step, this model240

is used via UAP operation by propagating the input activation (ai) upward and obtaining activation241

(Aj) at Convex Abstract Concept layer (inspired by the theory of spreading activation see Section 2.3).242

Algorithm 1 describes the Upward Activation Propagation operation, showing how the inputs and243

interlayer learning weights W are used to calculate similarity relation to generating output activation244

at each Abstract Concept representative nodes. The activation Aj in newly created nodes Nj also245

indicate the degree of confidence (DoC) of the identification of a class by its representative node in the246

new layer (for a given input data instance). For instance, in Figure 4, Step-2, at Layer-0 input vector is247

[0.1, 0.21, 0.12, 0.5] it signifies that the dimensions S1, S2, S3 and S4 has activation 0.1, 0.21, 0.12, and 0.5248

respectively. For the, aforementioned, input vector, [0.13, 0.32, 0.89] vector of activation is observed at249

all nodes (N1, N2 and N3) respectively, at Layer-1. The observed activation vector itself describes that250

the input data belongs to Class-3 (Versicolor) with a DoC of 89%.251

3.5. RANs Proof of Hypothesis252

In the beginning of this Section 3 it was hypothesized that nodes in the newly created layer253

symbolically represents abstract concepts of the 3 classes (Iris-setosa, Iris-virginica and Iris-versicolor)254

of Iris data. This hypothesis can be proven through classification operation using the RAN model255

generated with IRIS data. The classification experiment setup consists of 30 iterations of an experiment.256

Each experiment consist of 9 Research Design (RD)(see Table A3 in Section A.2), where, in every RD a257

10-fold cross-validation procedure was applied. To carry out the evaluation operation True-labels, and258

Test-labels are determined via Abstract Concept Labeling (ACL) operation of RANs (see Section A.4 for259

ACL’s description). Further, these labels were used to form a multi-class confusion matrix for the 3260

classes of IRIS data. and with the aid of this confusion matrix 4 metrics (i.e. Precision, Recall, F1-Score,261

and Accuracy) were calculated.262

Multi-class Receiver Operating Characteristics (ROC) curves were also plotted for the 3 classes to263

support the classification experiment with IRIS data. The binary labels corresponding to the True-labels264

(obtained via ACL operation) were obtained using the method node-wise binary transformation of265

input True-label (see Section A.3). Further, the confidence scores for the binary vectors were calculated266

using the node-wise confidence-score calculation method (described in Section A.3).267

The Table 2 not only shows the RAN’s comparison with other 5 classifiers but also that RAN268

indeed preformed well in the classification process with a performance of 95% (ca.) for all classification269
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Figure 6. Area Under Curve for the 3 classes of IRIS for nine Research Designs (RD) of varying Test
and Train data sizes

Table 2. RAN’s classification study with IRIS data

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)
RBM 79.81 ±11.91 77.41 ±11.88 70.66 ±16.28 77.41 ±11.88
K-NN 90.41 ±28.77 92.8 ±21.61 91.00 ±27.01 92.80 ±21.61
LR 97.38 ± 4.15 96.64 ± 5.65 96.45 ± 6.12 96.64 ± 5.65
MLP 97.31 ± 0.71 96.86 ± 1.13 96.81 ± 1.21 96.86 ± 1.13
RANs 95.42 ± 0.67 95.02 ± 0.94 94.98 ± 0.98 95.02 ± 0.94
SGD 94.47 ± 6.40 94.46 ± 5.20 93.31 ± 6.78 94.46 ± 5.20

metrics. The ROC curve analysis also observed an Area Under Curve (AUC) of 99.07% (ca.), 99.40%270

(ca.) and 98.75% (ca.) for IRIS Setosa, Virginica and Versicolor classes respectively. These results shows271

the ability of RAN’s modeling to identify the abstract concept where the three nodes (N1, N2 and N3)272

in Layer-1 symbolically represents the classes IRIS Setosa, Virginica and Versicolor, respectively, as273

abstract concepts, hence proves the hypothesis.274

4. Behavioral Demonstration of RANs275

This section exhibits two distinct aspects of RANs modeling via separate experiments. Both276

investigations present a different view of RANs methodology, highlighting the capabilities of the277

RANs approach.278

4.1. Experiment with IRIS dataset279

There are two objectives of this probe, first is to demonstrate flexibility in choosing an appropriate280

methodology for Concept Identification operation in RANs modeling (see Section 3.1). Second is281

to show how RANs modeling can be used to build a deep hierarchy of Convex Abstract Concepts282

dynamically. This experiment uses Affinity propagation [50] clustering algorithm as a Concept283

Identifier to support the claim of independence in selecting a suitable clustering method for CI process284

in RANs modeling. Unlike the K-means algorithm (used to describe the RANs methodology in285

Section 3), with the Affinity Propagation algorithm, the number of clusters within the data need not286

be known beforehand. Furthermore, Affinity Propagation conforms to the basic requirements (see287

Section 3.1) for being a Concept Identifier in RANs modeling.288

The second prospect of this experiment is to illustrate the dynamic topology of RANs approach289

where the network grows to form several layers representing Convex Abstract Concepts. For this290

demonstration, an algorithm is developed, named Concept Hierarchy Creation (CHC) algorithm291

(see 2). The CHC algorithm streamlines all four steps of RANs modeling (i.e., CI, CC, ILL and UAP)292
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and uses these steps iteratively to build a hierarchy of Convex Abstract Concepts as described through293

Algorithm 2. This experiment was also conducted using the IRIS dataset obtained from the UCI294

machine learning repository [51]. In the CHC algorithm the Affinity propagation clustering algorithm295

was initialized with the following parameters: (1) damping_factor (DF) = 0.94 for layers below level 3,296

DF = 0.9679 for the layers at level 3 and above; (2) convergence_iteration=15; (3) max_iteration=1000.

Figure 7. The model generated with 90% stratified IRIS data using Concept Hierarchy Creation
Algorithm. Layer-0 is created while initializing the CHC algorithm. The algorithm grew to a
Desired-depth of six Layers (including input Layer-0), and in each iteration of CHC algorithm a new
layer is created dynamically and the Interlayer weights (ILW) are learned between the existing layer
and a newly created layer above it.

297

Input layer-0 was created, with four nodes (equal to the dimension of IRIS data), and the RANs298

hierarchy generation is carried out according to Algorithm 2. The model obtained from CHC process299

is depicted by Figure 7, the model was initialized to grow six layers deep. Therefore, hierarchy300

augmentation terminates at Layer-5, with Layer-5 identified as most Abstract layer consisting of three301

nodes acting as Abstract representatives of three categories of flowers of IRIS dataset. To evaluate the302

obtained RANs model, True-labels, and Test-labels were retrieved using an Abstract Concept labeling303

procedure (see Section A.4). A confusion matrix (see Figure 8) was generated using the True and Test304

labels. With the aid of the confusion matrix, Precision, Recall, F1-Score and Accuracy were calculated305

to evaluate the model. The model performed quite decently with an observed accuracy of 93.33 (ca.),306

the results of precision, recall and F1-Score are reported in Table 3. The ROC curve analysis of the307

RANs model, as shown in Figure 9, displays the various operating characteristic and the observed Area308

Under Curve for all the classes of IRIS data. In this experiment, it is worth mentioning the application309

of RANs modeling for data dimension transformation and data visualization. In Figure 7 we can310

observe that the dimension of Layer-0 is four, whereas the size of the other layers either expands or311

reduces when the network grows. This dimension transformation operation is helpful in addressing312
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Algorithm 2 Concept Hierarchy Creation Algorithm

Input: Multi-variate data with values between [0,1].
Output: Set of layers of Concepts – concept hierarchy.

Initialization: Create input layer layer-0 having dimension equal to that of input data.
Set Current-layer-size CLS = i, dimension of input-data vector.
Set Layer-count L= 0.
Set Desired-depth= 6.
Select Clustering algorithm and initialize.
Set current-data = input-data.
repeat

Run clustering algorithm on current-data to identify set of cluster centers C.
Create a new-layer above current-layer, with no nodes.
for each cluster center Cj ∈ C do

Create new node j in new layer l+1.
for each node i in current-layer do

Create a new weighted connection Wcj ,i
between cj and i such that Wcj ,i is the

coordinate of c along the i dimension.
end for

end for
Set new-data = empty data set.
for each datum in current-data do

Inject datum in current-layer
Propagate activation from current-layer to new-layer using algorithm 1.
Add activation pattern produced in new-layer to new-data.

end for
Set L = L + 1.
Set CLS = number of clusters in current-layer.
Set current-data = new-data.
Set current-layer = new-layer.

until CLS=1 OR Desired-depth= L.

Figure 8. Confusion Matrix generated to validate RANs model with IRIS data (having 9 : 1 train, and
test data ratio) for Class-0 (Setosa), Class-1 (Verisicolour), and Class-2 (Virginica).

the issue of the cures of dimensionality. Besides, the transformed data can be plotted to extract useful313

information from the data.314

4.2. Experiment with Human Activity Recognition Data315

This experiment aims to show the ability of the RANs approach to build the representation of316

generic Concepts. The experiment uses UCIHAR [52] dataset for home activity recognition using the317

smartphone, obtained from the UCI machine learning repository. The data captured six activities318

Walking, Walking_upstairs, Walking_downstairs, Sitting, Standing, and Laying. The hypothesis of319

this experiment is that the labels Walking, Walking_upstairs, Walking_downstairs are identified by an320

abstract concept (say) Mobile and the other 3 labels Sitting, Standing, and Laying by abstract concept321

(say) Immobile. In this experiment also classification operation can be used to prove the hypothesis.322

The UCIHAR dataset was normalized and a header was attached. In CHC algorithm K-means323

is chosen as concept identifier and the parameter Desired-depth was set to 1 so that model has only324
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Table 3. Evaluation of RANs Model generated through IRIS data

Class Precision
(%)

Recall
(%)

F1-Score
(%) Support

Setosa 100 100 100 5
Versicolour 83.33 100 90.91 5
Virginica 100 80 88.89 5

Avg/Total 94.44 93.33 93.26 15

Figure 9. ROC curve analysis with IRIS dataset (having 9 : 1 train, and test data ratio), for Class-0
(Setosa), Class-1 (Verisicolour), and Class-2 (Virginica)

Figure 10. Model generated with RANs approach. Nodes N1 and N1 at Layer-1 represents either
of the two Abstract Concepts, i.e. Mobile and Immobile. Each node at Layer-0 represents individual
dimensions of input data vector

two layers. The K-means was configured with K=2 because the model was hypothesized to have 2325

abstract concepts at Layer-1. Having fulfilled the initialization part of the CHC algorithm modeling326

is performed, generating a two-layered model as depicted in Figure 10. In Figure 10 Layer-0 shows327

input-layer and Layer-1 corresponds to Abstract Concept layer where both nodes (N1, and N2) represents328

either of the two Abstract Concepts (i.e. Mobile and Immobile Abstract Concepts).329

Among captured six activities (Walking, Walking_upstairs, Walking_downstairs, Sitting, Standing330

and Laying), Walking, Walking_upstairs, Walking_downstairs are the actions of motion, whereas the331

remaining three represents static states. Based upon these two facts, we expect that one of the Abstract332

nodes in Layer-1 conjointly represents Walking, Walking_upstairs and Walking_downstairs as one333

class. The other node in Layer-1 stages the other three categories (i.e., Sitting, Standing and Laying)334

together. Upon performing the labeling of nodes at Layer-1 through ACL procedure (see Section A.4335
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Table 4. RAN’s Comparative Study for UCIHAR dataset

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)
RBM 99.68 ±0.14 99.68 ±0.14 99.68 ±0.14 99.68 ±0.14
K-NN 99.96 ±0.02 99.96 ±0.02 99.96 ±0.02 99.96 ±0.02
LR 99.97 ±0.02 99.97 ±0.02 99.97 ±0.02 99.97 ±0.02
MLP 99.96 ±0.02 99.96 ±0.02 99.96 ±0.02 99.96 ±0.02
RANs 99.85 ±0.01 99.85 ±0.01 99.85 ±0.01 99.85 ±0.01
SGD 99.98 ±0.01 99.98 ±0.01 99.98 ±0.01 99.98 ±0.01

for ACL process elaboration), it was observed that Walking, Walking_upstairs, Walking_downstairs336

classes were mapped to one node of Layer-1. Whereas, the labels Sitting, Standing and Laying traced337

to the other node in Layer-1. Interestingly, this outcome commensurate with the expectations from338

this experiment and shows the RANs capability to identify Abstract Concepts in an unsupervised339

manner naturally. The True-label and Test-label obtained through ACL operation were used to form

Figure 11. Area Under Curve observed during ROC curve analysis of UCIHAR data in order to
determining operational points of two Abstract Concepts (i.e. Mobile and Immobile) for all nine Research
Designs (RD)

340

the confusion matrix, which is later referred to calculate Precision, Recall, F1-Score, and Accuracy for341

evaluating the generated model. Node-wise binary labels and confidence scores were determined (as342

described in Section A.3) for both Abstract nodes at Layer-1. Figure 11 shows the Area Under Curve343

(AUC) observed during the ROC curve analysis of all 10-Folds in different Research Designs. With344

both these evaluations it is deduced that, apart from building the representation of Abstract Concepts,345

the model generated with RANs performed satisfactorily.346

The RANs modeling was compared with five different types of approaches based upon their347

classification operation. To carry out the comparative study it was essential to transform the six348

Labels into binary Labels, because RANs modeling was identifying two Abstract Concept, and its349

performance was measured based upon them. Thus, with these five approaches, the Labels of the350

dataset were merged to form two groups, i.e., Walking, Walking_upstairs, Walking_downstairs in351

Class-1, and Sitting, Standing, and Laying in Class-2. Later the modeling was performed followed by352

validation and evaluation. Table 4 displays the comparison of all five approaches with RANs modeling.353

It is observed that RANs approach is competent to these five techniques, with an added advantage of354

being an unsupervised approach, and ability to build representations of Abstract Concepts.355

5. RANs Applicability and Observations356

This section highlights the scope of RANs modeling as a classifier w.r.t. distinct domains. To357

support this ambit of RANs usability, experimental results are reported using eight datasets concerning358
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(a) RANs performance with eight different datasets depicting RANs appositeness with data belonging
to distinct domains.

(b) Observed Area Under Curve (AUC) while performing ROC curve analysis for RANs model
generated with eight different datasets.

Figure 12. RANs performance with eight datasets using Precision, Recall, F1-Score and Accuracy
along with ROC-AUC analysis with Eight benchmark datasets [ Mice Protein (MP), Breast Cancer 669
(BC1), Breast Cancer 569 (BC2), Credit Approval (CA), IRIS data (ID), Mamographic Mass (MM), Wine
Recognition (WR) and Glass Identification (GI)]. The graph 12b shows the plot of percentage AUC
for classes 1 to 8. For each dataset class labels of the graph is serially mapped as: Mice protein (c-CS-s
[Class-1], c-CS-m [Class-2], c-SC-s [Class-3], c-SC-m [Class-4], t-CS-s [Class-5], t-CS-m [Class-6], t-SC-s
[Class-7] and t-SC-m [Class-8]); Mammographic Mass (Benign [Class-1] and Malignant [Class-2]); Credit
Approval (Postitive [Class-1] and Negative [Class-2]); IRIS) (Setosa [Class-1], Versicolar [Class-2] and Verginica
[Class-3]); Breast Cancer 569 (Benign [Class-1] and Malignant [Class-2]); Breast Cancer 669 (Benign [Class-1]
and Malignant [Class-2]), Wine Recognition (Class-1, Class-2 and Class-3) Glass Identification (Window Glass
[Class-1] and Non-Window Glass [Class-2]).
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Table 5. RANs comparison with eight datasets belonging to different domains

Data Algo Precision (%) Recall (%) F1-Score (%) Accuracy (%) Data Algo Precision (%) Recall (%) F1-Score (%) Accuracy (%)
RBM+ 43.45 ±44.07 53.50 ±38.23 45.46 ±43.36 53.50 ±38.23 RBM+ 93.60 ± 2.69 93.51 ± 2.77 93.46 ± 2.86 93.51 ± 2.77
KNN 98.63 ± 3.97 98.34 ± 4.84 98.07 ± 5.65 98.34 ± 4.84 KNN 99.80 ± 0.59 99.79 ± 0.62 99.78 ± 0.63 99.79 ± 0.62
LR 98.99 ± 1.94 98.28 ± 3.38 98.14 ± 3.71 98.28 ± 3.38 LR 99.89 ± 0.07 99.89 ± 0.07 99.89 ± 0.07 99.89 ± 0.07
MLP 98.54 ± 2.19 98.23 ± 2.71 97.83 ± 3.34 98.23 ± 2.71 MLP 98.67 ± 0.94 98.65 ± 0.96 98.64 ± 0.96 99.89 ± 0.07
RAN 99.98 ± 0.06 99.97 ± 0.06 99.89 ± 0.06 99.97 ± 0.06 RAN 93.17 ± 0.36 92.97 ± 0.36 92.87 ± 0.42 92.97 ± 0.36

M
ic

e
Pr

ot
ei

n

SGD 99.11 ± 1.84 98.84 ± 2.46 98.68 ± 2.81 98.84 ± 2.46

B
re

as
t

C
an

ce
r

56
9

SGD 99.87 ± 0.13 99.85 ± 0.18 99.83 ± 0.20 99.85 ± 0.18
RBM+ 95.72 ± 3.62 95.34 ± 4.60 95.13 ± 5.16 95.34 ± 4.60 RBM+ 76.44 ±12.50 75.63 ±12.98 74.04 ±14.59 75.63 ±12.98
KNN 99.46 ± 0.88 99.44 ± 0.93 99.43 ± 0.94 99.44 ± 0.93 KNN 95.48 ± 0.16 95.46 ± 0.17 95.46 ± 0.17 95.46 ± 0.17
LR 99.16 ± 0.17 99.14 ± 0.17 99.15 ± 0.17 99.14 ± 0.17 LR 95.06 ± 0.38 95.04 ± 0.39 95.04 ± 0.39 95.04 ± 0.39
MLP 98.96 ± 0.76 98.95 ± 0.76 98.95 ± 0.77 98.95 ± 0.76 MLP 98.02 ± 1.32 98.00 ± 1.34 97.99 ± 1.34 98.00 ± 1.34
RAN 95.18 ± 0.25 95.15 ± 0.24 95.11 ± 0.25 95.15 ± 0.24 RAN 80.67 ± 1.37 79.58 ± 1.05 79.66 ± 1.13 79.58 ± 1.05

B
re

as
t

C
an

ce
r

66
9

SGD 99.88 ± 0.16 99.88 ± 0.16 99.18 ± 0.16 99.88 ± 0.16

C
re

di
t

A
pp

ro
va

l

SGD 99.77 ± 0.39 99.75 ± 0.40 99.75 ± 0.40 99.75 ± 0.40
RBM+ 82.58 ±10.29 84.19 ± 4.90 80.61 ± 8.42 84.19 ± 4.90 RBM+ 84.85 ±16.54 85.18 ±14.98 82.42 ±20.30 85.18 ±14.98
KNN 94.08 ±12.12 95.97 ± 7.32 94.82 ±10.59 95.97 ± 7.32 KNN 99.65 ± 0.88 99.64 ± 0.89 99.64 ± 0.89 99.64 ± 0.89
LR 99.52 ± 0.18 99.49 ± 0.18 99.49 ± 0.18 99.49 ± 0.18 LR 99.41 ± 0.30 99.40 ± 0.30 99.40 ± 0.30 99.40 ± 0.30
MLP 93.78 ± 1.40 93.28 ± 1.52 92.85 ± 1.64 93.28 ± 1.52 MLP 98.91 ± 2.11 98.79 ± 2.35 98.79 ± 2.35 98.79 ± 2.35
RAN 90.07 ± 0.43 89.18 ± 1.23 89.32 ± 1.10 89.18 ± 1.23 RAN 80.28 ± 0.18 79.20 ± 0.23 79.08 ± 0.24 79.20 ± 0.23

G
la

ss
Id

en
ti

fic
at

io
n

SGD 97.95 ± 0.66 97.87 ± 0.69 97.82 ± 0.70 97.87 ± 0.69 M
am

og
ra

ph
ic

M
as

s

SGD 99.96 ± 0.03 99.94 ± 0.07 99.93 ± 0.09 99.94 ± 0.07
RBM+ 79.81 ±11.91 77.41 ±11.88 70.66 ±16.28 77.41 ±11.88 RBM+ 56.00 ±25.66 67.05 ±16.91 59.07 ±21.91 67.05 ±16.91
KNN 90.41 ±28.77 92.80 ±21.61 91.00 ±27.01 92.80 ±21.61 KNN 90.74 ±26.00 92.88 ±19.48 91.14 ±24.70 92.88 ±19.48
LR 97.38 ± 4.15 96.64 ± 5.65 96.45 ± 6.12 96.64 ± 5.65 LR 94.14 ± 1.55 93.13 ± 1.82 93.00 ± 1.92 93.13 ± 1.82
MLP 97.31 ± 0.71 96.86 ± 1.13 96.81 ± 1.21 96.86 ± 1.13 MLP 97.44 ± 0.51 97.33 ± 0.59 97.32 ± 0.59 97.33 ± 0.59
RAN 95.43 ± 0.67 95.02 ± 0.94 94.98 ± 0.98 95.02 ± 0.94 RAN 94.87 ± 0.91 94.34 ± 1.00 94.29 ± 1.01 94.34 ± 1.00

IR
IS

SGD 94.47 ± 6.40 94.46 ± 5.20 93.31 ± 6.78 94.46 ± 5.20

W
in

e
R

ec
og

ni
ti

on

SGD 98.13 ± 0.70 97.91 ± 0.75 97.91 ± 0.76 97.91 ± 0.75
RBM+- Restricted Boltzmann Machine + Pipelined with Logistic Regression; KNN- K Nearest Neighbor; LR- Logistic Regression; MLP- Multi Layer Perceptron;
RAN- Regulated Activation Network; SGD- Stochastic Gradient Descent

with different areas. A comparative study was also carried out using these datasets to match RANs359

classification ability with five different classifiers.360

Among the eight datasets, the Mice Protein [53], Mammographic Mass [54], Breast Cancer 569 &361

669 [55,56] data pertain to the medical field, Glass Identification [57] data representing forensic science,362

Credit Approval [58] represents economic data, Iris [59] is a botanical data, and Wine Recognition [60]363

is a data for chemical composition analysis. The experiments performed with these datasets were364

akin to the investigations done with Toy-data (in Section 3), and UCIHAR data (in Section 4.2), i.e.,365

K-means algorithm used as concept identifier, where ‘K’ is the number of class labels of each dataset,366

the hierarchy is set to have a depth of two layers (one Input and one Abstract Concept layer). For367

every dataset, models were generated using thirty iterations in nine Research Designs (RD) (refer368

the Table A3 in Section A.2). In every RD 10-Fold cross-validation was applied to determine the369

performance of the models. An aggregate of Precision, Recall, F1-Score, and Accuracy of all folds370

in all RDs was calculated for all the datasets, as shown in Figure 12a. From the Figure 12a it can be371

observed that with Mice Protein data RANs scores 99.99%(ca.) for all evaluation metric, whereas for Iris,372

Glass Identification, Breast Cancer, and Wine Recognitions the observations were convincing, i.e., above373

89.00% (ca.). In all the folds of nine RDs ROC curves were also plotted for each class label of the eight374

datasets, the mean AUC for each class of the datasets is shown in Figure 12b. The evaluation metrics375

and ROC-AUC analysis (Figure 12a & 12b respectively) displays the RANs capability in machine376

learning tasks with different kind of datasets.377

The same procedure was applied to obtain average Precision, Recall, F1-Score and Accuracy for all378

the datasets with five other classifiers (i.e. RBM+, KNN, LR, MLP, and SGD). Table 5 shows the overall379

comparison. It is worth noting that being dynamic and unsupervised RANs modeling performed380

quite satisfactorily especially with Mice Protein data, where it outperformed SGD and RBM+, was381

found competent with LR, KNN and MLP classifiers. Figure 13 shows four graphs depicting RANs382

performance with different benchmark data sets. These graphs display an important aspect of RANs383

modeling and its performance behavior when evaluated to different research design 13. The Precision,384

Recall, F1-Score, and Accuracy trajectories of Human Activity Recognition (HAR), Breast Cancer 669385

(BC1), Toy-data (TD) and Mice Protein (MP) Data is almost straight. The evaluation plots of Glass386

Identification (GI), Wine Recognition (WR), Mammographic Mass (MM), Breast cancer 569 (BC2) and387

Mice Protein (MP) datasets show a minimal decline in observations w.r.t RD-1 and RD-9 Research388

Design. On the contrary, results from IRIS Data (ID) and Credit Approval (CA) dataset depicted389

a higher value while comparing the evaluation of RD-1 with RD-9 Research Designs of these data390
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Table 6. Feature based comparative study of RANs with 5 modeling techniques

Features\Models RBM K-NN LR MLP RANs SGD

Graph-Based Yes No No Yes Yes No
Dynamic Topology No No No No Yes No
Dimension Reduction Yes Yes No Yes Yes No
Dimension Expansion May be No No May be Yes No
Unisupervised Yes No No No Yes No
Supports Classification Yes Yes Yes Yes Yes Yes
Bio-inspired Yes No No Yes Yes No

sets. Principally, the results of all four metrics of evaluation obtained similar results (with marginal391

variation) irrespective of the Test and Train data ratio. This is a notable observation because it shows392

that RANs approach obtains a satisfactory result even when trained with a small amount of data.393

Besides classification comparison, the RAN’s modeling is compared with the 5 classifiers based394

upon 7 features: (1) Whether the modeling in graph based; (2) whether the modeling has a dynamic395

topology; (3) and (4) whether modeling can reduce or expand the dimension of the data; (5) whether396

modeling can perform classification; and (7) whether modeling is biologically inspired or not. Tabel 6397

details this comparative study. It can be observed from this table that RAN is closely related to the398

models that are biologically inspired i.e. RBM and MLP.399

6. Conclusions and Future work400

To comprehend and reasoning for emotions, ideas, etc., it is evident to understand Abstract401

Concepts because they are perceived differently from Concrete Concepts. There have been notable402

efforts to study Concrete Concepts (features like walking or ingredients), but progress in investigating403

Abstract Concepts (generic features such as is-moving or recipe) is relatively less. This article404

proposes an unsupervised computational modeling approach, named Regulated Activation Networks405

(RANs), that has an evolving topology and learns a representation of Abstract Concepts. The RAN’s406

methodology was exemplified through a UCI’s IRIS dataset, yielding a satisfactory performance407

evaluation of 95% (ca.) for Precision, Recall, F1-Score and Accuracy metrics, along with an average408

AUC of 99% (ca.) for all the three classes in the dataset. These evaluation result not only showed the409

classification capability of RANs but also proved the hypothesis of the experiment i.e. the 3 newly410

created nodes in the Layer-1 symbolically represent the 3 classes of IRIS data as abstract concepts.411

Another experiment with IRIS data displayed the characteristic of RAN’s deep hierarchy412

generation and independence in choosing Concept Identifier. With the aid of Concept Hierarchy413

Creation algorithm (proposed in Section 4.1), evolving nature of RAN’s modeling is shown using414

Affinity Propagation clustering algorithm (as an alternate Concept Identifier instead of the K-means415

algorithm as used in modeling with Toy-data problem). With the generated model it was shown that416

the model dynamically grew to a depth of six layers and performed with Precision of 94.44% (ca.),417

Recall of 93.33% (ca.), F1-Score of 93.26% (ca.) and Accuracy of 93.33% (ca.), along with an observed418

AUC of 100% (ca.), 92% (ca.) and 94% (ca.) for the three classes of data. This experiment also highlights419

the application of RANs modeling in data dimension transformation and data visualization.420

Modeling with UCI’s IoT based Home Activity Recognition (UCIHAR) smartphone sensor421

dataset exhibited the RAN’s behavior of natural identification of generic Concepts. The experiment422

hypothesize that six data labels (activity of Walking, Walking_upstairs, Walking_downstairs, Sitting,423

Standing and Laying) of the dataset are to be identified as Mobile (Walking, Walking_upstairs and424

Walking_downstairs) and Immobile (Sitting, Standing and Laying) Abstract Concepts. This hypothesis425

was also proven using classification operation, where, the evaluation of the model shown a performance426

of 99.85% (ca.) for all four metrics and AUC of 99.9% (ca.) for both Abstract Concepts. The experiment427

also demonstrates how RAN can be used to model the data from IoT domain in an unsupervised428

manner.429
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(a) Precision (b) Recall

(c) F1-Score (d) Accuracy

Figure 13. RANs evaluation metric (Precision, Recall, F1-Score and Acuracy) value behavior w.r.t.
varying test and train data ratio over ten datasets [ Mice Protein (MP), Breast Cancer 669 (BC1), Breast
Cancer 569 (BC2), Credit Approval (CA), IRIS data (ID), Mamographic Mass (MM), Human Activity
Recognition (HAR), Toy-data(TD), Wine Recognition (WR) and Glass Identification (GI)].
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Table 7. Acronyms used in the Article

Acronym Description Acronym Description Acronym Description

ACL Abstract Concept Labeling DoC Degree of Confidence MM Mammography Mass Dataset
AUC Area Under Curve GDF Geometric Distance Function MP Mice Protein Dataset
BC1 Breast Cancer 669 Dataset GI Glass Identification Dataset MRI Magnetic Resonance Imaging
BC2 Breast Cancer 569 Dataset HAR Human Activity Recognition Data RANs Regulated Activation Networks
CA Credit Approval Dataset ID IRIS Dataset RBM Restricted Boltzmann Machine
CC Concept Creation ILL Inter Layer Learning RD Research Design
CHC Concept Hierarchy Creation ILW Inter Layer Weights ROC Receiver Operating Characteristic
CI Concept Identification K-NN K Nearest Neighbor SGD Stochastic Gradient Descent
CLS Current Layer Size LR Logistic Regression STF Similarity Translation Function
CRDP Cluster Representative Data Point MLP Multilayer Perceptron UAP Upward Activation Propagation

The proof of concept of RAN’s modeling as a Machine Learning classifier was also provided with430

eight UCI benchmarks. It was identified that RAN’s approach performed satisfactorily displaying431

the best outcome of 98.9% (ca.) with Mice Protein dataset (for all metrics). The comparison of RAN’s432

modeling with five classifiers substantiated the effectiveness of the proposed methodology. We also433

observed that the RAN’s performance remained similar irrespective of the size of train data. RAN was434

also compared with the 5 classifiers based upon its features and it was observed that RAN was similar435

to bio-inspired models. During the simulations, a non-convexity was observed in several datasets. As436

future work, we intend to improve RAN’s modeling that can capture the non-convexity in the data437

and enhance the modeling to build non-convex abstract concepts.438
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Appendix A Supplementary Materials447

Appendix A.1 Data & Scripts448

This section provides links to download the data and python script used to perform RANs449

modeling experiments, mentioned in this article. The data and script folders can be downloaded450

from the web URL mentioned in Table A1. The data folder contains many files and the direct path451

to the files are provided in the Table A1. Similarly, the script folder RAN_V2.0 also contains many452

folders where Folder RAN consist of the python scripts. The folder Observations is for storing the453

outcome of the experiments, at the beginning of each experiment the empty folder in directory454

empty_passes_for_Experiment_Observations must be copied into the Observation directory. The python455

script related to RANs modeling is in folder RAN, the description is mentioned in the Table A1.456

The implemented RANs modeling tool in python takes input data in a specific format (shown in457

Table A2). Besides the data, the inputs require a header as the first row stacked over the original data.458

Each header element, [H − 1, H − 2, ......., H − n], is the Maximum value possible for their respective459

column (feature, or dimension). It is assumed that the minimum value of the column is zero, if it is460

not then the data must be transformed between zero and the maximum positive value as described in461

Section 3.462
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Table A1. Data and Python Script of RANs modeling

Type Description File-path
Download link https://www.dropbox.com/sh/3410ozeru3o5opm/AAA24aUGtUS1i7xHKp9kyzRKa?dl=0
IRIS Data data/iris_with_label.csv
Mice Protein data data/Data_cortex_Nuclear/mice_with_class_label.csv
Glass Identification data data/newDataToExplore/new/GlassIdentificationDatabase/RANsform.csv
Wine Recognition data data/newDataToExplore/new/WineRecognitionData/RansForm.csv
Breast cancer 669 data data/newDataToExplore/new/breastCancerDatabases/699RansForm.csv
Breast Cancer 559 data data/newDataToExplore/new/breastCancerDatabases/569RansForm.csv
UCIHAR data data/UCI_HAR_Dataset.csv
Mamographic Mass data data/newDataToExplore/new/MammographicMassData/RansForm1
Credit Approval data data/newDataToExplore/new/CreditApproval/RansForm.csv

Data

Toy-data data data/toydata5clustersRAN.csv
Download Link https://www.dropbox.com/sh/rcw1cj4ce1f3zic/AAAm6wVTj2qsLZ1lbc3kn4MPa?dl=0
RANs classes and methods RAN_V2-0/RAN/RAN_kfold.py
Methods RAN_V2-0/RAN/Layer.py
Utilities like Labeling and plotting RAN_V2-0/RAN/UtilsRAN.py

Script

Python Script for using RANs RAN_V2-0/RAN/RAN_input_T1.py

Table A2. Input Data Format for implemented RANs Modeling

Header H-1 H-2 .............. H-n
D-1 D-2 .............. D-n
D-1 D-2 ............... D-n

D
at

a
In

st
an

ce
s

.

.

.

.

.

.

..............
...............
...............

.

.

.
D-1 D-2 .............. D-n

Appendix A.2 Model Configurations and Research Design463

Various experiments, reported in this article, were conducted with several datasets, using six464

modeling techniques including the proposed methodology i.e. RANs modeling. Table A4 in Section A.2465

shows configurations of all the models for all the experiments. The experiments were carried out466

using python programing language, and implementations of Restricted Boltzmann Machine pipelined467

with Logistic Regression (RBM+), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Multilayer468

Perceptron (MLP), and Stochastic Gradient Descent (SGD) models of Scikit-learn library [? ]. It is to be469

noted that experiments with RBM were carried out, pipelined with the LR algorithm using the default470

configuration of its implementation in scikit-learn library. The Table A3 lists the nine Research Designs471

(RD) used in the experiments of this article. In every RD the ratio of the Train and Test data is varied to472

capture the ability of the classifier being inspected. The Table 7 lists the acronyms used in this article.473

Appendix A.3 Multi-class ROC analysis with RANs Modeling474

This study is carried out by two processes, first the input true-labels are transformed into a475

separate vector of binary labels, individually for all Abstract nodes (i.e. 1 for class c1, 0 for all other476

classes), second, calculating the confidence score for each instance of the input data (or test-data). Both477

processes are described as follows:478

1 Node-wise binary transformation of True-Labels: For example, suppose there are three classes479

(c1, c2, c3) represented by three abstract nodes (n1, n2, and n3) in RANs model at Layer-1, and480

Table A3. Train & Test data distributions in nine Research Designs (RD)

RD-1 RD-2 RD-3 RD-4 RD-5
Train Test Train Test Train Test Train Test Train Test
90% 10% 80% 20% 70% 30% 60% 40% 50% 50%

RD-1 RD-7 RD-8 RD-9 ————–
Train Test Train Test Train Test Train Test ——- —–
40% 60% 30% 70% 20% 80% 10% 90% ——- ——
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Table A4. Dataset specific configuration details of models

Data Algo Configurations Data Algo Configurations
RBM +
LR

Lr=0.000001, iter=500, comp=20
max_iter=30, C=70

RBM +
LR

Lr=0.06, iter=500, comp=10
max_iter=10, C=1

K-NN n_neighbors=30 K-NN n_neighbors= 15
LR max_iter=10, C=1 LR max_iter=30, C=1
MLP Rs=1, hls=10, iter=250 MLP Rs=1, hls=10, iter=400
RANs CLS=5, Desired_depth=1 RANs CLS=2, Desired_depth=1To

y-
da

ta

SGD alpha=0.0001, n_iter=5, epsilon=0.25

U
C

IH
A

R

SGD alpha=0.1, n_iter=10, epsilon=0.25
RBM +
LR

Lr=0.1, iter=500, comp=20
max_iter=30, C=30

RBM +
LR

Lr=0.006, iter=100, comp=10
max_iter=30, C=1

K-NN n_neighbors=15 K-NN n_neighbors=30
LR max_iter=4, C=0.00001 LR max_iter=10, C=0.001
MLP Rs=1, hls=10, iter=300 MLP Rs=1, hls=10, iter=200
RANs CLS=8, Desired_depth=1 RANs CLS=2, Desired_depth=1

M
ic

e
Pr

ot
ei

n

SGD alpha=0.1, n_iter=10, epsilon=0.25

B
re

as
t

C
an

ce
r

56
9

SGD alpha=,0.0001 n_iter=5, epsilon=0.25
RBM +
LR

Lr=0.001, iter=100, comp=10
max_iter=30, C=1

RBM +
LR

Lr=0.006, iter=100, comp=10
max_iter=30, C=1

K-NN n_neighbors=10 K-NN n_neighbors=30
LR max_iter=10, C=0.001 LR max_iter=10, C=0.001
MLP Rs=1, hls=10, iter=200 MLP Rs=1, hls=10, iter=200
RANs CLS=2, Desired_depth=1 RANs CLS=2, Desired_depth=1

B
re

as
t

C
an

ce
r

66
9

SGD alpha=0.0001, n_iter=5, epsilon=0.25

C
re

di
t

A
pp

ro
va

l

SGD alpha=0.0001, n_iter=5, epsilon=0.25
RBM +
LR

Lr=0.001, iter=400, comp=10
max_iter=30, C=5

RBM +
LR

Lr=0.01, iter=500, comp=20
max_iter=30, C=5

K-NN n_neighbors=15 K-NN n_neighbors=30
LR max_iter=5, C=0.00001 LR max_iter=5, C=1
MLP Rs=1, hls=10, iter=200 MLP Rs=1, hls=10, iter=250
RANs CLS=2, Desired_depth=1 RANs CLS=2, Desired_depth=1

G
la

ss
Id

en
ti

fic
at

io
n

SGD alpha=0.01, n_iter=10, epsilon=0.25 M
am

og
ra

ph
ic

M
as

s

SGD alpha=0.0001, n_iter=5, epsilon=0.25
RBM +
LR

Lr=0.01, iter=1000, comp=20
max_iter=30, C=5

RBM +
LR

Lr=0.01, iter=500, comp=20
max_iter=30, C=50

K-NN n_neighbors=15 K-NN n_neighbors=15
LR max_iter=10, C=1 LR max_iter=10, C=0.01
MLP Rs=1, hls=10, iter=400 MLP Rs=1, hls=10, iter=300
RANs CLS=3, Desired_depth=1 RANs CLS=3, Desired_depth=1

IR
IS

SGD alpha=0.01, n_iter=10, epsilon=0.25

W
in

e
R

ec
og

ni
ti

on

SGD alpha=0.01, n_iter=10, epsilon=0.25
Lr-Learning Rate; iter-Iterations; comp-Number of Hidden Components of RBM; RS-Random State
hls=Hidden Layer Sizes; CLS-Number of clusters at the input layer of RANs

let true-label be [c1, c2, c2, c1, c2, c3, c3] for 7 test instances, then for node n1 label will be [1, 0, 0,481

1, 0, 0, 0] where 1 represents class c1, and 0 depicts others (i.e. c2, and c3).482

2 Node-wise confidence-score calculation: This is calculated by averaging activation-value and483

confidence-indicator of activation for an input instance at an Abstract node. Activation-value484

is an individual activation of an activation vector obtained by propagating up the data using485

UAP mechanism of RANs whereas, confidence-indicator is calculated by min-max normalization486

operation of activation vector. For example, after UAP operation each node (n1, n2, and n3)487

receives activation [0.89, 0.34, 0.11] (a vector of activation), and confidence-indicator is min-max488

([0.89, 0.34, 0.11]) = [1.0, 0.29, 0.0]. and the confidence-score for nodes n1= (0.89 + 1.0)/2.0 = 0.95,489

n2= (0.34 + 0.29)/2.0 = 0.32, and n3= (0.11 + 0.11)/2.0 = 0.05.490

Appendix A.4 Abstract Concept Labeling (ACL)491

This method is optional and useful when the input data is labeled. With this mechanism, we492

associate an identifier to every Abstract Concept node Nj. Having generated the RANs model with CI,493

then trough CC, ILL, input data is sorted label-wise, and perform UAP operation. The propagated data494

is inspected class-wise, and label node Nj with a class-name for which it got the maximum count of495
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the highest activation. For example, suppose input data for class-X has 100 instances, after inspecting496

the propagated data, it is observed that node N1 received highest activation 74-times, whereas, with497

remaining 26 cases other nodes experienced maximum activation, therefore, we recognize node N1 as498

representative of class-X. True-Labels are identified by mapping each class of the input instance directly499

to its respective node representative Observed-Labels are obtained by propagating every test-instance500

through UAP operation, inspecting which Abstract node received the highest activation for that501

data-unit, and label it with the class represented by that node. True-Labels and Observed-Labels are502

used to validate the model’s performance.503
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