

VOLUME XX, 2017 1

An exploratory algorithm for the rectangle packing problem on

the basis of the best fit algorithm and the lowest front-line

strategy

Mohamad Bozorgi Perija (1), Morteza Mohammadi Zanjireh (2)

(1) MSc from Imam Khomeini International University, Ghazvin, M.bozorgi@edu.ikiu.ac.ir
(2) Assistant professor of computer engineering group, Imam Khomeini International University, Ghazvin,

Zanjireh@eng.ikiu.ac.ir

ABSTRACT Nowadays, the wasting of resources is one of the fundamental challenges of the industrial sector. The

purpose of this issue is to arrange a set of rectangles with specific dimensions in a rectangular page with a specific width and

unlimited height without overlapping. The fundamental challenge in this issue is that this is an NP-complete issue.

Therefore, it is difficult to achieve the best arrangement, which has the maximum rate of resource utilization and also has a

linear running time. Many algorithms have been presented to estimate a practical solution for this issue. In the past decades,

the best fit method has been one of the most useful methods for this purpose. This study presents a combinatorial algorithm

based on two algorithms, including the lowest front-line strategy and the best-fit algorithm. The running results indicate that

the suggested algorithm performs well, despite its simplicity. The time complexity of the suggested algorithm is O(nm), in

which n is the number of input rectangles and m is the number of the created front lines.

INDEX TERMS Rectangle packing problem, Best-fit algorithm, lowest front-line strategy

I. INTRODUCTION

Decreasing the wasting of resources in industry and

business can be very advantageous. The rectangle packing

problem is one of the most practical issues in the industrial

sector. The rectangle packing problem has many uses in the

industry, including cutting leather, wood, metals, paper,

glass, cloth, and paperboard [7-9, 32] for designing and

manufacturing cars [1], fighters [12], and ships [11], and

for designing VLSI [31, 14, 13, 32] and in similar issues

like timing and replacement [15, 16]. It also has uses in the

assignment and timing of the radio frequencies spectrum

[15].

In the rectangle packing problem, we have a set of

rectangles with specific dimensions and the target is to

arrange these rectangles in a rectangular page with a

constant width and unlimited height without overlapping,

provided that the packing is orthogonal [33]; it means that

the sides of the rectangles that are inserted into the

rectangular page are parallel to the sides of the main page

rectangle [14, 17]. Also, the problem may not be guillotine

cut; it means that we cannot place the replaced rectangles in

several groups that each group is separated from the others

by vertical or horizontal lines [7, 31]. Rotation of the

rectangles is acceptable, but the rotation angle could be

only 90 degrees [18, 19].

As stated, one of the fundamental challenges in the industry

is waste reduction and in other words, increasing the

utilization rate. Utilization rate equals to the sum of the area

of the input rectangles divided by the area of the main page

used and is represented by U [3, 18, 20]. Utilization can be

calculated by equation (1):

U= (1)

In this equation, width represents the main page width, and

height represents the main page height and and are

width and height of the replaced rectangles, respectively,

and m is the number of these rectangles [18].
Despite the full application of this issue, its practical

implementation is a little difficult, because the most

fundamental challenge of this issue is that this belongs to

the NP-complete set [2-6, 33]. Therefore, with an increase

in the problem scale, achieving a practical solution for the

problem in a suitable time could be difficult or even

impossible. However, various estimated algorithms have

been presented due to the full application of the rectangle

packing problem and the conditions prevailing over it in the

past four decades. In [35], comprehensive research has been

done in this context. The best-fit algorithm is one of the

most useful algorithms. The purpose of this study is to

represent an algorithm for the rectangle packing problem

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:M.bozorgi@edu.ikiu.ac.ir
mailto:Zanjireh@eng.ikiu.ac.ir
https://doi.org/10.20944/preprints202001.0329.v2
http://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

with an optimal utilization rate and linear running time

using the best-fit algorithm.

This article will be structured as follows: in the second

section, we will introduce the works done on the rectangle

packing context and also the best-fit decreasing height and

the lowest front line algorithms. In the third section, we will

present our algorithm. In the fourth section, we will

represent the results of algorithm implementation, and in

the fifth section, we will conclude.

II. Background of the research

One of the algorithms that have attracted many researchers

during the past four decades is the best-fit algorithm. It’s a

layered algorithm in which the layers are created gradually,

as the rectangles are inserted. The rectangle places into the

higher level if it can’t be placed in a layer. The rectangle

will always be located in a layer that has less waste after

insertion [7].

Wei et al. [37] have presented an algorithm based on the

best-fit algorithm with a branch & bound approach for the

rectangle packing problem with constant dimensions. This

algorithm has a reasonable utilization rate and also a linear

running time. Despite a desirable utilization rate for more

massive data, the running time of the algorithm increases.

Huang et al. [27] have presented an algorithm based on two

algorithms, including the best-fit algorithm and particle

swarm optimization algorithm. They compared their

method with the presented classical methods and got more

efficient results. But the fundamental challenge of their

approach is the long-running time of the algorithm.

Bruke et al. [36] have presented an algorithm based on the

best-fit algorithm, and this is a linear order algorithm. This

algorithm has a reasonable utilization rate compared to the

optimizing algorithms. The use of very similar data is one

of the challenges of this algorithm.

BL (bottom left) algorithm is one of the first algorithms

presented for the packing problem, and Brenda [36]

presented it. The purpose Of the BL algorithm is to place

the rectangles at the lowest and leftmost points possible.

This algorithm is suitable for little input, and its Running

order is O ().

Chazelle [30] have presented an algorithm called BLF

(Bottom Left Fill). The number of possible modes for

inserting a rectangle is decreased in the BLF algorithm.

While in the BL algorithm, it is not possible to use the

leftover spaces from placing the rectangles, in the BLF

algorithm, the rectangle is placed at the lowest point

possible. The BLF algorithm uses unused spaces. The time

complexity of this algorithm is O().

Liu and Teng [29] have presented an algorithm for the

rectangle packing problem based on two algorithms,

including the BL algorithm and the genetic algorithm. They

improved the initial BL algorithm because it does not

identify some of the modes. As the mode in which the

rectangles are alternately big and small; the big rectangles

have ascending sizes, and the small ones have descending

scales. The positive point of this algorithm is the use of an

intelligent crowd function for the genetic algorithm. The

running order of this algorithm is O().

Hu et al. [33] have presented an algorithm based on two

algorithms, including best-fit and BL algorithms. This

algorithm has all of the properties of the two mentioned

algorithms. This algorithm categorizes the rectangles first

and then places the created categories one by one. This

method is suitable for rectangles with different sizes. The

time complexity of this algorithm is O(mMlogM), in which

m and M could be equal to the number of input rectangles.

Liu et al. [18] have presented a solution for rectangle

packing problem by combining the lowest front-line

algorithm with the genetic optimization algorithm.

Arrangement of the rectangles from the lowest point

possible to the highest point is a prominent feature of this

algorithm that reduces the space waste. It also utilizes a

smart function to cross local optimum modes. The long

running time of this algorithm for identifying and

improving various modes is its fundamental challenge. In

the following, two algorithms are introduced, including

best-fit decreasing height algorithm and the lowest front-

line strategy.

A. The lowest front-line strategy

The lowest front-line strategy is designed based on the BL

algorithm and is defined as follows [18]:

First step: the algorithm starts with the initial quantification

of the front line. In the beginning, the front lines set

contained only one line, and that is the horizontal line at the

bottom of the page.

Second step: locating the rectangle in a place using the

lowest front-line strategy. is the position where the i-th

rectangle is placed. First, we select and check one line of

the front line set to see whether the width of the rectangle

that is going to place is equal to or smaller than the width of

the selected line. If the conditions are right, that rectangle

will be placed at the top left of the page. If the conditions

are not right, we increase the height of the lowest line until

it reaches the second lowest front line, and the conditions

will be rechecked. This process repeats until one line of the

front lines set gets selected. In this step, if several lines

exist with the lowest heights, the selection will be based on

the X-axis. If we increase height from a lower line to a

higher line, these two lines will be merged.

Third step: in this step, the front line will be updated. Some

of the old lines will be converted to the new lines, and new

lines will be added to the front-line set. As the points

mentioned in the second step, the adjacent lines with equal

height must be merged to form a single line.

Fourth step: if all of the rectangles are placed, the algorithm

ends, and otherwise, a new rectangle will be selected, and

we will go to the second step.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

https://doi.org/10.20944/preprints202001.0329.v2

VOLUME XX, 2017 9

Figure 1 presents an example of the lowest front-line

strategy. will be selected for { }, and after that, the

front line will be { , }. In the same way, will

be selected for { }, and after the placement, the front

line will be { }. Similarly, after placing

the rectangle in { }, the front line will be {

 }. In this point, the lowest line is

{ }, and it does not have enough space to place . So

we increase the height of { } until it reaches { },

the second lowest front line. Finally, the { } line will

be selected to place the rectangle, and the front line is

{ } at the end [25-33].

Figure 1: the lowest front-line strategy

The lowest front-line strategy does not sort the input

rectangles before placing it, and this is a challenge for this

algorithm. It increases page height and decreases the

utilization rate. Also, this algorithm always tries to find the

lowest and the leftmost point possible to place the

rectangles. The way the height increases in this algorithm is

its positive point.

B. the best-fit decreasing height method

In the best-fit decreasing height algorithm, first, the

rectangles are sorted in decreasing order. Then the biggest

rectangle will be placed at the bottom-left corner, and the

first layer will be created. In order to place the next

rectangles, if the rectangles could not be placed in the

created spaces of the created layer, we create a layer above

the highest layer and place the rectangle in it. If there are

several layers with enough space to place the rectangles, a

layer will be selected that has less waste after the rectangle

placement [23, 24]. The time complexity of this algorithm

is O(nlogn) [25].

The best-fit decreasing height algorithm is layered and is

suitable for non-guillotine cut issues. Finding the best

position with the lowest waste is a benefit of this algorithm.

Also, due to sorting the inputs, this algorithm has a better

utilization rate compared to the best-fit algorithm without

sorting. In this algorithm, we cannot place a rectangle

between two layers, and this causes wasting. Therefore, we

can place the rectangle between the layers in the proposed

algorithm.

This study presents an algorithm that has the properties of

both best-fit decreasing height algorithm and the lowest

front-line strategy. This algorithm, similar to the best-fit

method, always tries to find the best position for the

rectangle. However, this algorithm tries to decrease the

total height by increasing the height of the layers, inspired

by the lowest front-line strategy.

III. The proposed algorithm

The steps of our algorithm are as follows:

First step: at first, the algorithm starts with initial

quantification. The height of this page is zero at the

beginning, and its final value is specified at the end of the

algorithm. In this algorithm, we have a set of lines called

the front line for saving empty spaces. In the beginning, the

front line is the bottom borderline of the page. The

information of the input rectangles such as width, height,

and the number of each one will be received at this stage of

the algorithm.

In this algorithm, we use an array to save empty spaces.

The first row of this frontline array is the starting point of

the line, and the second row of the frontline shows the

endpoint of the line. The third row of the frontline array

represents the distance of this line from the lowest front

line, which is the bottom borderline of the page. The fourth

row of the frontline array shows the height of the next

frontline after this line. With these four points, we can

imagine a rectangle. If the value of the fifth row of the

frontline array is 1, it means that this line is not occupied

and when a rectangle is placed, this value will become -1.

The fifth row of the array is added to adhere to the not-

overlapping assumption. When placing rectangles into a

line using the fifth row of the frontline array, it will be

checked whether this place is full or empty.

Second step: in this step of the algorithm, the rectangles

that have more height than width will be rotated 90 degrees.

It means that the height and the width will be replaced.

Third step: in this step, the rectangles will be sorted in

decreasing height size order.

Fourth step: a rectangle will be selected from the beginning

of the inputs list, and then, we search among the frontlines

set for a place that has enough space for the rectangle. Then

among the selected lines, we choose a line that has less

wasting. At this point, there are three modes:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

https://doi.org/10.20944/preprints202001.0329.v2

VOLUME XX, 2017 9

• If a line is found among the frontlines set that have

sufficient width and height for placing the

rectangle, we select it; and if there are several lines

for placing, we choose the one that wastes less

space.

• If we cannot find a line with required height and

width, we start searching among the longest

frontlines for a line that has required width for

placing the rectangle. Also, if there are several

lines, we choose the one that has less width and

increases the height of the page lesser.

• If we cannot find a position to place the rectangle

in the two predicted modes mentioned above – if

we did not find any line that has enough space for

placing the rectangle – then we create a new layer

above the longest frontline and place the rectangle

in the bottom-left of the created layer and increase

the height of the page.

Fifth step: in this step, we update the frontline and empty

spaces, and convert some of the old lines into new lines and

also add new lines. Then in this step, we must identify all of

the empty spaces. Then we must identify all of the empty

houses that have common borders. In order for the

algorithm to make the most of the wasted space available, if

one or more than two houses have common borders, it must

be merged with the house that creates larger free space after

merging compared to other houses. This step plays an

essential role in reducing waste.

Sixth step: in this step, we check the ending of the

algorithm. If there is not a rectangle in the input list to

place, the algorithm ends. Otherwise, we go to the

beginning of the fifth step and continue the algorithm again.

In the end, we calculate the utilization rate of the

algorithm. Figure 2 shows the flowchart of the algorithm

process.

Figure 2: Semi-code of the proposed algorithm

IV. The evaluation results

In this study, in addition to the proposed algorithm, we used

the best-fit decreasing height algorithm [33] and the lowest

frontline strategy [34] in the MATLAB programming

language v.2014 and also a hardware with Intel(R) Core

(TM) i7-4710HQ CPU @ 2.50GHz processor and 12 Gb

internal storage.

We used the data in the Liu algorithm [18] for the

evaluation of the algorithms. Then we compared
the results of the three algorithms with the results in the Liu

study [35-44]. Table 1 shows these data, and also the width

of the rectangle page is 400 units.

Table 1: data presented in

number 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

width 25 18 79 121 29 64 48 11 46 4 5 6 7 8 9 10 11 10 50

height 36 24 84 30 48 98 59 17 121 22 41 72 25 65 24 11 36 30 61

quality 4 5 3 4 11 2 3 2 2 1 2 2 2 2 3 2 2 3 2

Table 2 shows the results of these algorithms. The

proposed algorithm in this study has the best performance

among these algorithms. Our method reached the

utilization rate of 94.37% in 0.023 seconds. Whereas the

method presented in [45-53] reached the utilization rate

average of 85.51% after 300 times repeating the

algorithm and 26.3 seconds, and at best, it has reached the

rate of 87.75%.

Table 2: comparison of the proposed algorithm implementation
results, with the best-fit, frontline, and Liu algorithms

algorithm Proposal Liu Front line Best-fit

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

https://doi.org/10.20944/preprints202001.0329.v2

VOLUME XX, 2017 9

utilization %94.37 %87.75 %50.54 %87.17

Run

time(s)

0.023 26.3 0.042 0.031

Figure 3 shows the utilization rate diagram of the three

best-fit decreasing height, the lowest frontline strategy,

and the proposed algorithms. In this diagram, the

utilization rate percentage of every algorithm has been

drawn after placing each rectangle. The horizontal axis

represents the number of placed rectangles, and the

vertical axis represents the utilization rate percentage.
 Figure 3: the utilization rate diagram of the three best-fit decreasing
height, the lowest frontline strategy, and the proposed algorithms

Figure 4 shows the diagram of the running time of the

three algorithms, including best-fit decreasing height, the

lowest frontline strategy, and the proposed algorithm. In

this figure, the best running time belongs to the proposed

algorithm.

Figure 4: the running time diagram of the best-fit decreasing height
algorithm, the lowest frontline strategy, and the proposed algorithm

A- the effects of the sorting and 90-degree
rotation on the utilization rate

In this section, we analyze the effects of the

sorting and rotation on the utilization rate.

Sorting the input rectangles has a major impact

on the utilization rate. We sorted the input

rectangles in descending order of height, width,

and area of the rectangles, and then we ran the

algorithm. The results of running the algorithm

show that sorting in descending order of height has

better results. Table 3 shows the results of this

comparison, and figure 5 shows the utilization rate

diagram for various sorting modes.

Table 3: The results of running the proposed algorithm with different
sorting

Sort type none width area height

Utilization
rate

69.25% 72.22% 87.89% 94.37%

Runtime(s) 0.30 0.036 0.036 0.023

Figure 5: The proposed algorithm implementation diagram with

different sorting

We removed the rotation step and ran the algorithm and

then compared the results with the algorithm with

rotation. The results show that rotation has a positive

effect on the utilization rate. Table 4 shows the results of

this experiment. Figure 6 shows the diagram of the

comparison between running the algorithm with and

without the rotation.

Table 4: the results of the proposed algorithm implementation with
removing the rotation step and sorting

Impact of step

Runtime(s) Utilization rate Deleted step

14.75% 0.032 82.24% rotation

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

https://doi.org/10.20944/preprints202001.0329.v2

VOLUME XX, 2017 9

36.27% 0.030 69.25% sort

Figure 6: the diagram of the algorithm with and without the rotation
step

B-comparing the algorithm with random data

Comparing the algorithm with low volume data and also,

in some cases, comparing the algorithm with high

similarity data, is one of the challenges of the presented

algorithms. Practically, we are facing various data with

different sizes in the industry. Therefore, in this section,

we analyzed the proposed algorithm, the lowest frontline

strategy, and the best-fit algorithm, by producing random

data. The results of the running show the utilization rate

of the proposed algorithm is better than the other two

algorithms, and also it has a shorter running time. Table 5

shows the utilization rate and the running time of these

algorithms. Also, figure 8 shows the running time

diagram of these three algorithms.

Figure 7: the utilization rate diagram of the best-fit, frontline, and

proposed algorithms with random data

Figure 8: the running time diagram of the best-fit, the frontline, and

the proposed algorithms with random data

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

https://doi.org/10.20944/preprints202001.0329.v2

VOLUME XX, 2017 9

Table 5: the results of the utilization rate of the proposed algorithm by producing random data

C- The time complexity

The time complexity of the proposed method is the

polynomial order. It means that in the worst case, it needs

O(m) time for searching between m frontlines and finding

the proper line to place the rectangle. Since this searching

must be done for all of the rectangles, and the total

number of rectangles is n. Therefore, the time complexity

of this algorithm is generally linear in time order and

equals to O(nm). The results of the implementation

indicate that the value of m is always less than n. It means

that at the end of the algorithm implementation, the total

number of the frontlines is always less than the total

number of the rectangles. In table 5, the total number of

rectangles column is n, and the total number of frontlines

column is m, and m is always less than n. The diagram in

figure 7 demonstrates how the number of frontlines

increases per number of input data.

Runtime(s) Utilization rate Amount
of front

line in

proposal
algorithm

Amount of
rectangles

N

Proposal
algorithm

Best fit Front line Proposal
algorithm

Best fit Front
line

0.061439 0.113711 0.135782 0.9680 0.9044 0.8213 142 283 50

0.179677 0.268977 0.365532 0.9759 0.9261 0.8076 294 560 100

0.268492 0.679887 0.940690 0.9722 0.9212 0.8018 379 808 150

0.561501 1.371588 1.670308 0.9720 0.9088 0.7620 498 1102 200

 0.784825 1.683756 3.098013 0.9720
0.9355

0.7979 616 1444 250

1.136259 2.152571 3.692223 0.9735 0.9459 0.7850 672 1684 300

1.687331 3.185944 5.856734 0.9718 0.9281 0.8020 747 1972 350

1.792151 4.626413 6.491700 0.9737 0.9384 0.7742 836 2117 400

2.338938 6.179962 8.555913 0.9682 0.9335 0.7860 924 2380 450

2.532763 7.593715 12.461293 0.9705 0.9581 0.7893 1026 2738 500

2.609368 8.936252 16.055307 0.9695 0.9454 0.7790 1100 3012 550

3.789860 7.678264 17.209783 0.9737 0.9408 0.7863 1126 3260 600

3.503998 12.119956 21.050525 0.9750 0.9314 0.8077 1235 3497 650

5.143389 14.592887 27.870559 0.9710 0.9426 0.8253 1328 3955 700

5.692376 16.248161 30.576511 0.9693 0.9485 0.7703 1348 4110 750

6.548756 20.146549 38.626904 0.9768 0.9537 0.7935 1448 4534 800

5.552323 20.865130 41.414833 0.9673 0.9508 0.7987 1464 4592 850

7.132780 22.115729 48.515116 0.9740 0.9447 0.7807 1503 4819 900

8.174483 26.831960 57.326876 0.9691 0.9548 0.7943 1501 5244 950

9.152594 23.973368 65.242514 0.9678 0.9425 0.7896 1744 5763 1000

10.860228 34.939327 78.368714 0.9655 0.9531 0.7831 1644 6055 1100

9.508915 40.207071 99.702676 0.9675 0.9550 0.7966 1730 6615 1200

14.972989 46.728704 113.762547 0.9657 0.9625 0.7896 1909 7044 1300

16.997029 26.938338 411.017108 0.9708 0.9479 0.7981 1984 7671 1400

18.103096 28.565729 478.56225 0.9695 0.9673 0.8027 2008 8164 1500

21.743997 33.262568 598.293248 0.9681 0.9603 0.7964 2194 8796 1600

24.726140 38.004280 723.358521 0.9715 0.9596 0.7852 2232 9415 1700

25.643730 42.053160 786.529926 0.9706 0.9625 0.8030 2383 9853 1800

24.416149 45.981673 971.096964 0.9749 0.9517 0.7884 2750 10555 1900

31.034617 50.574680 1128.696616 0.9659 0.9603 0.7944 2623 11030 2000

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

https://doi.org/10.20944/preprints202001.0329.v2

VOLUME XX, 2017 9

V. The evaluation results

In this study, we presented an algorithm for the rectangle

packing problem. Also, we implemented the proposed

algorithm along with the best-fit decreasing height and

the lowest frontline strategy. Also, we compared the

proposed algorithm with the algorithm presented in [18].

The results of the evaluation show the better utilization

rate of the proposed algorithm in comparison with other

mentioned algorithms. The proposed algorithm has

improved the utilization rate by 86.72% in comparison

with the lowest frontline strategy, 8.26% in comparison

with the best-fit decreasing height algorithm, and 7.43%

in comparison with the algorithm presented by Liu. The

time complexity of the proposed algorithm is O(nm), in

which n is the number of the input rectangles and m is the

number of created front lines.

Since this problem is NP-complete, there are modes that

the presented algorithm cannot find them. Therefore, for

future studies, we can use this algorithm along with

optimizing algorithms like genetic algorithms. In the

algorithm that we will present, we first consider a

solution to the problem with the best-fit algorithm

presented in this study. Then we improve the presented

solution every time we repeat the genetic algorithm.

REFERENCES

1. Agawal, P.K. and shing, M.T. (1992) ‘Oriented

aligned rectangle-packing problem’, European

journal of operational research, 62:2, 210-220.

2. Wu, Y.L. and Huang, W. and Lau, S.C. and

Wong, C.K. and Young, G.H. (2002) ‘An

effective quasi-human based heuristic for

solving the rectangle packing problem’,

European Journal of Operational Research,

141:2, 341-358.

3. Maberg, J. and Schneider, J. (2011) ‘Rectangle

packing with additional restrictions’, Theoretical

Computer science, 412:50, 9648-9658.

4. Korf, R.E. (2003) ‘Optimal Rectangle Packing:

Initial Results’, ICAPS’2003-13th International

Conference on Automated Planning and

Scheduling, 09 - 13 June, Italy, Trento, 287-295.

5. Li, Q. and Yang, S.Y. and Zhu, S. (2012)

‘Solving 2D Rectangle packing problem Based

on Layer Heuristic and Genetic Algorithm’,

IHMSC’2012 - 4th International Conference on

Intelligent Human-Machine Systems and

Cybernetics, 26-27 Aug, Nanchang, China, 192-

195.

6. Zandiyan S, Fotohi R, Koravand M. P‐method:

Improving AODV routing protocol for against

network layer attacks in mobile Ad‐Hoc

networks. International Journal of Computer

Science and Information Security. 2016 Jun

1;14(6):95.

7. Jamali, S., & Fotohi, R. (2017). DAWA:

Defending against wormhole attack in MANETs

by using fuzzy logic and artificial immune

system. the Journal of Supercomputing, 73(12),

5173-5196.

8. Lodeiro-Santiago, M., Caballero-Gil, P.,

Aguasca-Colomo, R., & Caballero-Gil, C.

(2019). Secure UAV-Based System to Detect

Small Boats Using Neural Networks.

Complexity, 2019.

9. Fotohi, R., Heydari, R., & Jamali, S. (2016). A

Hybrid routing method for mobile ad-hoc

networks. Journal of Advances in Computer

Research, 7(3), 93-103.

10. Fotohi, R., & Bari, S. F. (2020). A novel

countermeasure technique to protect WSN

against denial-of sleep attacks using firefly and

Hopfield neural network (HNN) algorithms. The

Journal of Supercomputing, 1-27.

11. Huang, W. and Chen, D. and Xu, R. (2007), ‘A

new heuristic algorithm for rectangle packing’,

Computers & Operations Research, 34:11,

3270-3280.

12. Virk, A.K. and Singh, K. (2017) ‘Solving Multi-

objective Two Dimensional Rectangle Packing

Problem’, Advances in Intelligent Systems and

Computing, 547,188-196.

13. Hu, Y. and Hashimoto, H. and Imahori, S. and

Uno, T. and Yagiura, M. (2016) ‘a partition

based heuristic algorithm for the rectilinear

block packing problem, journal of the

Operations Research Society of Japan, 59:1,

110-129.

14. Zhang, D. and Che, Y. and Ye, F. and Si, Y.W.

and Stephen C. H. and Leung (2016) ‘A hybrid

algorithm based on variable neighborhood for

the strip packing problem’, Journal of

Combinatorial Optimization, 32:2, 513-530.

15. Wu, Y.L. and Huang, W. and Lau, S.C. and

Wong, C.K. and Young, G.H. (2002) ‘An

effective quasi-human based heuristic for

solving the rectangle packing problem’,

European Journal of Operational Research,

141:2, 341-358.

16. Sarkohaki, F., Fotohi, R., & Ashrafian, V.

(2017). An efficient routing protocol in mobile

ad-hoc networks by using artificial immune

system. International Journal of Advanced

Computer Science and Applications (IJACSA),

8 (4).

17. Fotohi, R., Ebazadeh, Y., & Geshlag, M. S.

(2016). A new approach for improvement

security against DoS attacks in vehicular ad-hoc

network. International Journal of Advanced

Computer Science and Applications, 7(7), 10-16.

18. Behzad, S., Fotohi, R., Balov, J. H., & Rabipour,

M. J. (2018). An Artificial Immune Based

Approach for Detection and Isolation

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

https://scholar.google.com/citations?user=LsuWoRoAAAAJ&hl=en&oi=sra
https://link.springer.com/bookseries/11156
https://link.springer.com/bookseries/11156
https://link.springer.com/journal/10878
https://link.springer.com/journal/10878
https://doi.org/10.20944/preprints202001.0329.v2

VOLUME XX, 2017 9

Misbehavior Attacks in Wireless Networks. JCP,

13(6), 705-720.

19. Mabodi, K., Yusefi, M., Zandiyan, S., Irankhah,

L., & Fotohi, R. Multi-level trust-based

intelligence schema for securing of internet of

things (IoT) against security threats using

cryptographic authentication. The Journal of

Supercomputing, 1-25.

20. Fotohi, R., Jamali, S., Sarkohaki, F., & Behzad,

S. (2013). An Improvement over AODV routing

protocol by limiting visited hop count.

International Journal of Information Technology

and Computer Science (IJITCS), 5(9), 87-93.

21. Virk, A.K. and Singh, K. (2016) ‘Solving Bi-

objective Two-Dimensional Rectangle Packing

Problem using Binary Cuckoo Search’,

International Journal of Computer Science and

Information Security, 14:7, 165-169.

22. Zhu, Y.H. (2016) ‘Parameter Analysis of

Placement Function for the Rectangular Packing

Problem Based on GA’, Materials Science

Forum, 836-837, 381-386.

23. Wang, S. (2017) ‘Solving Rectangle Packing

Problem Based on Heuristic Dynamic

Decomposition Algorithm’. EETA’2017-2nd

International Conference on Electrical and

Electronics: Techniques and Applications, 15-16

January, China, Beijing, 187-196.

24. Jansen, Y. and Oba, R.S. (2009) ‘Rectangle

packing with one-dimensional resource

augmentation’, Discrete Optimization, 6:3, 310-

323.

25. Huang, E. and Korf, R.E. (2013) ‘Optimal

Rectangle Packing an Absolute Placement

Approach’, Journal of Artificial Intelligence

research, 46, 47-87.

26. Bortfeldt, A. (2013) ‘A reduction approach for

solving the rectangle packing area minimization

problem’, European Journal of Operational

Research, 224:3, 486-496.

27. Chlebik, M. and J Chlebikova, J. (2009)

‘Hardness of approximation for orthogonal

rectangle packing and covering

Problems’, Journal of Discrete Algorithms, 7:3,

291-305.

28. Liu, H. and Zhou, J. and Wu, X.S. and Yuan, p.

(2014) ‘Optimization Algorithm for Rectangle

packing problem Based on Varied-factor Genetic

Algorithm and Lowest Front-Line Strategy’,

CEC’2014 - Congress on Evolutionary

Computation July 6-11, Beijing, China, 1084-

1091.

29. Bansal, N. and khan, A. (2014) ‘Improved

Approximation Algorithm for Two-Dimensional

Bin packing on discrete algorithm’, Society for

Industrial and Applied Mathematics, 25, 13-25

30. Liu, Z. (2017) ‘On Continuity Properties for

Infinite Rectangle Packing’, Cornell University

Library.

31. Wei, L. and Zhang, D. and Chena, Q. (2009) ‘A

least wasted first heuristic algorithm for the

rectangular packing problem’, Computers &

Operations Research, 36:5, 1608-1614.

32. Behzad, S., Fotohi, R., & Jamali, S. (2013).

Improvement over the OLSR routing protocol in

mobile Ad Hoc networks by eliminating the

unnecessary loops. International Journal of

Information Technology and Computer Science

(IJITCS), 5(6), 2013.

33. Behzad, S., Fotohi, R., & Dadgar, F. (2015).

Defense against the attacks of the black hole,

gray hole and wormhole in MANETs based on

RTT and PFT. International Journal of Computer

Science and Network Solutions (IJCSNS), 3, 89-

103.

34. Seyedi, B., & Fotohi, R. NIASHPT: a novel

intelligent agent-based strategy using hello

packet table (HPT) function for trust Internet of

Things. The Journal of Supercomputing, 1-24.

35. Fotohi, R., Bari, S. F., & Yusefi, M. (2019).

Securing Wireless Sensor Networks Against

Denial‐of‐Sleep Attacks Using RSA

Cryptography Algorithm and Interlock Protocol.

International Journal of Communication

Systems.

36. Zhang, D. and Che, Y. and Ye, F. and Si, Y.W.

and Stephen C. H. and Leung (2016) ‘A hybrid

algorithm based on variable neighborhood for

the strip packing problem’, Journal of

Combinatorial Optimization, 32:2, 513-530.

37. Ntene, N. and Van, J.H. and Vuuren, (2009) ‘A

survey and comparison of guillotine heuristics

for the 2D oriented offline strip packing

problem’, Discrete Optimization, 6:2, 174-188.

38. Anika, D. and Garg, D. (2014) ‘Parallelizing

Generalized One-Dimensional Bin Packing

Problem using MapReduce’, IACC’2014 -

International Advanced Computing Conference,

21-22 Feb, Gurgaon, India, 628-635.

39. Mhaiskar, N.D. and Rahman, M. (2014) ‘two-

dimensional rectangle packing problems: a

survey’, International Journal of Computer,

Information Technology & Bioinformatics, 2:1,

10-15.

40. Wei, L. and Limb, A. (2017) ‘An adaptive

selection approach for the 2D rectangle packing

area minimization problem’, Omega, 66, 1-26.

41. Fotohi, R., & Jamali, S. (2014). A

comprehensive study on defence against

wormhole attack methods in mobile Ad hoc

networks. International journal of Computer

Science & Network Solutions, 2, 37-56.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

https://scholar.google.com/citations?user=gaqzMHAAAAAJ&hl=en&oi=sra
http://www.sciencedirect.com/science/journal/03772217/224/3
https://scholar.google.com/citations?user=FzZjYWgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=8e3FzSQAAAAJ&hl=en&oi=sra
https://link.springer.com/journal/10878
https://link.springer.com/journal/10878
https://www.sciencedirect.com/science/journal/03050483
https://doi.org/10.20944/preprints202001.0329.v2

VOLUME XX, 2017 9

42. Jamali, S., & Fotohi, R. (2016). Defending

against wormhole attack in MANET using an

artificial immune system. New Review of

Information Networking, 21(2), 79-100.

43. Jamali, S., Fotohi, R., Analoui, M. (2018). An

Artificial Immune System based Method for

Defense against Wormhole Attack in Mobile

Adhoc Networks. TABRIZ JOURNAL OF

ELECTRICAL ENGINEERING, 47(4), 1407-

1419

44. Fotohi, R. (2020). Securing of Unmanned Aerial

Systems (UAS) against security threats using

human immune system. Reliability Engineering

& System Safety, 193, 106675.

45. Fotohi, R.; Nazemi, E. An Agent-Based Self-

Protective Method to Secure Communication

between UAVs in Unmanned Aerial Vehicle

Networks. Preprints 2020, 2020010229 (doi:

10.20944/preprints202001.0229.v1).

46. Huang, L. and Liu1, Z. and Liu, Z. (2014) ‘An

Improved Lowest-level Best-Fit Algorithm with

Memory for the 2D Rectangular Packing

Problem’, ISEEE’2014 International Conference

on Information Science Electronics and

Electrical Engineering, 26-28 April, Japan,

Sapporo, 1279-1282.

47. Daoden, K. and Thaiupathump, T. (2017),

‘Applying Shuffled Frog Leaping Algorithm and

Bottom Left Fill Algorithm in Rectangular

Packing Problem’, ICEIEC’2017-7th IEEE

International Conference on Electronics

Information and Emergency Communication,

21-23 July, Macau, China, 136-139.

48. Liu, D. and Teng, H. (1999) ‘An improved BL-

algorithm for genetic algorithm of the

orthogonal packing of rectangles’, European

Journal of Operational Research, 112:2, 413-

420.

49. Chazelle, B. (1983) ‘the bottom-left Bin-packing

heuristic: an efficient implementation’, IEEE

transaction on computers, 32:8, 697-707.

50. Wei, L. and Zhu, W. and Lim, A. and Liu, Q.

and Chen, X. (2018) ‘An adaptive selection

approach for the 2D rectangle packing area

minimization problem’, Omega, 80, 22-30.

51. Hu, Y. and Fukatsu, S. and Hashimoto, m H. and

Imahori, S. and Yagiura, M. (2018) ‘Efficient

overlap detection and construction algorithms

for the bitmap shape packing problem’, Journal

of the Operations Research Society of Japan, 61:

1,132-150.

52. Mohanty, R. and Kiran, P. (2017) ‘New Results

on Next Fit and First Fit On-line Algorithms for

Square and Rectangle Packing’, ICACCI’2017 -

International Conference on Advances in

Computing, Communications and Informatics,

13-16 Sept, Udupi, India, 2201-2207.

53. Imahori, S., Yagiura, M., & Nagamochi, H.

(2018). Practical Algorithms for Two-

Dimensional Packing of Rectangles. In

Handbook of Approximation Algorithms and

Metaheuristics, 589-602.

54. Zaminkar, M., Sarkohaki, F., & Fotohi, R. A

method based on encryption and node rating for

securing the RPL protocol communications in

the IoT ecosystem. International Journal of

Communication Systems, e4693.

55. Faraji-Biregani, M., & Fotohi, R. (2020). Secure

communication between UAVs using a method

based on smart agents in unmanned aerial

vehicles. The Journal of Supercomputing, 1-28.

56. Zaminkar, M., & Fotohi, R. (2020). SoS‑RPL:

Securing Internet of Things Against Sinkhole

Attack Using RPL Protocol‑Based Node Rating

and Ranking Mechanism. WIRELESS

PERSONAL COMMUNICATIONS.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202001.0329.v2

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917613
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917613
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8055795
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8055795
https://doi.org/10.20944/preprints202001.0329.v2

