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1 Abstract: In this paper, we compare the performance between systems of ordinary and (Caputo)
> fractional differential equations depicting the susceptible-exposed-infectious-recovered (SEIR) models
s of diseases. In order to understand the origins of both approaches as mean-field approximations
« of integer and fractional stochastic processes, we introduce the fractional differential equations as
s approximations of some type of fractional nonlinear birth—death processes. Then, we examine validity
s of the two approaches against empirical courses of epidemics; we fit both of them to case counts
»  of three measles epidemics that occurred during the pre-vaccination era in three different locations.
s  While FDEs appear more flexible in fitting empirical data, our ODEs offered better fits to two out of
o  three data sets. Important differences in transient dynamics between these modeling approaches are
10 discussed.

1 Keywords: fractional SEIR stochastic model; Caputo fractional order differential equations; Measles;
12 Parameter Estimation

s 1. Introduction

"

14 Modeling the spread of infectious diseases before the introduction of vaccines, as well as the
s validation of these models, has been widely studied since the works of Bernoulli [1], Ross [2], Brownlee
16 [3], Greenwood and Yule [4], Kermack and McKendrick [5], Soper [6], Greenwood [7,8], M . S . Bartlett
1z [9], Bailey [10]. See also Bailey [11] and Anderson [12] for more details about the history of disease
1= modeling. Deterministic models using ordinary differential equations (ODEs) have received great
1o attention [12-16] and wide assimilation by health sciences. See Temime et al. [17] and the references
20 therein. Other deterministic models such as difference equations are also used to model the spread of
a  diseases; for instance, see Fisman et al. [18]. However, fractional differential equations (FDEs) have
22 been used in the last decade to model the course of epidemics [19-24].

2 Fractional differential equations are usually used to involve the memory of the process in the
2« dynamics of the systems. There is more than one type of fractional order derivative; most notably,
s Caputo, Griinwald-Letnikov, and Riemann-Liouville [25]. Here, we study the Caputo fractional order
26 derivative. Integer order derivatives of ordinary differential equations are special cases of fractional
2z order derivatives. It was noted in more than one paper, e.g. [26], that FDEs give a better depiction of
2s  the courses of epidemics and natural phenomena than ODEs. Few researchers have fitted their FDE
20 models to data [26,27], however, they lack details on justifying the goodness of fit so as to statistically
30 validate them. This motivated us to compare systems of ODEs and FDEs by fitting them to some actual
a1 epidemic data.

32 Measles is a marker disease for virological, epidemiological, clinical, statistical, geographical,
s mathematical, and humanitarian reasons [28, p.16-21]. Mathematical modeling of measles epidemics
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s« dates as far as 1888 by D’Enko and then by Hamer [28, p.19]. Regularity and a large number of cases
35 of measles’ epidemics with major peaks in the pre-vaccination era (before 1964) support the choice
ss  Of testing models against measles data. Many other researchers formulated measles models and fit
sz them to data, as in Bjernstad ef al. [29], where a time scale of two weeks is recommended fitting the
s« number of cases, and in Yingcun Xia et al. [30], where a model is used to examine a spatial network.
3o In this paper, we choose to use data of measles infections in the US and UK in two decades of the
s pre-vaccination era (1944 — 1964), to compare the goodness of fit of ODEs and FDEs to those epidemics.
a While ordinary differential equations are well-established as deterministic models of the spread
«2 of diseases (see e.g. Greenwood and Gordillo [31] and Vasilyeva et al. [32]), FDE models are sometimes
. used. However, often these approaches lack mathematical basis or physical interpretation except
« for exchanging integer differentiation with fractional ones, (see e.g. Almeida et al. [26] and Aranda
«s etal [33]). Angstmann et al. [34] and Sardar et al. [35] provided a valid variation by considering the
s memory of the non-Markovian infection process. The result is a mixed system of integer and fractional
«z derivatives of the Riemann-Liouville type. Saeedian et al. [36] showed how another memory functional
s of the process can lead to replacing the integer derivatives with Caputo fractional derivatives. In this
2 paper, we show how Caputo fractional differential equations follow naturally from fractional stochastic
so processes like those introduced in [37-46]. Then we show that for different data sets, FDE models fit
s1 the data better for some epidemics whereas ODE models fit better for others. The Akaike Information
s2 Criterion (AIC) and Bayesian Information Criterion (BIC) are used to compare between the fittings of
ss the two models to three data sets. For completeness, we will cover all the required background and the
s« relevant definitions in section 2. That includes a synopsis of Caputo’s fractional calculus and fractional
ss  stochastic SEIR processes. Section 2 will also include the derivation of the fractional order differential
s« equation depicting the SEIR model from the fractional stochastic SEIR process. It will be followed by
sz the stability analysis of the equilibria of the system of fractional differential equations, which will be
se then fitted to measles data fitting and simulated.

o 2. Methods

60 In this section we provide a background for fractional differentiation and a fractional birth-death
e process. We also introduce the integer and fractional differential equations for the SEIR model and
ez analyze the stability of the FDE'’s equilibria.

es 2.1. Preliminaries

ea 2.1.1. Fractional Calculus

Let D" be the Leibniz integer-order differential operator given by

d}’l
Dy = G =1

and let J" be an integration operator of integer order given by

1t _
PE = o [ =0 e, M
+ 1 . o . o*F oF
es wheren € Z7. Letus use D = D' for the first derivative. We will use 0%F := P and use 0y F := v
For fraction-order integrals, we use
PR = g [ =1 (e @
I'(n—ua) Jo !
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where n — 1 < a < n. Now, define the Caputo fractional differential operator D to be,
Dif(t) =AD" f (1),
wheren —1 < a < n, forn € N. Itis also known that

lim DYf (1) = f(8),
lim DYf(t) = " (t) — f71)(0)

a—n—1

®)

for any n € N. We will consider #n = 1 in this work; that is 0 < a < 1. In that case,

P = [ Fdge @

where ¢¢(7) = ﬁ (#17% — (t — 7)17*). That is for each ¢, the integral J'~*f(t) is an area under
f (1), while above g;(7) which works as a deformed or slowed time-scale as illustrated by Podlubny
[47].

The generalized mean-value theorem for the Caputo fractional derivative is given as

f(x) = f(a) +1,(1MDﬁf(C)(X—a)“ forsome a<c<x

and for all x € (a,b] whenever f, D*f € C([a, b)), see e.g. Ozalp and Demirci [48] .
The Mittag-Leffler is a function that generalizes the exponential function. That function can be
written as follows,

- +
Z ak+1 xaeRT, ze€C, 5)

or, more generally using two parameters,
_y 2t +
E,X,,g(z)—kzzom, a,peRT, zeC. (6)
The general Mittag-Leffler has the following important property for any «, f > 0

Etx,,B (Z) = ZEa,chrﬁ (Z) + I—-(1‘B) (7)

Two important differential properties of the Mittag - Leffler function is that

DieM = t"Eyq_o(At) ®)
and
DIEy1(AtY) = AEqa (M*) ©)
for any A > 0.
2.2. Fractional Stochastic Process
Fix 0 < &« < 1. Following Earn et al. [49], we consider a compartmental
susceptible-exposed-infected-recovered (SEIR) model to depict the measles transmission dynamics

in a closed population. Let Xg“), Xé“), Xé’x), and Xi’x) be the number of susceptible, exposed, infected,

and recovered individuals, respectively, such that X%a) + Xé‘x) + Xg‘x) + Xi“) = N, the population size.
Figure 1 shows how the disease is progressing from one sub-population to another.

d0i:10.20944/preprints202001.0302.v1
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Susceptible

Figure 1. Schematic diagram of the SEIR model depicting transitions between different compartments.

Here, u is the recruitment and per capita death rate, B is the transmission rate, J is the rate at
which exposed individuals become infectious, and ¢ is the recovery rate.

A stochastic SEIR model can be depicted using a continuous time Markov chain (CTMC) like the
birth and death process with non-linear rates of transition as those given in table 1, see [50, p.22] and
[51, p.321]. M. S . Bartlett [9] and Greenwood and Gordillo [31] introduced (integer) stochastic SIR
model using CTMC with rates similar to those in the first six rows in table 1 to show a deterministic
SIR model of the ODE type depicting the approximate dynamics of the means of the processes. Here,
we introduce a fractional SEIR model using a CTMC of fractional birth and death process on triplets
(i,7,k) with rates provided by table 1.

Table 1. Transitions and their rates for a birth and death process depicting a stochastic SEIR model.

Transition Rate
x5 xWi1 N
(a)
[ o o X o
X = x -1 px(Y S 4 x
(a)
X
X = x a1 px 2
xS x® -1 (46X
x5 xW 1 sx
x5 xW -1 (it o)x
xé"‘) - xé"‘) +1 ox{
xM s xM -1 uxi

An a-fractional SEIR stochastic process {(X%’X)(t),Xéa)(t),Xéa)(t)) it >0} for 0 < a <1 with
state probabilities

Pl (1) = PUXY (), X3 (0, X5V (1) = (1,7, )1 (X (0), X3 (0), X4 (0)) = (i, jo, ko)

fori,j,k = 0,1,...,such that 0 < i +j+k < N and P((X\"(0), X{*(0), X\ (0)) = (io, jo, ko)) = 1,
has a fractional forward Kolmogorov equation of the stochastic SEIR model similar to equation (A1)
and is given by

(a) , k() : )
VNP(?fl,j,k) (t) +B(i+ 1)ﬁp(f"+1,j,1,k) (1) +u(i+ 1)?(?+1,]',k) (t)

+O(i+1)P{} gy (B + BG A+ P (0 + (@ + 1) (k+ D), ) ()

(w) _
Dip(z]',k)(t) =

.k . . w
—(UN + Bing + i+ (34 p)j + (0 + 1K)p (5 (1) (10)

(

with p (f‘]) 4 (t) = 0if either i, j, or k are negative or more than N. See also Di Crescenzo et al. [45].
The classical forward Kolmogorov equation of the stochastic SEIR model follows when a = 1 with

M)
1

state probabilities p (i

t), [51, p.321]. Equation (10) can be used to find the probability generatin
k) P q P Y8 g
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o function G® (u,v,w,t) = E (uxia)(t)vxéa)(t)wxéa)(t)) of the state probabilities, as the solution of the
o« Cauchy problem
DIGW = uN(u—1)G™ + u(1 —u)0uG™ + (dw + p — (6 + 1)0)d.,GW
o+ 1)1 — w)d,G® + ﬁ%(v — )30 G®) (11)

os fort > 0and G("‘)(u, v,w,0) = ulophywko for —1 < u,v,w < 1.

% Note that, the integer or classical stochastic SEIR process is (Xgl) (1), Xél) (1), Xél) (t)) which is
oz simply the case when a = 1. But that leads to another interesting fact that defines the relationship
os between the fractional and integer stochastic SEIR model; that is, the former process is a random-time
s subordination of the latter one, as established for other fractional processes like the fractional Poisson
10 process [37,45,52], and the fractional birth and/or death processes [39,40,42,43,53].

Theorem 1. The fractional stochastic SEIR process (ng) (1), Xéa) (1), Xéa) (t)) has the same distribution as
the random-time subordinated integer stochastic SEIR process

(X (Taa (), XV (T (£)), X (Ta (1))
w1 fort>0and 0 <a <1

102 The proof is provided in Appendix A.

103 2.3. Measles” Model via Fractional Differential Equations (FDE)
The means of the three discrete-marginal processes X%'X) (1), Xé’x) (), and Xé“) (t) can be found
using 3,G(1,1,1,£), 3,G® (1,1,1,£), and 3,G®) (1,1, 1, £), respectively. Let $®) (£) := L E(x{¥(¢)),
E@(t) = %E(Xé“)(t)), and I (1) := %E(Xéa)(t)), where N is the total population size and

E(x) is the expected value of x. Thus using equation (11), and approximating E (X@ (t)Xé“)(t))

by E (Xga) (t)E (Xé“) (t)) we reach the fractional order version of the system of equations that was used
by M . S . Bartlett [9] to model measles,

D5 =y — ps®) (@) _ 45
DYEW = s @) _ (4 4 §)EW) (12)
D1 = E®) — (y + o)1
where $(®, E@, and I®) be the proportion of susceptible, exposed, and infected individuals,
respectively. With proportion of recovered individuals given by R(®) = 1 — (§(®) 4 E(@) 4 (@),
we reach the fractional « order SEIR model
D) =y — ps@) (®) _ 45
DYEW = s @) _ (4 4 5)EW)
D1 = §E® — (y + o) 1W
D*R®) = g1 — ],tR(”‘)

(13)

with 0 < & < 1. The non-negative parameters B, i, §, and ¢ — denoting them by 6, for brevity —
have dimensions given by @ By construction of the FDE model as a mean field approximation of
the a-fractional stochastic SEIR process which in its turn is a subordination of an integer stochastic SEIR
process by Theorem 1, those parameters could be interpreted as the rates measured by an independent
observer of the process or calculated based on a cosmic time flow [47]. We replace those parameters
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with a power « of new parameters; that is, 65 in place of 8 so the parameters 6, will have the dimension

of 7 and the system becomes the following form:

D5 =y — prs@ () _ yeg)
DEE® = S — (4t + 62)E®
DI = ¢E®) — (uf 4 02) 1™
D*R®) = gap(®) — ‘u‘;‘R("‘)

(14)

2.4. Measles” Model via Ordinary Differential Equations (ODE)

The following system of differential equations represents the ordinary differential equation
representation of the SEIR model and is the FDE model when & = 1 in equation 14.

DS =u— BSI —uS

DE = BSI — (u+9)E
DI =0E—(p+0)Il

DR =o0l—-puR

(15)

where y, B, 6, and o are the model parameters described above. They all have dimensions given by
L The last equation in (15) is redundant since R = 1 — (S + E + I).

time *

2.5. Measles” Model via a-dependent Ordinary Differential Equations

We are interest in comparing the FDE vs ODE modeling approaches. It is important to note that
the basic ODE case considers « = 1, however in the FDE case, & appears in the derivative as well as the
parameter values. In order to better compare these two approaches, here we develop an ODE analoge
to the FDE that incorporates & in the parameter values. We call this new system the a-dependent ODE.
By dropping the & order derivative from the left side and « power from $(*), E(*), and I(*) of equation
(14), our a-dependent ODE takes the following form:

DS = it — BASI — itS
DE = ST — (4 + 6%)E
DI = 8E — (& +0%)1
DR = oI — u4R

(16)

2.6. Model Analysis

Analysis of the ODE is almost the same as of the FDE so we include the FDE one here. We start by
proving the positive invariance of the region of solutions of the FDE model. Henceforth, we drop the &
from S®), E("‘), and I@, for brevity.

The following two lemmas of asymptotic behavior of FDEs are given here and their proof in
appendix A for completeness.

Lemma 1. The closed simplex region M = {(S,E,I) € R : 0 < S+ E + I < 1} is a positive invariant set
for the FDE model in (14).

We can find the model’s equilibrium points by setting DS = 0, D{E = 0, and D{I = 0. Thus,
there are two equilibria to the measles” SEIR model (14). They are:

1. the disease free equilibrium DFE = (1,0,0), and

d0i:10.20944/preprints202001.0302.v1
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2. the endemic equilibrium

T S U N TP
EE = (s*,¢*,i*) = <R0'(5+y (1 Ro)'ﬁ(RO 1))

127 where the basic reproduction number is Ry := 0 . EE exists only when 1 < Rg < 1+ 5

o
p+0o)(p+0)
128 An equilibrium is locally asymptotically stable if the eigenvalues of the Jacobian matrix of the
120 n-dimensional system, namely A1, Ay, ..., Ay, have the property that |arg(A;)| > F, fori =1,2,...,n,
130 [25, p.158]. Thus, in general, the stability of the ordinary differential equations model implies stability
11 of its fractional counter model. But, here they are equivalent due to the following lemma whose
132 solution could be found in appendix A.

133 Lemma 2. The Disease-Free Equilibrium DFE is locally asymptotically stable if Ry < 1. The endemic
s equilibrium EE is is locally asymptotically stable if Ry > 1.

135 Therefore, they have the same asymptotic behavior. Yet, the transient behavior differs as will be
136 seen by simulations below.

Moreover, a very important difference is their oscillation behavior is not similar. Let A, and u, for
£=1,2,...,N be the eigenvalues and their respective eigenvectors of an N x N matrix A. The general
solution of initial value problem consisting of a system of N linear fractional differential equations
D%x(t) = Ax(t) such that x(0) = x( can be found to be

N
x(t) =Y cugEq(Agt") (17)
(=1

for certain constants ¢y € C for / = 1,2, ..., N such that Eﬁ;l cotly = Xg, [25, Theorem 7.13]. In case
that @ = 1, we recover the known solution of the system of ODEs given by

N
x(t) = Z cotgexp(Agt).
(=1

137 If N =3 and A is not a symmetric matrix then at least one of the eigenvalues is a real-valued number
13s  and the other two eigenvalues , say A, and A3, are conjugate complex-valued. In that situation, x(t)
130 would oscillate with inter-peak periods, called inter-epidemic period in disease modeling, given by
w0 271(S(Ap)) 7L [14]. If R(Ay) < O for all £ then the oscillations will be damped to zero. That damped
11 oscillation is clear in the case of & = 1 due to the exponential damping in the superposition of the sine
12 and cosine functions. That behavior, however, is not straight forward for 0 < a < 1.

s 2.7. Numerical Simulations

o

Since the mean of the subordinator process is E(7,(t)) = Tatl) we use a method similar to

that was introduced in Demirici and Ozalp [54] to find approximate solutions to initial value FDE
problems. We use that method here to simulate the solution of the FDE measles SEIR model. Consider
the initial value problem

Dix(t) = f(t,x(t)), for0 <t < T,

18
x(0) = xo, (18)
for some T > 0. A solution of (18) is approximated by the deterministic time subordination

th

x(t) =y (WH)) (19)
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of y(s), the solution of the ordinary differential equation
dy(s) t
= 7 7 f 0 S /. 1\
ds 8(s,y(s)), for0 <s I(a+1) (20)
¥(0) = xo.
where
8(5,y(s)) = f(t— (" = sT(a+1))%, x(t = (1* = sT(x +1))*)). (21)

forall0 <t < T, [54].
We use the subordination of the solution of ODEs to FDEs represented in equations (19) and (20)
to numerically simulate solutions of FDEs, see algorithm 1.

Algorithm 1 Numerical solution of D{x(t) = f(t,x(t)) for 0 < t < T with x(0) = xo.
Input: &, T, f(t,x(t)), m,n Output: x(t)

begin

Divide the interval [0, T] into n sub-intervals using

O=t)y<thi<...<t,=T.

fori=1,2,...,n
14

#
Divide the interval [0, !

F(oc—i—l)]

into further m sub-intervals using

[
0=s9<s1 <”'<Sm:r((x71—|—1)'
Solve the system Dy(s) = f(t; — (t} —sT'(a +1)) %,y(s)) with y(0) = x¢ using Euler or Runge-Kutta
methods on sg,s1, ..., 5.

Retain x(t;) = y(sm).

end

Return [xq, x(f1), x(t2), ..., x(£4)].

end

2.8. Fitting FDE and ODE models to measles data

We use the method of ordinary least squares (OLS) to fit the FDE model to the data by minimizing

the objective function
n

L(a, B,1,8,0) = Y (I — 12
i=1

fora € (0,1], and B, u, 6,0 € (0,00), where I (@) is the data of actual proportion of infections and I ) is
the simulated proportion of infections. The values I i(s) approximating I(t;) are found by solving the
FDE model using algorithm 1.

Parameter estimation was conducted using Matlab MultiStart and fmincon functions. MultiStart
carries out the optimization procedure using initial points within the parameters’ spaces. It generates
some initial points depending on a converging algorithm. The fmincon finds a local minimum for the
constrained nonlinear multivariable function. The MultiStart together with fimincon do the global
optimization of a nonlinear multivariable function. The MultiStart function uses parallel processing

which drastically reduces the running time.

d0i:10.20944/preprints202001.0302.v1
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Figure 2. Number of cases using classical ODE model and FDE model with different fractional orders
«. The simulations are done using y = p, = 0.0027, B = By = 119.2257, § = 6, = 16.7301, and
o = 0y = 10.1873.

5 7><104
! —FDE with o =0.95
! ---ODE with o = 0.95
411 —FDE with oo = 0.85
! - - -ODE with o = 0.85
§3 .
ko)
z
€2
2
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Figure 3. Number of cases using FDEM and its analogous ODEM with different fractional orders a.
The simulations are done using y, = 0.0027, B, = 119.2257, §, = 16.7301, and o, = 10.1873.
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Figure 4. Simulations of solutions of the SEIR FDE centered about the endemic equilibrium (EE) for
a =1,.95,.85, and .75 using equation (17) shows a suppression of damped oscillations as « decreases.
The simulations are done using p, = 0.0027, B, = 119.2257, 5, = 16.7301, and o, = 10.1873.

157 3. Results

158 We solve the system of FDE (equation 14 ) using algorithm 1 and the systems of ODE (equations
1s 15 and 16 ) using the Runge-Kutta method.
160 Simulations of the classical ODE (equation 15) and FDE ( equation 14), Figure 2, shows that

11 the system of fractional differential equations is very sensitive to its order of differentiation «. For
12 smaller «, the peak number of cases of the epidemic is larger but the duration of the outbreak is
163 shorter. The solution of the FDE model converges to the solution of the classical ODE as « — 1. To
1ea  further compare the two modeling approaches, we consider the analogue ODEs derived for specific «
165 values, see equation (16). These comparisons are shown in Figure 3. During transient dynamics both
1es models exhibit several peaks in the number of cases. The number of these peaks and their respective
167 amplitudes are similar between models, however there are differences in the timing of these peaks.
1ee  The transient oscillations of the FDE model are more stretched out than its ODE analogue, and its
1es  solutions experience longer inter-epidemic times. Both models approach the same equilibria solutions.
170 Simulations of equation (17) in Figure 4 shows that disease models of fractional order equations
i1 lack the same oscillatory behavior exhibited by systems of ODEs with conjugate complex eigenvalues
172 of the Jacobian matrices calculated at endemic equilibrium.

173 The models were fitted to three measles’ epidemics in the pre-vaccination era in three different
17a  cities: New York, London, and Portsmouth. Simulations of the fitted ODE and FDE models are
175 shown in Figure 5. See also Appendix B for the data and the parameter estimates. The estimate
e of a are 0.99,0.99, and 0.88 for New York, London, and Portsmouth respectively. The AIC and BIC
177 are found to be smaller for ODE models for the epidemics in New York and London with values of
17e  AIC(ODE)= 250.539 and 389.358 and BIC(ODE)= 253.872 and 394.541, respectively, while AIC(FDE)=
1o 255.360 and 413.275 and BIC(FDE)= 259.526 and 419.754, respectively. For Portsmouth’s epidemic, the
10 results are the opposite, AIC(ODE)= 277.938 and BIC(ODE)= 282.978 while AIC(FDE)= 271.920 and
e BIC(FDE)= 278.213. Yet the differences between the fitting of ODE and FDE models are not striking.

152 4. Discussion

183 Replacing first order derivatives with Caputo fractional derivatives has been the practice for
1ee many studies using fractional order modeling of diseases. In this paper, we show how those models
15 follow from an approximation to the dynamical system governing the means of fractional stochastic
1es  SEIR processes. Moreover, we study ordinary and fractional order systems of differential equations
17 of SEIR models using three data sets of measles epidemics in three different cities selected from the
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Figure 5. Simulations of ODE and FDE models fitted to measles epidemics in the pre-vaccination era.

18s  pre-vaccination era. It appears that, in some situations, the fractional order differential equation model
10 (FDEM) gives better fit than the ordinary differential equation model (ODEM).

190 Angstmann ef al. [34] use the master equation of a continuous-time random walk to derive an
11 FDEM involving Riemann-Liouville fractional derivatives. Power laws are postulated to model time of
192 infectiousness and recovery. That extension from exponential times in ordinary differential equations
103 is a different approach from the mean field approximation of a stochastic process. Saeedian et al. [36]
10s  introduced the Caputo fractional differential equations through a memory of the whole process of
15 infection and disease recovery. In our paper, we have considered, for the first time, fractional stochastic
16 SEIR model and have shown how the Caputo fractional differential equations follows as mean-field
107 approximation of the process.

198 Fractional stochastic SEIR model introduced here turns out to be a random-time subordination
100 Of a classical stochastic SEIR model. Other real-life systems are modeled using a subordination of a
200 stochastic process. A subordinated process was introduced by Mandelbrot and Taylor [55] to model
201 the logarithm of market prices where the original process is a Brownian motion subordinated by a
202 stochastic time process 75,, which is the same random time process we have found here. In Mandelbrot
203 and Taylor [55], the stochastic time process 7y, is called the operational time and ¢ is the physical time.
208 Further study of the fractional stochastic SEIR model might lead to interesting dynamical
20 behaviors. For instance, it can provide more insights into the stochastic oscillations of the disease in
20 a more flexible way than their classical counterparts. Thus, studying the fractional stochastic SEIR
207 model is the next step in this work.

20s 5. Conclusion

200 In this paper, we compare two deterministic models of disease: ordinary differential equations
20 (ODE) and fractional differential equations (FDE). We use three different data sets of measles epidemics
2 from the pre-vaccination era. We also explain FDEs as the mean-field approximation of a fractional
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212 stochastic SEIR model. Up to our knowledge, this is the first time such a fractional stochastic process is
213 introduced and connected to the fractional order differential equations.

214 While ODE models are regularly used to model epidemics, such as measles, FDEs seem to have
25 the potential to offer improved model fitting. Rates of transition between compartments in that case
216 could be interpreted as rates with respect to an external observer with a different type of clock, may be
21z due to delay in reporting.
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22z Appendix A. Some Definitions and Proofs

Laplace transform of a function f(t) is defined as

L) =F65) = [ et (b,

0

The inverse transform is defined by

L7 ¢ f(s)ds

~ 27 Je
where C is a contour parallel to the imaginary axis and to the right of the singularities of . The Laplace
transform of the Caputo fractional derivative is given by

L(Df)(s) = s*f(s) —s* ' £(0).
22s Fractional Birth and Death Process:

An a-fractional nonlinear birth and death process {N,(t) : t > 0} for 0 < a < 1 with state
probabilities
P(t) = P(Na(t) = n[Nu(0) = 1)

for n > 0 is defined through the forward Kolmogorov (difference-)differential equations

DEpn(t) = Ap—aphy_1(8) + png1 Pyt () — (Ap 4 pn) pii (1) (A1)

220 forn > 0[39,43,53]. The rates A;, and p; are non-negative. The classical birth and death process
230 follows when & = 1 with state probabilities p}. (). When A, = A and p,, = 0 for all n, the a-fractional
21 nonlinear birth and death process becomes the a-fractional Poisson process [37,41,46]. There, it has
2.2 shown that Ny (t) has the same probability distribution as N(7,(t)), where N(#) is the classical birth
2z and death process which is independent of a random time process 7,(t); that is, a birth and death
23a  process subordinated by an a-stable time process.

The random time process 7, () has a distribution given by the folded solution of the fractional
diffusion equation 9F = 92F for 0 < a < 2, x € R, t > 0, and subject to F(x,0) = 6(x) for0 < a < 2
and 9fF(x,0) = 0 for 1 < & < 2, [43]. We will denote its measure by v, :(ds) := P(T4(t) € ds). Ithas a
Laplace transform

(9] 19

L(Vas)(r) = /0 e Mty (d) = r27le s
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k tle
2 =T — fi = ...; [46,56].
55 and moments E[(7,(#))"] (k+1)l"(koc+ ) ork=1,2,...;[46,56]
236 Note that, the absolute values of partial derivatives of G are finite; that is, |8u17]) lz{,, G| < oo for any

27 1,7,k =0,1,2,.... Thatis true since |u|, |v|, |w| < 1 and the population size is finite. Thus, switching
238 integrals with derivatives or summations below are valid.
239
220 Proof of the Theorem 1
We are going to show that Laplace transform of the probability generating function of the process

(K (Tau 1), X (Taa (1), X4 (Tea(1)))

21 is the same as Laplace transform G of G, that solves equation (11). From there we will conclude
22 that the two probability distributions are the same since the probability generating function of

243 (X%'X) (1), Xé“) (1), Xé’x) (t)), by construction, is also a solution to the Cauchy problem in equation (11).

244 From equation (11), the Laplace transform G is the solution of
s*GW — g Tydoglogpho = uN(u—1)GW + u(1 - u)a G 4 (6w + pu — (6 + u)0)d,GW
o+ ) (1 —w)a,G® + ‘BN(ZJ — 1)y G (A2)

Let H® (u,v,w,t) be the probability generating function of the state probabilities

isya0(8) = PO (Tax (), 57 (Taa (6, X5 (Tau (1)) = (i )

(X" (720(0)), X3 (T2a(0)), X5 (T2a(0))) = (i, jo ko))-

225 That means that
H® (4,0,w,8) = E@X (Tl <7'za(>>w V(1))

ZZZM zﬂw q 1]k )
;;;wvlwfo p(i’jlk)(s)vzmt(ds)
[T Cwioikp () ())vans(as)
0 Tk v

/oo G(l)(u, v, W, ) Vgt (ds).
0

246 Thus the Laplace transform of the probability generating function H® is given by

AW (u,0,w,r) = / e_rt/ GW (1, 0,w, 5)vaq ¢ (ds)dt
0 0
1’“71/ G(l)(urvrw/s)efsrtxds
0

r"‘_lé(l)(u, v, w,r")
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247 Now, the Laplace transform of the probability generating function of the process
248 (Xgl) (1), Xgl) (1), Xél) (t)) also solves (A2) when « = 1 which is
sGW —yhophgfo = uN(u—1)6W + u(1 — )9,V + (sw+ p — (6 + 1)0)d,GM
+(o+p)(1— )G + ﬁ%(v — )3 G, (A3)
20 If we substitute with s = r* in equation (A3) and multiply both sides by r*~1 we get
P A — T yioghgk = uN(u—1)A® + (1 — )9, AW + (5w + u — (6 + u)v)9, H®
(0 + ) (1= )3 AY + B (0 = 1)d A (Ad)

250 which is the same as equation (A2). This completes the proof.

252 Proof of Lemma 1
Starting on the S-axis when E(0) = I(0) =0and 1 > S(0) = Sy > 0, then

S(t) = t"Eq i1 (=pt") () + B2 (—pt*)S0 > 0
since pt > 0 and t > 0. Starting on the E-axis when S(0), I(0) = 0 and E(0) = Ey > 0, then
E(t) = Exa(—(p+0)t")Eg =2 0
Starting on the I-axis when S(0), E(0) = 0 and I(0) = Iy > 0, then
I(t) = Exq (= (u +0)t*) o 2 0

sz Thus, all axes are positive invariant, for S(0), E(0),I(0) > 0.
If the solution of the system is leaving through the positive quadrant of the E-I plane, then
S(te) = 0, and E(t.) and I(t,) > O for some t, > 0 such that S(t) < S(t.), for all t+ > t,. But,
D%S|—t, = i > 0. By the generalized mean value theorem

S() = S(te) + r(la)Dzsm(t rat

for some t, < T < t, then S(t) > S(t,) contradicting the original statement. The same argument could
be used for the positive quadrant of the S-I plane with DYE|;—;, = BS(t.)I(t.) > 0 and for the positive
quadrant of the E-S plane with D§I|;—;, = aE(t,) > 0.

To show that S(t) + E(t) + I(t) < 1forall t > 0,if S(0) + E(0) + I(0) <1,

DYSHE+D)=pu—u(S+E+I)—0l

(A5)
<u—u(S+E+I)

Thus,

S(8) + E(t) + I(t) < t*Eqqr (—pt*)p + Ena (—pt*)(S(0) + E(0) + 1(0))

(A6)
< P Eqqr1 (—pt)p + Ega (—pt") =1

24 by equation (7).

256 Proof of Lemma 2
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For the local stability of a disease-free equilibrium, we must evaluate the Jacobian matrix at
DFE = (1,0,0)

—H 0 —B
J(DFE) = | 0 —(u+9) p
0 ) —(p+o0)
The eigenvalues of the matrix | are,
/\l = _,u/
—(6+2u+0)—VA
Ay = /
2
—(6+2u+0)+VA
Az = 5 /

where A = 6% 4 46 — 260 + o. From this it is clear that A; is negative and since
AN=06*+46p—200+ 0% = (6 —0)* +458 >0

then A, and A3 are real-valued numbers. Hence A, < 0. But, A3 < 0is true when

—(0+2u+0)+ /62 +46B — 260 + 02 “0
2

sz which is equivalent to 6 < (it + o) (u + J), proving the first part.
The Jacobian matrix calculated at EE is given by

—1uRo 0 —,31%0
J(EE) = |u(Ro—1) —(u+6) B
0 6 —(u+0)

which has a characteristic polynomial,
—A% = A[(u+0) + (4 +0) + pRo] — AluRo(2p + 6 +0)] + u(Ro — 1) ( +0) (1 + ).

Because that polynomial has a degree of 3, we choose to test the Routh-Hurwitz conditions to see
if EE is stable.
m=uRo+ (2u+d+0) >0

a3 = pu(Ro—1)(p+o)(p+6) >0

With these conditions we check that the determinant, D, > 0.
Dy = ayap —a3 = (uRo +2p + 6 + ) (uRo(2p + 6 +0)) — (#(Ro — 1) (p + o) (1 + 6))

= u[uR§(2p + 6+ 0) + (2u + 6+ 0)*Ro — Ro(p + o) (4 8) + (u + o) (j + 6)]
= u[uR§(2p+6+0) + (u+0)*Ro+ (1 +6)*Ro+ (p+ o) (u + 6)Ro + (u+ o) (u +6)] > 0

258 From this, all Routh-Hurwitz conditions are met and all the eigenvalues of the Jacobian matrix at
2o EE are negative, meaning that [Re(Ag)| < 0,k =1,2,3.
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20  Appendix B. Data Sets and Parameter Estimation
201 Appendix B.1. New York
262 Monthly reported infections of measles from September 1961 to January 1963 in New York city

263 are given in table A1. Parameter estimation of Measles New York data from September 1961 to January
26 1963 using both ODE model and FDE model. The estimated parameters values for the classical ODE
2s  model are (y, B,6,0) = (0.0028,119.22,16.73,10.19) with the sum of square error, SSE = 1.29 x 10°
2s and for the FDE model are («, 1, 8,6,0) = (0.99,0.0029,116.34,19.39,10.37) with the sum of square
26r error, SSE = 1.34 x 10°.

Table Al. Reported infections of measles from September 1961 to January 1963 in New York, US.

Year Months Cases | Year Months Cases | Year Months Cases
1961 September 109 | 1962 March 5839 | 1962 September 58
1961 October 123 | 1962  April 7875 | 1962  October 86
1961 November 383 | 1962 May 6555 | 1962 November 125
1961 December 1043 | 1962 June 2866 | 1962 December 145
1962 January 1725 | 1962 July 1075 | 1963 January 184
1962  February 3056 | 1962 August 266

2ee  Appendix B.2. London

260 Biweekly reported infections of measles in 1961 in London, United Kingdom are given in table
2o A2. Parameter estimation of measles Portsmouth data in 1961 using both ODE model and FDE
an model. The estimated parameters values for the classical ODE model are (y,B,6,0) = (6.79 x
a2 1074,153.44, 1.99,4.27) with the sum of square error, SSE = 2.01 x 10° and for the FDE model are
ars (&, 11, B,6,0) = (0.99,8.53 x 1074, 62.89,5.37,4.95) with the sum of square error, SSE = 4.37 x 10°.

Table A2. Biweekly reported measles infections in 1961 in London, UK.

Year Weeks Cases | Year Weeks Cases | Year Weeks Cases | Year Weeks Cases
1961 0 1636 1961 14 5374 1961 28 514 1961 42 89
1961 2 2700 1961 16 4272 1961 30 375 1961 44 87
1961 4 2639 1961 18 2322 1961 32 265 1961 46 73
1961 6 4805 1961 20 1810 1961 34 199 1961 48 70
1961 8 6543 1961 22 1409 1961 36 121 1961 50 59
1961 10 6389 | 1961 24 1037 | 1961 38 86 1961 52 45
1961 12 5545 1961 26 767 1961 40 76

27 Appendix B.3. Portsmouth

275 Biweekly reported infections of measles in 1961 in Portsmouth, United Kingdom are given in table
26 A3. Parameter estimation of measles Portsmouth data in 1961 using both ODE model and FDE model.
a7z The estimated parameters values for the classical ODE model are (y, 8,6,0) = (10*6, 228.61,0.46,3.33)
27e with the sum of square error, SSE = 4.57 x 10* and for the FDE model are (a, 1, B,6,0) = (0.88,2.56 x
a0 1074,278.72,1.52, 5.24) with the sum of square error, SSE = 3.22 X 10%.

Table A3. Biweekly reported infections of measles in 1961 in Portsmouth, UK.

weeks | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
cases 4 30 58 174 310 407 640 847 555 523 337 242 144 91 29 21
weeks | 34 36 38 40 42 44 46 48 50 52
cases | 25 28 13 5 2 1 2 0 2 0
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200 Appendix B.4. Parameter Estimations
Table A4. Comparison between the classical ODE model and FDE model using different data sets
Data Model Estimated Parameters, («, i, B,6,0) SSE
New York ODE (Na,0.0028,119.22,16.73,10.19) 1.29 x 10°
FDE (0.99,0.0029,116.34,19.39,10.37) 1.34 x 10°
Portsmouth ~ ODE (Na,107°,228.61,0.46,3.33) 457 x 10*
FDE  (0.88,2.52 x 107%,278.72,1.52,5.24)  3.22 x 10*
London ~ ODE  (Na,679 x107%,153.44,1.99,4.27)  2.01 x 10°
FDE (0.99,8.52 x 1074,62.89,5.37,4.95)  4.36 x 10°
281
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