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Abstract: In this paper, we compare the performance between systems of ordinary and (Caputo) 
fractional differential equations depicting the susceptible-exposed-infectious-recovered (SEIR) models 
of diseases. In order to understand the origins of both approaches as mean-field approximations 
of integer and fractional stochastic processes, we introduce the fractional differential equations as 
approximations of some type of fractional nonlinear birth–death processes. Then, we examine validity 
of the two approaches against empirical courses of epidemics; we fit both of them to case counts 
of three measles epidemics that occurred during the pre-vaccination era in three different locations. 
While FDEs appear more flexible in fitting empirical data, our ODEs offered better fits to two out of 
three data sets. Important differences in transient dynamics between these modeling approaches are 
discussed.

Keywords: fractional SEIR stochastic model; Caputo fractional order differential equations; Measles; 
Parameter Estimation12

1. Introduction13

Modeling the spread of infectious diseases before the introduction of vaccines, as well as the14

validation of these models, has been widely studied since the works of Bernoulli [1], Ross [2], Brownlee15

[3], Greenwood and Yule [4], Kermack and McKendrick [5], Soper [6], Greenwood [7,8], M . S . Bartlett16

[9], Bailey [10]. See also Bailey [11] and Anderson [12] for more details about the history of disease17

modeling. Deterministic models using ordinary differential equations (ODEs) have received great18

attention [12–16] and wide assimilation by health sciences. See Temime et al. [17] and the references19

therein. Other deterministic models such as difference equations are also used to model the spread of20

diseases; for instance, see Fisman et al. [18]. However, fractional differential equations (FDEs) have21

been used in the last decade to model the course of epidemics [19–24].22

Fractional differential equations are usually used to involve the memory of the process in the23

dynamics of the systems. There is more than one type of fractional order derivative; most notably,24

Caputo, Grünwald-Letnikov, and Riemann-Liouville [25]. Here, we study the Caputo fractional order25

derivative. Integer order derivatives of ordinary differential equations are special cases of fractional26

order derivatives. It was noted in more than one paper, e.g. [26], that FDEs give a better depiction of27

the courses of epidemics and natural phenomena than ODEs. Few researchers have fitted their FDE28

models to data [26,27], however, they lack details on justifying the goodness of fit so as to statistically29

validate them. This motivated us to compare systems of ODEs and FDEs by fitting them to some actual30

epidemic data.31

Measles is a marker disease for virological, epidemiological, clinical, statistical, geographical,32

mathematical, and humanitarian reasons [28, p.16-21]. Mathematical modeling of measles epidemics33
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dates as far as 1888 by D’Enko and then by Hamer [28, p.19]. Regularity and a large number of cases34

of measles’ epidemics with major peaks in the pre-vaccination era (before 1964) support the choice35

of testing models against measles data. Many other researchers formulated measles models and fit36

them to data, as in Bjørnstad et al. [29], where a time scale of two weeks is recommended fitting the37

number of cases, and in Yingcun Xia et al. [30], where a model is used to examine a spatial network.38

In this paper, we choose to use data of measles infections in the US and UK in two decades of the39

pre-vaccination era (1944− 1964), to compare the goodness of fit of ODEs and FDEs to those epidemics.40

While ordinary differential equations are well-established as deterministic models of the spread41

of diseases (see e.g. Greenwood and Gordillo [31] and Vasilyeva et al. [32]), FDE models are sometimes42

used. However, often these approaches lack mathematical basis or physical interpretation except43

for exchanging integer differentiation with fractional ones, (see e.g. Almeida et al. [26] and Aranda44

et al. [33]). Angstmann et al. [34] and Sardar et al. [35] provided a valid variation by considering the45

memory of the non-Markovian infection process. The result is a mixed system of integer and fractional46

derivatives of the Riemann-Liouville type. Saeedian et al. [36] showed how another memory functional47

of the process can lead to replacing the integer derivatives with Caputo fractional derivatives. In this48

paper, we show how Caputo fractional differential equations follow naturally from fractional stochastic49

processes like those introduced in [37–46]. Then we show that for different data sets, FDE models fit50

the data better for some epidemics whereas ODE models fit better for others. The Akaike Information51

Criterion (AIC) and Bayesian Information Criterion (BIC) are used to compare between the fittings of52

the two models to three data sets. For completeness, we will cover all the required background and the53

relevant definitions in section 2. That includes a synopsis of Caputo’s fractional calculus and fractional54

stochastic SEIR processes. Section 2 will also include the derivation of the fractional order differential55

equation depicting the SEIR model from the fractional stochastic SEIR process. It will be followed by56

the stability analysis of the equilibria of the system of fractional differential equations, which will be57

then fitted to measles data fitting and simulated.58

2. Methods59

In this section we provide a background for fractional differentiation and a fractional birth-death60

process. We also introduce the integer and fractional differential equations for the SEIR model and61

analyze the stability of the FDE’s equilibria.62

2.1. Preliminaries63

2.1.1. Fractional Calculus64

Let Dn be the Leibniz integer-order differential operator given by

Dn f =
dn f
dtn = f (n),

and let Jn be an integration operator of integer order given by

Jn f (t) =
1
n!

∫ t

0
(t− τ)n−1 f (τ)dτ, (1)

where n ∈ Z+. Let us use D = D1 for the first derivative. We will use ∂α
xF :=

∂αF
∂xα

and use ∂xF :=
∂F
∂x

.65

For fraction-order integrals, we use

Jn−α f (t) =
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (τ)dτ, (2)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 January 2020                   doi:10.20944/preprints202001.0302.v1

Peer-reviewed version available at Int. J. Environ. Res. Public Health 2020, 17, 2014; doi:10.3390/ijerph17062014

https://doi.org/10.20944/preprints202001.0302.v1
https://doi.org/10.3390/ijerph17062014


3 of 19

where n − 1 < α ≤ n. Now, define the Caputo fractional differential operator D ∗α to be,

D∗
α f (t) = Jn−αDn f (t),

where n − 1 < α ≤ n, for n ∈ N. It is also known that

lim
α→n

Dα
∗ f (t) = f (n)(t),

lim
α→n−1

Dα
∗ f (t) = f (n−1)(t)− f (n−1)(0)

(3)

for any n ∈ N. We will consider n = 1 in this work; that is 0 < α ≤ 1. In that case,66

J1−α f (t) =
∫ t

0
f (τ)dgt(τ), (4)

where gt(τ) = 1
Γ(2−α)

(
t1−α − (t− τ)1−α

)
. That is for each t, the integral J1−α f (t) is an area under67

f (τ), while above gt(τ) which works as a deformed or slowed time-scale as illustrated by Podlubny68

[47].69

The generalized mean-value theorem for the Caputo fractional derivative is given as

f (x) = f (a) +
1

Γ(α)
Dα
∗ f (c)(x− a)α for some a ≤ c ≤ x

and for all x ∈ (a, b] whenever f , Dα
∗ f ∈ C([a, b]), see e.g. Özalp and Demirci [48] .70

The Mittag-Leffler is a function that generalizes the exponential function. That function can be
written as follows,

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α ∈ R+, z ∈ C, (5)

or, more generally using two parameters,

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β ∈ R+, z ∈ C. (6)

The general Mittag-Leffler has the following important property for any α, β > 0

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
. (7)

Two important differential properties of the Mittag - Leffler function is that

Dα
∗e

λt = t−αE1,1−α(λt) (8)

and
Dα
∗Eα,1(λtα) = λEα,1(λtα) (9)

for any λ > 0.71

2.2. Fractional Stochastic Process72

Fix 0 < α ≤ 1. Following Earn et al. [49], we consider a compartmental73

susceptible-exposed-infected-recovered (SEIR) model to depict the measles transmission dynamics74

in a closed population. Let X(α)
1 , X(α)

2 , X(α)
3 , and X(α)

4 be the number of susceptible, exposed, infected,75

and recovered individuals, respectively, such that X(α)
1 + X(α)

2 + X(α)
3 + X(α)

4 = N, the population size.76

Figure 1 shows how the disease is progressing from one sub-population to another.77
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Figure 1. Schematic diagram of the SEIR model depicting transitions between different compartments.

Here, µ is the recruitment and per capita death rate, β is the transmission rate, δ is the rate at78

which exposed individuals become infectious, and σ is the recovery rate.79

A stochastic SEIR model can be depicted using a continuous time Markov chain (CTMC) like the80

birth and death process with non-linear rates of transition as those given in table 1, see [50, p.22] and81

[51, p.321]. M . S . Bartlett [9] and Greenwood and Gordillo [31] introduced (integer) stochastic SIR82

model using CTMC with rates similar to those in the first six rows in table 1 to show a deterministic83

SIR model of the ODE type depicting the approximate dynamics of the means of the processes. Here,84

we introduce a fractional SEIR model using a CTMC of fractional birth and death process on triplets85

(i, j, k) with rates provided by table 1.86

Table 1. Transitions and their rates for a birth and death process depicting a stochastic SEIR model.

Transition Rate

X(α)
1 → X(α)

1 + 1 µN

X(α)
1 → X(α)

1 − 1 βX(α)
1

X(α)
3
N

+ µX(α)
1

X(α)
2 → X(α)

2 + 1 βX(α)
1

X(α)
3
N

X(α)
2 → X(α)

2 − 1 (µ + δ)X(α)
2

X(α)
3 → X(α)

3 + 1 δX(α)
2

X(α)
3 → X(α)

3 − 1 (µ + σ)X(α)
3

X(α)
4 → X(α)

4 + 1 σX(α)
3

X(α)
4 → X(α)

4 − 1 µX(α)
4

An α-fractional SEIR stochastic process {(X(α)
1 (t), X(α)

2 (t), X(α)
3 (t)) : t ≥ 0} for 0 < α ≤ 1 with

state probabilities

p(α)
(i,j,k)(t) = P((X(α)

1 (t), X(α)
2 (t), X(α)

3 (t)) = (i, j, k)|(X(α)
1 (0), X(α)

2 (0), X(α)
3 (0)) = (i0, j0, k0)

for i, j, k = 0, 1, . . ., such that 0 ≤ i + j + k ≤ N and P((X(α)
1 (0), X(α)

2 (0), X(α)
3 (0)) = (i0, j0, k0)) = 1,87

has a fractional forward Kolmogorov equation of the stochastic SEIR model similar to equation (A1)88

and is given by89

Dα
∗ p(α)

(i,j,k)(t) = µNp(α)
(i−1,j,k)(t) + β(i + 1)

k
N

p(α)
(i+1,j−1,k)(t) + µ(i + 1)p(α)

(i+1,j,k)(t)

+δ(j + 1)p(α)
(i,j+1,k−1)(t) + µ(j + 1)p(α)

(i,j+1,k)(t) + (σ + µ)(k + 1)p(α)
(i,j,k+1)(t)

−(µN + βi
k
N

+ µi + (δ + µ)j + (σ + µ)k)p(α)
(i,j,k)(t) (10)

with p(α)
(i,j,k)(t) = 0 if either i, j, or k are negative or more than N. See also Di Crescenzo et al. [45].90

The classical forward Kolmogorov equation of the stochastic SEIR model follows when α = 1 with91

state probabilities p(1)
(i,j,k)(t), [51, p.321]. Equation (10) can be used to find the probability generating92
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function G(α)(u, v, w, t) = E(uX(α)
1 (t)vX(α)

2 (t)wX(α)
3 (t)) of the state probabilities, as the solution of the93

Cauchy problem94

Dα
∗G

(α) = µN(u− 1)G(α) + µ(1− u)∂uG(α) + (δw + µ− (δ + µ)v)∂vG(α)

+(σ + µ)(1− w)∂wG(α) + β
w
N
(v− u)∂uwG(α) (11)

for t > 0 and G(α)(u, v, w, 0) = ui0 vj0 wk0 , for −1 < u, v, w < 1.95

Note that, the integer or classical stochastic SEIR process is (X(1)
1 (t), X(1)

2 (t), X(1)
3 (t)) which is96

simply the case when α = 1. But that leads to another interesting fact that defines the relationship97

between the fractional and integer stochastic SEIR model; that is, the former process is a random-time98

subordination of the latter one, as established for other fractional processes like the fractional Poisson99

process [37,45,52], and the fractional birth and/or death processes [39,40,42,43,53].100

Theorem 1. The fractional stochastic SEIR process (X(α)
1 (t), X(α)

2 (t), X(α)
3 (t)) has the same distribution as

the random-time subordinated integer stochastic SEIR process

(X(1)
1 (T2α(t)), X(1)

2 (T2α(t)), X(1)
3 (T2α(t)))

for t > 0 and 0 < α ≤ 1.101

The proof is provided in Appendix A.102

2.3. Measles’ Model via Fractional Differential Equations (FDE)103

The means of the three discrete-marginal processes X(α)
1 (t), X(α)

2 (t), and X(α)
3 (t) can be found

using ∂uG(α)(1, 1, 1, t), ∂vG(α)(1, 1, 1, t), and ∂wG(α)(1, 1, 1, t), respectively. Let S(α)(t) := 1
N E(X(α)

1 (t)),

E(α)(t) := 1
N E(X(α)

2 (t)), and I(α)(t) := 1
N E(X(α)

3 (t)), where N is the total population size and

E(x) is the expected value of x. Thus using equation (11), and approximating E(X(α)
1 (t)X(α)

3 (t))

by E(X(α)
1 (t))E(X(α)

3 (t)) we reach the fractional order version of the system of equations that was used
by M . S . Bartlett [9] to model measles,

Dα
∗S

(α) = µ− βS(α) I(α) − µS(α)

Dα
∗E(α) = βS(α) I(α) − (µ + δ)E(α)

Dα
∗ I(α) = δE(α) − (µ + σ)I(α)

(12)

where S(α), E(α), and I(α) be the proportion of susceptible, exposed, and infected individuals,
respectively. With proportion of recovered individuals given by R(α) = 1 − (S(α) + E(α) + I(α)),
we reach the fractional α order SEIR model

Dα
∗S

(α) = µ− βS(α) I(α) − µS(α)

Dα
∗E(α) = βS(α) I(α) − (µ + δ)E(α)

Dα
∗ I(α) = δE(α) − (µ + σ)I(α)

Dα
∗R(α) = σI(α) − µR(α)

(13)

with 0 < α ≤ 1. The non-negative parameters β, µ, δ, and σ – denoting them by θ, for brevity –
have dimensions given by 1

timeα . By construction of the FDE model as a mean field approximation of
the α-fractional stochastic SEIR process which in its turn is a subordination of an integer stochastic SEIR
process by Theorem 1, those parameters could be interpreted as the rates measured by an independent
observer of the process or calculated based on a cosmic time flow [47]. We replace those parameters
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with a power α of new parameters; that is, θα
∗ in place of θ so the parameters θ∗ will have the dimension

of 1
time and the system becomes the following form:

Dα
∗S

(α) = µα
∗ − βα

∗S
(α) I(α) − µα

∗S
(α)

Dα
∗E(α) = βα

∗S
(α) I(α) − (µα

∗ + δα
∗)E(α)

Dα
∗ I(α) = δα

∗E(α) − (µα
∗ + σα

∗ )I(α)

Dα
∗R(α) = σα

∗ I(α) − µα
∗R

(α)

(14)

2.4. Measles’ Model via Ordinary Differential Equations (ODE)104

The following system of differential equations represents the ordinary differential equation105

representation of the SEIR model and is the FDE model when α = 1 in equation 14.106

DS = µ− βSI − µS

DE = βSI − (µ + δ)E

DI = δE− (µ + σ)I

DR = σI − µR

(15)

where µ, β, δ, and σ are the model parameters described above. They all have dimensions given by107

1
time . The last equation in (15) is redundant since R = 1− (S + E + I).108

2.5. Measles’ Model via α-dependent Ordinary Differential Equations109

We are interest in comparing the FDE vs ODE modeling approaches. It is important to note that110

the basic ODE case considers α = 1, however in the FDE case, α appears in the derivative as well as the111

parameter values. In order to better compare these two approaches, here we develop an ODE analoge112

to the FDE that incorporates α in the parameter values. We call this new system the α-dependent ODE.113

By dropping the α order derivative from the left side and α power from S(α), E(α), and I(α) of equation114

(14), our α-dependent ODE takes the following form:115

DS = µα
∗ − βα

∗SI − µα
∗S

DE = βα
∗SI − (µα

∗ + δα
∗)E

DI = δα
∗E− (µα

∗ + σα
∗ )I

DR = σα
∗ I − µα

∗R

(16)

2.6. Model Analysis116

Analysis of the ODE is almost the same as of the FDE so we include the FDE one here. We start by117

proving the positive invariance of the region of solutions of the FDE model. Henceforth, we drop the α118

from S(α), E(α), and I(α), for brevity.119

The following two lemmas of asymptotic behavior of FDEs are given here and their proof in120

appendix A for completeness.121

Lemma 1. The closed simplex region M = {(S, E, I) ∈ R3
+ : 0 ≤ S + E + I ≤ 1} is a positive invariant set122

for the FDE model in (14).123

We can find the model’s equilibrium points by setting Dα
∗S = 0, Dα

∗E = 0, and Dα
∗ I = 0. Thus,124

there are two equilibria to the measles’ SEIR model (14). They are:125

1. the disease free equilibrium DFE ≡ (1, 0, 0), and126
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2. the endemic equilibrium

EE = (s∗, e∗, i∗) ≡
(

1
R0

,
µ

δ + µ

(
1− 1

R0

)
,

µ

β
(R0 − 1)

)
.

where the basic reproduction number is R0 := βδ
(µ+σ)(µ+δ)

. EE exists only when 1 < R0 < 1 + β
µ .127

An equilibrium is locally asymptotically stable if the eigenvalues of the Jacobian matrix of the128

n-dimensional system, namely λ1, λ2, . . . , λn, have the property that | arg(λi)| > απ
2 , for i = 1, 2, . . . , n,129

[25, p.158]. Thus, in general, the stability of the ordinary differential equations model implies stability130

of its fractional counter model. But, here they are equivalent due to the following lemma whose131

solution could be found in appendix A.132

Lemma 2. The Disease-Free Equilibrium DFE is locally asymptotically stable if R0 < 1. The endemic133

equilibrium EE is is locally asymptotically stable if R0 > 1.134

Therefore, they have the same asymptotic behavior. Yet, the transient behavior differs as will be135

seen by simulations below.136

Moreover, a very important difference is their oscillation behavior is not similar. Let λ` and u` for
` = 1, 2, . . . , N be the eigenvalues and their respective eigenvectors of an N × N matrix A. The general
solution of initial value problem consisting of a system of N linear fractional differential equations
Dα
∗x(t) = Ax(t) such that x(0) = x0 can be found to be

x(t) =
N

∑
`=1

c`u`Eα(λ`tα) (17)

for certain constants c` ∈ C for ` = 1, 2, . . . , N such that ∑N
`=1 c`u` = x0, [25, Theorem 7.13]. In case

that α = 1, we recover the known solution of the system of ODEs given by

x(t) =
N

∑
`=1

c`u` exp(λ`t).

If N = 3 and A is not a symmetric matrix then at least one of the eigenvalues is a real-valued number137

and the other two eigenvalues , say λ2 and λ3, are conjugate complex-valued. In that situation, x(t)138

would oscillate with inter-peak periods, called inter-epidemic period in disease modeling, given by139

2π(=(λ2))
−1 [14]. If <(λ`) < 0 for all ` then the oscillations will be damped to zero. That damped140

oscillation is clear in the case of α = 1 due to the exponential damping in the superposition of the sine141

and cosine functions. That behavior, however, is not straight forward for 0 < α < 1.142

2.7. Numerical Simulations143

Since the mean of the subordinator process is E(Tα(t)) =
tα

Γ(α + 1)
, we use a method similar to

that was introduced in Demirici and Özalp [54] to find approximate solutions to initial value FDE
problems. We use that method here to simulate the solution of the FDE measles SEIR model. Consider
the initial value problem

Dα
∗x(t) = f (t, x(t)), for 0 < t ≤ T,

x(0) = x0,
(18)

for some T > 0. A solution of (18) is approximated by the deterministic time subordination

x(t) = y
(

tα

Γ(α + 1)

)
, (19)
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of y(s), the solution of the ordinary differential equation

dy(s)
ds

= g(s, y(s)), for 0 < s ≤ tα

Γ(α + 1)

y(0) = x0.
(20)

where

g(s, y(s)) = f (t− (tα − sΓ(α + 1))
1
α , x(t− (tα − sΓ(α + 1))

1
α )). (21)

for all 0 < t ≤ T, [54].144

We use the subordination of the solution of ODEs to FDEs represented in equations (19) and (20)145

to numerically simulate solutions of FDEs, see algorithm 1.146

Algorithm 1 Numerical solution of Dα
∗x(t) = f (t, x(t)) for 0 < t < T with x(0) = x0.

Input: α, T, f (t, x(t)), m, n Output: x(t)
begin
Divide the interval [0, T] into n sub-intervals using

0 = t0 < t1 < . . . < tn = T.

for i = 1, 2, . . . , n

Divide the interval [0,
tα
i

Γ(α + 1)
] into further m sub-intervals using

0 = s0 < s1 < . . . < sm =
tα
i

Γ(α + 1)
.

Solve the system Dy(s) = f (ti − (tα
i − sΓ(α + 1))

1
α , y(s)) with y(0) = x0 using Euler or Runge-Kutta

methods on s0, s1, . . . , sm.
Retain x(ti) = y(sm).
end
Return [x0, x(t1), x(t2), . . . , x(tn)].

end

2.8. Fitting FDE and ODE models to measles data147

We use the method of ordinary least squares (OLS) to fit the FDE model to the data by minimizing
the objective function

L(α, β, µ, δ, σ) =
n

∑
i=1

(I(d)i − I(s)i )2

for α ∈ (0, 1], and β, µ, δ, σ ∈ (0, ∞), where I(d) is the data of actual proportion of infections and I(s) is148

the simulated proportion of infections. The values I(s)i approximating I(ti) are found by solving the149

FDE model using algorithm 1.150

Parameter estimation was conducted using Matlab MultiStart and fmincon functions. MultiStart151

carries out the optimization procedure using initial points within the parameters’ spaces. It generates152

some initial points depending on a converging algorithm. The fmincon finds a local minimum for the153

constrained nonlinear multivariable function. The MultiStart together with fimincon do the global154

optimization of a nonlinear multivariable function. The MultiStart function uses parallel processing155

which drastically reduces the running time.156
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Figure 2. Number of cases using classical ODE model and FDE model with different fractional orders
α. The simulations are done using µ = µ? = 0.0027, β = β? = 119.2257, δ = δ? = 16.7301, and
σ = σ? = 10.1873.
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Figure 3. Number of cases using FDEM and its analogous ODEM with different fractional orders α.
The simulations are done using µ? = 0.0027, β? = 119.2257, δ? = 16.7301, and σ? = 10.1873.
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Figure 4. Simulations of solutions of the SEIR FDE centered about the endemic equilibrium (EE) for
α = 1, .95, .85, and .75 using equation (17) shows a suppression of damped oscillations as α decreases.
The simulations are done using µ? = 0.0027, β? = 119.2257, δ? = 16.7301, and σ? = 10.1873.

3. Results157

We solve the system of FDE (equation 14 ) using algorithm 1 and the systems of ODE (equations158

15 and 16 ) using the Runge-Kutta method.159

Simulations of the classical ODE (equation 15) and FDE ( equation 14), Figure 2, shows that160

the system of fractional differential equations is very sensitive to its order of differentiation α. For161

smaller α, the peak number of cases of the epidemic is larger but the duration of the outbreak is162

shorter. The solution of the FDE model converges to the solution of the classical ODE as α → 1. To163

further compare the two modeling approaches, we consider the analogue ODEs derived for specific α164

values, see equation (16). These comparisons are shown in Figure 3. During transient dynamics both165

models exhibit several peaks in the number of cases. The number of these peaks and their respective166

amplitudes are similar between models, however there are differences in the timing of these peaks.167

The transient oscillations of the FDE model are more stretched out than its ODE analogue, and its168

solutions experience longer inter-epidemic times. Both models approach the same equilibria solutions.169

Simulations of equation (17) in Figure 4 shows that disease models of fractional order equations170

lack the same oscillatory behavior exhibited by systems of ODEs with conjugate complex eigenvalues171

of the Jacobian matrices calculated at endemic equilibrium.172

The models were fitted to three measles’ epidemics in the pre-vaccination era in three different173

cities: New York, London, and Portsmouth. Simulations of the fitted ODE and FDE models are174

shown in Figure 5. See also Appendix B for the data and the parameter estimates. The estimate175

of α are 0.99, 0.99, and 0.88 for New York, London, and Portsmouth respectively. The AIC and BIC176

are found to be smaller for ODE models for the epidemics in New York and London with values of177

AIC(ODE)= 250.539 and 389.358 and BIC(ODE)= 253.872 and 394.541, respectively, while AIC(FDE)=178

255.360 and 413.275 and BIC(FDE)= 259.526 and 419.754, respectively. For Portsmouth’s epidemic, the179

results are the opposite, AIC(ODE)= 277.938 and BIC(ODE)= 282.978 while AIC(FDE)= 271.920 and180

BIC(FDE)= 278.213. Yet the differences between the fitting of ODE and FDE models are not striking.181

4. Discussion182

Replacing first order derivatives with Caputo fractional derivatives has been the practice for183

many studies using fractional order modeling of diseases. In this paper, we show how those models184

follow from an approximation to the dynamical system governing the means of fractional stochastic185

SEIR processes. Moreover, we study ordinary and fractional order systems of differential equations186

of SEIR models using three data sets of measles epidemics in three different cities selected from the187
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Figure 5. Simulations of ODE and FDE models fitted to measles epidemics in the pre-vaccination era.

pre-vaccination era. It appears that, in some situations, the fractional order differential equation model188

(FDEM) gives better fit than the ordinary differential equation model (ODEM).189

Angstmann et al. [34] use the master equation of a continuous-time random walk to derive an190

FDEM involving Riemann-Liouville fractional derivatives. Power laws are postulated to model time of191

infectiousness and recovery. That extension from exponential times in ordinary differential equations192

is a different approach from the mean field approximation of a stochastic process. Saeedian et al. [36]193

introduced the Caputo fractional differential equations through a memory of the whole process of194

infection and disease recovery. In our paper, we have considered, for the first time, fractional stochastic195

SEIR model and have shown how the Caputo fractional differential equations follows as mean-field196

approximation of the process.197

Fractional stochastic SEIR model introduced here turns out to be a random-time subordination198

of a classical stochastic SEIR model. Other real-life systems are modeled using a subordination of a199

stochastic process. A subordinated process was introduced by Mandelbrot and Taylor [55] to model200

the logarithm of market prices where the original process is a Brownian motion subordinated by a201

stochastic time process T2α, which is the same random time process we have found here. In Mandelbrot202

and Taylor [55], the stochastic time process T2α is called the operational time and t is the physical time.203

Further study of the fractional stochastic SEIR model might lead to interesting dynamical204

behaviors. For instance, it can provide more insights into the stochastic oscillations of the disease in205

a more flexible way than their classical counterparts. Thus, studying the fractional stochastic SEIR206

model is the next step in this work.207

5. Conclusion208

In this paper, we compare two deterministic models of disease: ordinary differential equations209

(ODE) and fractional differential equations (FDE). We use three different data sets of measles epidemics210

from the pre-vaccination era. We also explain FDEs as the mean-field approximation of a fractional211
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stochastic SEIR model. Up to our knowledge, this is the first time such a fractional stochastic process is212

introduced and connected to the fractional order differential equations.213

While ODE models are regularly used to model epidemics, such as measles, FDEs seem to have214

the potential to offer improved model fitting. Rates of transition between compartments in that case215

could be interpreted as rates with respect to an external observer with a different type of clock, may be216

due to delay in reporting.217
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Appendix A. Some Definitions and Proofs227

Laplace transform of a function f (t) is defined as

L( f )(s) = f̂ (s) =
∫ ∞

0
e−st f (t)dt.

The inverse transform is defined by

L−1( f̂ )(t) =
1

2πi

∫
C

est f̂ (s)ds

where C is a contour parallel to the imaginary axis and to the right of the singularities of f̂ . The Laplace
transform of the Caputo fractional derivative is given by

L(Dα
∗ f )(s) = sα f̂ (s)− sα−1 f (0).

Fractional Birth and Death Process:228

An α-fractional nonlinear birth and death process {Nα(t) : t ≥ 0} for 0 < α ≤ 1 with state
probabilities

pα
n(t) = P(Nα(t) = n|Nα(0) = 1)

for n ≥ 0 is defined through the forward Kolmogorov (difference-)differential equations

Dα
∗ pα

n(t) = λn−1 pα
n−1(t) + µn+1 pα

n+1(t)− (λn + µn)pα
n(t) (A1)

for n ≥ 0 [39,43,53]. The rates λn and µn are non-negative. The classical birth and death process229

follows when α = 1 with state probabilities p1
n(t). When λn = λ and µn = 0 for all n, the α-fractional230

nonlinear birth and death process becomes the α-fractional Poisson process [37,41,46]. There, it has231

shown that Nα(t) has the same probability distribution as N(Tα(t)), where N(t) is the classical birth232

and death process which is independent of a random time process Tα(t); that is, a birth and death233

process subordinated by an α-stable time process.234

The random time process Tα(t) has a distribution given by the folded solution of the fractional
diffusion equation ∂α

t F = ∂2
xF for 0 < α ≤ 2, x ∈ R, t > 0, and subject to F(x, 0) = δ(x) for 0 < α ≤ 2

and ∂α
t F(x, 0) = 0 for 1 < α ≤ 2, [43]. We will denote its measure by να,t(ds) := P(Tα(t) ∈ ds). It has a

Laplace transform

L(να,s)(r) =
∫ ∞

0
e−rtνα,t(dt) = r

α
2−1e−sr

α
2
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and moments E[(Tα(t))k] = Γ(k + 1)
tkα

Γ(kα + 1)
for k = 1, 2, . . .; [46,56].235

Note that, the absolute values of partial derivatives of G are finite; that is, |∂(i,j,k)u,v,w G| < ∞ for any236

i, j, k = 0, 1, 2, . . .. That is true since |u|, |v|, |w| < 1 and the population size is finite. Thus, switching237

integrals with derivatives or summations below are valid.238

239

Proof of the Theorem 1240

We are going to show that Laplace transform of the probability generating function of the process

(X(1)
1 (T2α(t)), X(1)

2 (T2α(t)), X(1)
3 (T2α(t)))

is the same as Laplace transform Ĝ of G, that solves equation (11). From there we will conclude241

that the two probability distributions are the same since the probability generating function of242

(X(α)
1 (t), X(α)

2 (t), X(α)
3 (t)), by construction, is also a solution to the Cauchy problem in equation (11).243

From equation (11), the Laplace transform Ĝ is the solution of244

sαĜ(α) − sα−1ui0 vj0 wk0 = µN(u− 1)Ĝ(α) + µ(1− u)∂uĜ(α) + (δw + µ− (δ + µ)v)∂vĜ(α)

+(σ + µ)(1− w)∂wĜ(α) + β
w
N
(v− u)∂uwĜ(α) (A2)

Let H(α)(u, v, w, t) be the probability generating function of the state probabilities

q(α)
(i,j,k)(t) = P((X(1)

1 (T2α(t)), X(1)
2 (T2α(t)), X(1)

3 (T2α(t))) = (i, j, k)|

(X(1)
1 (T2α(0)), X(1)

2 (T2α(0)), X(1)
3 (T2α(0))) = (i0, j0, k0)).

That means that245

H(α)(u, v, w, t) = E(uX(1)
1 (T2α(t))vX(1)

2 (T2α(t))wX(1)
3 (T2α(t)))

= ∑
i

∑
j

∑
k

uivjwkq(α)
(i,j,k)(t)

= ∑
i

∑
j

∑
k

uivjwk
∫ ∞

0
p(1)
(i,j,k)(s)ν2α,t(ds)

=
∫ ∞

0
(∑

i
∑

j
∑
k

uivjwk p(1)
(i,j,k)(s))ν2α,t(ds)

=
∫ ∞

0
G(1)(u, v, w, s)ν2α,t(ds).

Thus the Laplace transform of the probability generating function H(α) is given by246

Ĥ(α)(u, v, w, r) =
∫ ∞

0
e−rt

∫ ∞

0
G(1)(u, v, w, s)ν2α,t(ds)dt

= rα−1
∫ ∞

0
G(1)(u, v, w, s)e−srα

ds

= rα−1Ĝ(1)(u, v, w, rα)
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Now, the Laplace transform of the probability generating function of the process247

(X(1)
1 (t), X(1)

2 (t), X(1)
3 (t)) also solves (A2) when α = 1 which is248

sĜ(1) − ui0 vj0 wk0 = µN(u− 1)Ĝ(1) + µ(1− u)∂uĜ(1) + (δw + µ− (δ + µ)v)∂vĜ(1)

+(σ + µ)(1− w)∂wĜ(1) + β
w
N
(v− u)∂uwĜ(1). (A3)

If we substitute with s = rα in equation (A3) and multiply both sides by rα−1 we get249

rα Ĥ(α) − rα−1ui0 vj0 wk0 = µN(u− 1)Ĥ(α) + µ(1− u)∂uĤ(α) + (δw + µ− (δ + µ)v)∂v Ĥ(α)

+(σ + µ)(1− w)∂w Ĥ(α) + β
w
N
(v− u)∂uwĤ(α) (A4)

which is the same as equation (A2). This completes the proof.250

251

Proof of Lemma 1252

Starting on the S-axis when E(0) = I(0) = 0 and 1 ≥ S(0) = S0 ≥ 0, then

S(t) = tαEα,α+1(−µtα)(µ) + Eα,1(−µtα)S0 ≥ 0

since µ > 0 and t ≥ 0. Starting on the E-axis when S(0), I(0) = 0 and E(0) = E0 ≥ 0, then

E(t) = Eα,1(−(µ + δ)tα)E0 ≥ 0

Starting on the I-axis when S(0), E(0) = 0 and I(0) = I0 ≥ 0, then

I(t) = Eα,1(−(µ + σ)tα)I0 ≥ 0

Thus, all axes are positive invariant, for S(0), E(0), I(0) ≥ 0.253

If the solution of the system is leaving through the positive quadrant of the E-I plane, then
S(te) = 0, and E(te) and I(te) > 0 for some te > 0 such that S(t) ≤ S(te), for all t > te. But,
Dα
∗S|t=te = µ > 0. By the generalized mean value theorem

S(t) = S(te) +
1

Γ(α)
Dα
∗S(τ)(t− te)

α

for some te ≤ τ < t, then S(t) > S(te) contradicting the original statement. The same argument could
be used for the positive quadrant of the S-I plane with Dα

∗E|t=te = βS(te)I(te) > 0 and for the positive
quadrant of the E-S plane with Dα

∗ I|t=te = αE(te) > 0.
To show that S(t) + E(t) + I(t) ≤ 1 for all t > 0, if S(0) + E(0) + I(0) ≤ 1,

Dα
∗(S + E + I) = µ− µ(S + E + I)− σI

≤ µ− µ(S + E + I)
(A5)

Thus,

S(t) + E(t) + I(t) ≤ tαEα,α+1(−µtα)µ + Eα,1(−µtα)(S(0) + E(0) + I(0))

≤ tαEα,α+1(−µtα)µ + Eα,1(−µtα) = 1
(A6)

by equation (7).254

255

Proof of Lemma 2256
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For the local stability of a disease-free equilibrium, we must evaluate the Jacobian matrix at
DFE ≡ (1, 0, 0)

J(DFE) =

−µ 0 −β

0 −(µ + δ) β

0 δ −(µ + σ)


The eigenvalues of the matrix J are,

λ1 = −µ,

λ2 =
−(δ + 2µ + σ)−

√
∆

2
,

λ3 =
−(δ + 2µ + σ) +

√
∆

2
,

where ∆ = δ2 + 4δβ− 2δσ + σ2. From this it is clear that λ1 is negative and since

∆ = δ2 + 4δβ− 2δσ + σ2 = (δ− σ)2 + 4δβ > 0

then λ2 and λ3 are real-valued numbers. Hence λ2 < 0. But, λ3 < 0 is true when

−(δ + 2µ + σ) +
√

δ2 + 4δβ− 2δσ + σ2

2
< 0

which is equivalent to βδ < (µ + σ)(µ + δ), proving the first part.257

The Jacobian matrix calculated at EE is given by

J(EE) =

 −µR0 0 −β 1
R0

µ(R0 − 1) −(µ + δ) β 1
R0

0 δ −(µ + σ)


which has a characteristic polynomial,

−λ3 − λ2[(µ + δ) + (µ + σ) + µR0]− λ[µR0(2µ + δ + σ)] + µ(R0 − 1)(µ + σ)(µ + δ).

Because that polynomial has a degree of 3, we choose to test the Routh-Hurwitz conditions to see
if EE is stable.

a1 = µR0 + (2µ + δ + σ) > 0

a3 = µ(R0 − 1)(µ + σ)(µ + δ) > 0

With these conditions we check that the determinant, D2 > 0.

D2 = a1a2 − a3 = (µR0 + 2µ + δ + σ)(µR0(2µ + δ + σ))− (µ(R0 − 1)(µ + σ)(µ + δ))

= µ[µR2
0(2µ + δ + σ) + (2µ + δ + σ)2R0 − R0(µ + σ)(µ + δ) + (µ + σ)(µ + δ)]

= µ[µR2
0(2µ + δ + σ) + (µ + σ)2R0 + (µ + δ)2R0 + (µ + σ)(µ + δ)R0 + (µ + σ)(µ + δ)] > 0

From this, all Routh-Hurwitz conditions are met and all the eigenvalues of the Jacobian matrix at258

EE are negative, meaning that |Re(λk)| < 0, k = 1, 2, 3.259
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Appendix B. Data Sets and Parameter Estimation260

Appendix B.1. New York261

Monthly reported infections of measles from September 1961 to January 1963 in New York city262

are given in table A1. Parameter estimation of Measles New York data from September 1961 to January263

1963 using both ODE model and FDE model. The estimated parameters values for the classical ODE264

model are (µ, β, δ, σ) = (0.0028, 119.22, 16.73, 10.19) with the sum of square error, SSE = 1.29× 106
265

and for the FDE model are (α, µ, β, δ, σ) = (0.99, 0.0029, 116.34, 19.39, 10.37) with the sum of square266

error, SSE = 1.34× 106.267

Table A1. Reported infections of measles from September 1961 to January 1963 in New York, US.

Year Months Cases Year Months Cases Year Months Cases
1961 September 109 1962 March 5839 1962 September 58
1961 October 123 1962 April 7875 1962 October 86
1961 November 383 1962 May 6555 1962 November 125
1961 December 1043 1962 June 2866 1962 December 145
1962 January 1725 1962 July 1075 1963 January 184
1962 February 3056 1962 August 266

Appendix B.2. London268

Biweekly reported infections of measles in 1961 in London, United Kingdom are given in table269

A2. Parameter estimation of measles Portsmouth data in 1961 using both ODE model and FDE270

model. The estimated parameters values for the classical ODE model are (µ, β, δ, σ) = (6.79 ×271

10−4, 153.44, 1.99, 4.27) with the sum of square error, SSE = 2.01× 106 and for the FDE model are272

(α, µ, β, δ, σ) = (0.99, 8.53× 10−4, 62.89, 5.37, 4.95) with the sum of square error, SSE = 4.37× 106.273

Table A2. Biweekly reported measles infections in 1961 in London, UK.

Year Weeks Cases Year Weeks Cases Year Weeks Cases Year Weeks Cases
1961 0 1636 1961 14 5374 1961 28 514 1961 42 89
1961 2 2700 1961 16 4272 1961 30 375 1961 44 87
1961 4 2639 1961 18 2322 1961 32 265 1961 46 73
1961 6 4805 1961 20 1810 1961 34 199 1961 48 70
1961 8 6543 1961 22 1409 1961 36 121 1961 50 59
1961 10 6389 1961 24 1037 1961 38 86 1961 52 45
1961 12 5545 1961 26 767 1961 40 76

Appendix B.3. Portsmouth274

Biweekly reported infections of measles in 1961 in Portsmouth, United Kingdom are given in table275

A3. Parameter estimation of measles Portsmouth data in 1961 using both ODE model and FDE model.276

The estimated parameters values for the classical ODE model are (µ, β, δ, σ) = (10−6, 228.61, 0.46, 3.33)277

with the sum of square error, SSE = 4.57× 104 and for the FDE model are (α, µ, β, δ, σ) = (0.88, 2.56×278

10−4, 278.72, 1.52, 5.24) with the sum of square error, SSE = 3.22× 104.279

Table A3. Biweekly reported infections of measles in 1961 in Portsmouth, UK.

weeks 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
cases 4 30 58 174 310 407 640 847 555 523 337 242 144 91 29 21

weeks 34 36 38 40 42 44 46 48 50 52
cases 25 28 13 5 2 1 2 0 2 0
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Appendix B.4. Parameter Estimations280

Table A4. Comparison between the classical ODE model and FDE model using different data sets

Data Model Estimated Parameters, (α, µ, β, δ, σ) SSE
New York ODE (Na, 0.0028, 119.22, 16.73, 10.19) 1.29× 106

FDE (0.99, 0.0029, 116.34, 19.39, 10.37) 1.34× 106

Portsmouth ODE (Na, 10−6, 228.61, 0.46, 3.33) 4.57× 104

FDE (0.88, 2.52× 10−4, 278.72, 1.52, 5.24) 3.22× 104

London ODE (Na, 6.79× 10−4, 153.44, 1.99, 4.27) 2.01× 106

FDE (0.99, 8.52× 10−4, 62.89, 5.37, 4.95) 4.36× 106
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