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Abstract: With the rapid development of Internet and the widely usage of smart devices, massive
multimedia data are generated, collected, stored and shared on the Internet. This trend makes
cross-modal retrieval problem become a hot issue in this years. Many existing works pay attentions
on correlation learning to generate a common subspace for cross-modal correlation measurement,
and others uses adversarial learning technique to abate the heterogeneity of multi-modal data.
However, very few works combine correlation learning and adversarial learning to bridge the
inter-modal semantic gap and diminish cross-modal heterogeneity. This paper propose a novel
cross-modal retrieval method, named ALSCOR, which is an end-to-end framework to integrate
cross-modal representation learning, correlation learning and adversarial. CCA model, accompanied
by two representation model, VisNet and TxtNet is proposed to capture non-linear correlation.
Beside, intra-modal classifier and modality classifier are used to learn intra-modal discrimination
and minimize the inter-modal heterogeneity. Comprehensive experiments are conducted on three
benchmark datasets. The results demonstrate that the proposed ALSCOR has better performance
than the state-of-the-arts.
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1. Introduction

With the rapid development of Internet and the widely usage of smart devices, huge amounts of
multimedia data with various modalities, such as images, texts, videos and audios, etc. are generated,
collected, stored and shared on the Internet, as shown in Fig. 1. For example, multimedia sharing
services such as Flickr, Pinterest, YouTube shares massive images and videos with textual descriptions.
Online encyclopedia such as Wikipedia and Baidu baike stores a tremendous amount of items with
texts, images covering knowledges in various fields. Online Social networks, such as Twitter, Facebook
and Sina Weibo, provide platforms for users to share their lives by millions of tweets and posts with
texts, images or short videos. Other applications on mobile platform, such as Instagram and Douyin,
make it possible to share pictures and short videos anytime and anywhere. These multi-modal data are
usually used to describe the same events, scenes or objects in our daily life, and users always have the
need to search relative multimedia data by the queries of different modalities. This retrieval paradigm
is called cross-modal retrieval [1–3], which attracts more and more attentions in the community of
multimedia.

In the last decade, lots of approaches have been proposed to address the problem of cross-modal
retrieval. The main challenge focused by many researchers is to learn a common subspace in which
the representations or embeddings of different modalities can be measured via distance function.
Canonical Correlation Analysis (CCA) [4] is a widely used statistical method, which is employed by
Rasiwasia et al. [5] to find the correlations between representations of different modalities to learn the
common subspace. Following [5], several CCA based researches, such as [6–9] have been presented to
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Figure 1. Some examples of multi-modal data from Twitter, YouTube and Flickr.

support cross-modal retrieval. Inspired by deep neural networks (DNN) that play an important role of
multimedia analysis and pattern recognition, a number of researchers [10–14] exploit DNN to improve
the performance of retrieval by learning the non-linear correlations between modalities.

Motivation. The previous cross-modal retrieval approaches aims to learn a common semantic
subspace in which the representations of different modalities can be measured easily. However, very
few works combine correlation learning and adversarial learning to bridge the inter-modal semantic
gap and diminish cross-modal heterogeneity together. To overcome this challenge, for the first time,
this paper proposes to combine cross-modal correlation learning and adversarial learning and develop
an end-to-end framework to learn bridge the semantic gap and diminish the cross-modal heterogeneity.
Different from the existing studies [15–18], we combine deep CCA based cross-modal correlation
learning and adversarial learning to not only learn the semantic correlations to bridge the semantic gap
between different modalities, but implement a better cross-modal distribution alignment to diminish
the cross-modal heterogeneity.

Our Method. We propose a novel cross-modal retrieval approach, called Adversarial Learning
based Semantic COrrelation Representation (ALSCOR). It is a combination of cross-modal correlation
learning and adversarial learning. For the cross-modal correlation learning, inspired by deep CCA
technique, we design a cross-modal deep representation CCA model which consists of a two-branches
network, VisNet and TxtNet. The VisNet is a CNN based model that recieves image samples and maps
them into deep representations. The TxtNet is realized by word2vec model, BiLSTM model and a text
convolution network, which aims to learn deep representations of texts. The CCA model accompanied
by these two model is used to learn the inter-modal correlation. Besides, an intra-modal classifier
is used to learn the intra-modal discriminative information. In addition, inspired by generative
adversarial network, a modality classifier is utilized to diminish the cross-modal heterogeneity, which
is realized by discriminating representations of different modalities.

Contributions. The main contributions of this paper can be summarized as follows:

• We formalized the definition of cross-modal retrieval, and propose a novel framework that is
a combination of cross-modal correlation learning and adversarial learning. To the best of our
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knowledge, this work is the first time to improve the retrieval performance by using deep CCA,
BiSLTM, CNN and adversarial learning together.

• To learn the inter-modal non-linear correlation, a two-branches cross-modal correlation model
is developed, which is a integration of VisNet, TxtNet and CCA. The VisNet realized by CNN
is to generate deep visual representations, and TxtNet is implemented by word2vec, BiLSTM
and CNN to learn deep textual representations. An intra-modal classifier is utilized to learn the
intra-modal discrimination, and the modality classifier plays the discriminator to diminish the
cross-modal heterogeneity in an adversarial manner.

• Comprehensive experiments on three benchmark datasets are condcuted. We compare the
proposed method with 8 state-of-the-arts. The results demonstrate that our method has great
performance for cross-modal retrieval.

Roadmap. The remainder of this paper is organized as follows: the related works are reviewed
in Section 2. In Section 3, we give the definition of cross-modal retrieval and the related techniques,
including cross-modal similarity measurement, deep CCA and GAN. In Section 4, the framework of
ALSCOR is introduced in details, including the architecture and the loss. Our experimental results are
presented in Section 5, and finally we draw the conclusion in Section 6.

2. Related Work

In this section, we review existing studies concerning cross-modal retrieval and deep learning,
which are relative to our study. To the best of our knowledge, this work is the first to combine deep
CCA method and adversarial learning technique to overcome cross-modal retrieval tast.

2.1. Cross-Modal Retrieval

Cross-modal retrieval is a significant problem in the area of multimedia computing [19–26], which
aims to find out the similar enough objects of one modality in the multimedia database by a query of
different modality. Due to the exponential growth of amount of multimedia data, this task attracts a
large number of attentions in recent years. CCA [27] is an important statistic method to seek the linear
correlation between two sets of variates, which is utilized by many studies for cross-modal retrieval.
For example, [5] is the first work using CCA to address cross-modal retrieval. In this work, Rasiwasia et
al. modeled images and texts by SIFT features and hidden topic model respectively, and then maps the
cross-modal representations into a common subspace by CCA. Wang et al. [6] proposed a method called
Unsupervised Discriminant Canonical Correlation Analysis (UDCCA), which utilizes normalized
spectral clustering to compute class membership. Zu et al. [7] proposed a novel approach named
Canonical Sparse Cross-view Correlation Analysis (CSCCA) to consider structure and cross view
information. Gong et al. [8] presented a three-view CCA approach that incorporates a third view to
model semantic information to improve the retrieval performance. Zhang et al. [9] proposed a method
named mixture of probabilistic CCA (MixPCCA) to model the nonlinear correlations between different
modalities. Shao et al. [28] presented hypergraph semantic embedding (HSE) approach to model
latent semantics from text to regularize the deep CCA subspace. Wang et al. [29] developed a novel
correlation subspace learning method by integrating structured sparsity regularization and intra-modal
information to achieve better performance. For cross-modal image clustering problem, Jin et al. [30]
proposed a CCA based multimodal feature fusion method to characterize the multimodal correlations
between the visual features in images and semantic features in captions. Different from the existing
researches, we combine deep CCA and adversarial learning method to learn better representations
with modality invariance, which can implement feature distribution alignment between different
modalities.

Latent Dirichlet Allocation [31] (LDA) is another classical method for text feature representations.
Lots of researches use it to extract semantic information to support multi-modal/cross-modal
retrieval. Yakhnenko [32] introduced a LDA based method called multi-modal hierarchical Dirichlet
Process (MoM-HDP) to model multi-modal data. Putthividhya et al. [33] proposed topic-regression
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multi-modal Latent Dirichlet Allocation (tr-mmLDA) method to capture correlations between
cross-modal data. Blei et al. [34] presented correspondence latent Dirichlet allocation method to
learn the joint distribution of multi-modal data. Jia et al. [35] proposed a method named Multi-modal
Document Random Field to model the relations between different modalities. Lu et al. [36] model
the cross-modal retrieval problem as a listwise ranking problem, and proposed a method named
Latent Semantic Cross-Modal Ranking (LSCMR) to learn a latent space. Yu et al. [37] utilized LDA to
model texts, which is to learn latent semantic relations between texts and images. Zoghbi et al. [38]
used bilingual LDA and CCA to model textual and visual data in the task of cross-modal attribute
recognition. Instead of LDA, in this work we utilize biLSTM and CNN model to generate deep
representations of texts, which is to capture more high-level semantic features.

2.2. Deep Learning

As a very powerful technique, deep learning [39–41] is used to overcome several challenges of
multimedia analysis and retrieval, such as image classification [42], object recognition [43], video
retrievsal [44], multi-modal/cross-modal retrieval [45], etc. Wei et al. [46] proposed to use deep
CNN to learn visual representations for cross-modal retrieval, which performs much better than
traditional hand-crafted features. He et al. [47] employed convolution-based networks to generate both
visual and textual representations. Shen et al. [48] introduced a method, Textual-Visual Deep Binaries
(TVDB), to encode semantics of informative images and long textual descriptions. Yang et al. [49]
presented an end-to-end deep learning architecture to generate compact cross-modal hash codes from
intra-modal and an inter-modal view. Cao et al. [50] developed a collective deep quantization (CDQ)
method, which is an end-to-end deep architecture to jointly learn deep cross-modal representation and
quantizers. Hu et al. [51] presented a method named Dense Multimodal Fusion (DMF) to generate
joint representations hierarchically, which can learn the correlations in different levels. Gu et al. [52]
proposed to use generative model to learn not only the global abstract features but also the local
grounded features.

Inspired by [53], several studies utilized adversarial learning to improve the cross-modal
representation learning. Wang et al. [15] is the first to use adversarial learning method to combat
cross-modal retrieval problem. Zhang et al. [16] proposed to adversarial learning based method to
learn attention mask for cross-modal feature generation. Wen et al. [17] introduced a new cross-modal
similarity transferring (CMST) method by adversarial learning. This method is to learn common
representation subspace via quantitative similarities in single-modal representation subspace. Shang et
al. [18] deveoped a dictionary learning based adversarial cross-modal retrieval technique, which makes
the transformed features maintain the inherent statistical characteristics of original features. Unlike
the existing studies, we combine deep CCA method and adversarial learning to not only learn the
semantic correlations between different modalities, but implement a better cross-modal distribution
alignment.

3. Preliminary

In this section, we firstly formalize the definition of cross-modal retrieval and the related notions.
Besides, the cross-modal correlation measurement is proposed. In addition, two important techniques,
i.e., deep CCA and LSTM are introduced, which are related to our method. Table 1 summarizes the
notations frequently used in this paper to facilitate the discussion.

3.1. Problem Definition

Definition 1 (Cross-Modal Retrieval). Without losing generality, consider a multimedia dataset that
contains multi-modal data, is denoted as D = {X1, X2, ...Xn, Y1, Y2, ..., Yn}, where X and Y denote two
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Notation Definition
D A multimedia dataset
I An image
T A text
R A result set
Li A classification label vector of i-th image-text pair.

L(c)
i The c-th classification label of i-th image-text pair.

Corr(·, ·) The correlation measurement function
Ξ The representation of image
ζ The representation of text
MI The image representation matrix
MT The text representation matrix
ML The classification label representation matrix
ΩI The image mapping
ΩT The text mapping
θI The model parameter vector of VisNet
θT The model parameter vector of TxtNet
θD The model parameter vector of intra-modal classifier
θA The model parameter vector of modality discriminator
./ The vector concatenation operator
K(κ) The κ-th convolutional kernel

f (j)
i (t) The j-th location of the input map of i-th samples at time t

Table 1. The summary of notations that are frequently used in this paper

different modalities. Cross-modal retrieval aims to return a set of dataR of one modality, which are correlative
enough to the query of another modality, namely,

R = {Y|Y ∈ D, Y′ ∈ D \R, Corr(XQ, Y) ≥ Corr(XQ, Y′)} (1)

where Corr(·, ·) is a cross-modal correlation measurement that is to measure the corrleations between two
objects of different modalities.

This work focuses on two most common modalities on the Internet, i.e., image I and text T. Two
corresponding retrieval tasks are studied: (1) image-to-text retrieval that is to find correlative texts by a
image query and (2) text-to-image retrieval that is to find correlative images by a text query. According
to Definition 1, these two tasks can be formalized as

RI2T = {T|T ∈ D, T′ ∈ D \RI2T , Corr(IQ, T) ≥ Corr(IQ, T′)}, (2)

RT2I = {I|I ∈ D, I′ ∈ D \RT2I , Corr(TQ, I) ≥ Corr(TQ, I′)}. (3)

Suppose that the multimedia dataset D = {〈I1, T1〉, 〈I2, T2〉, ..., 〈In, Tn〉} contains n pairs of image and
text. Each pairs has a classification label vector denoted as Li = {L(1)

1 , L(2)
i , ..., L(c)

i } ∈ Rc, where c is the

number of the classifications. If the i-th object belongs to the j-th classification, the L(j)
i = 1, otherwise

L(j)
i = 0. The representations of image Ii and text Ti are denoted as ξ i = (ξ

(1)
i , ξ

(2)
i , ..., ξ

(γI)
i ) ∈ RγI and

ζ i = (ζ
(1)
i , ζ

(2)
i , ..., ζ

(γT)
i ) ∈ RγT , where γI and γT are the number of demensions, and generally γI 6= γT .

Therefore, for the multimedia datasetD, the image representation matrix, the text representation matrix
and the classification label matrix are denoted as MI = (ξ1, ξ2, ..., ξn) ∈ RγI×n, MT = (ζ1, ζ2, ..., ζn) ∈
RγT×n, and ML = (L1, L2, ..., Ln) ∈ Rc×n, respectively.

The main challenge of implementing cross-modal retrieval is the heterogeneity between different
modalities, which is manifested in two aspects: (1) the difference of feature distributions and (2) the
semantic gap between different modalities. That means the demensions of feature representations are
different, and they are hard to be represented in the same distribution. Besides, the semantic concepts
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Figure 2. The structure of deep CCA and GAN.

of representations are hard to be aligned. These two limitations hinder the correlation measurement of
cross-modal data. Thus, two cross-modal mappings, ΩI((I1, I2, ..., In)) and ΩT((T1, T2, ..., Tn)) need to
be learnt to project images (I1, I2, ..., In) and texts (T1, T2, ..., Tn) into a common semantic subspace, in
which the representations of images and texts have the similar distributions and the semantic concepts
can be aligned. Formally,

ΩI((I1, I2, ..., In)) : (I1, I2, ..., In)→ (ξ̂1, ξ̂2, ..., ξ̂n) ∈ Rγ×n, (4)

ΩT((T1, T2, ..., Tn)) : (T1, T2, ..., Tn)→ (ζ̂1, ζ̂2, ..., ζ̂n) ∈ Rγ×n, (5)

where (ξ̂1, ξ̂2, ..., ξ̂n) and (ζ̂1, ζ̂2, ..., ζ̂n) are the representation matrix of images and texts in the common
semantic subspace. Therefore, the correlations between multi-modal data can be measured via distance
function in this space. Inspired by Pearson correlation, we propose the cross-modal correlation
measurement as follows:

Definition 2 (Cross-Modal Correlation Measurement). Given an image Ii and a text Tj, the
representations of Ii and Tj in the common semantic subspace are ξ̂ i and ζ̂ j, the cross-modal correlation
between Ii and Tj is measured by the following equation:

Corr(Ii, Tj) =
∑γ

k=1(ξ̂
(k)
i − µξ̂ i

)× (ζ̂
(k)
j − µζ̂ j

)√
∑γ

k=1(ξ̂
(k)
i − µξ̂ i

)2 ×
√

∑γ
k=1(ζ̂

(k)
j − µζ̂ j

)2
(6)

where µξ̂ i
and µζ̂ j

are the averages of ξ̂ i and ζ̂ j, respectively.

3.2. Deep Canonical Correlation Analysis

Deep CCA is an extension proposed by Andrew et al. [54], which is a combination of linear
CCA and deep neural network to learn the non-linear correlation between two views. As shown in
Fig. 2 (a), the deep CCA consists of a coupled d-layer fully-connected neural networks. The input
instances of view 1 and view 2 are denoted as X1 ∈ Rm1 and X2 ∈ Rm2 , respectively. The output of
the first neural network layer are h1

1 = s(W1
1 X1 + b1

1) ∈ Rc1 and h1
2 = Σ(W1

2 X2 + b1
2) ∈ Rc2 , where

W1
1 ∈ Rc1×m1 and W1

2 ∈ Rc2×m2 are the matrices of weight, b1
1 and b1

2 are the vectors of bias, Σ(·) is a
non-linear activation function. The second layer recieves the outputs of the first layer and generates its
outputs h1

2 = Σ(W2
1 h1

1 + b2
1) ∈ Rc1 and h2

2 = Σ(W2
2 X2 + b2

2) ∈ Rc2 . For the last layer, the outputs are
f1(X1) = Σ(Wd

1 hd−1
1 + bd−1

1 ) ∈ Ro and f2(X2) = Σ(Wd
2 hd−1

2 + bd−1
2 ) ∈ Ro. The objective of the deep

CCA is to learn the parameters of the two-way networks to maximize the correlation between X1 and
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X2, namely Corr( f1(X1), X2). Let θ1 = (W1
1 , ..., Wd

1 , b1
1, ..., bd

1) and θ2 = (W1
2 , ..., Wd

2 , b1
2, ..., bd

2) be the
network parameter vectors of view 1 and view 2, the objective function is:

(θ∗1, θ∗2) = arg max
(θ1,θ2)

Corr( f1(X1; θ1), f2(X2; θ2)). (7)

This objective function can be optimized by gradient descent method on the training set. Let H1 ∈ Ro×n

and H2 ∈ Ro×n be the representations matrices generated by top-layer networks, where n is the
number of training samples. Let H̄1 = H1 − 1

n H11 and H̄2 = H2 − 1
n H21 be the centered matrices,

Σ̂11 = 1
n−1 H̄1H̄ ′1 + r1 I, Σ̂22 = 1

n−1 H̄2H̄ ′2 + r2 I, Σ̂12 = 1
n−1 H̄1H̄ ′2, where 1 ∈ Ro×o is an all-1 matrix, I is

an identity matrix, r1 and r2 are the regularization terms. Here suppose that r1 > 0 and r2 > 0, thus
both of Σ̂11 and Σ̂22 are positive definite. As the total correlation of the top-k components of matrices
H1 and H2 is the sum of the top-k singular values of T = Σ̂−1/2

11 Σ̂12Σ̂−1/2
22 , let k = o, the correlation

between H1 and H2 can be computed by the following equation:

Corr(H1, H2) = tr(T ′T)−1/2. (8)

Let the singular value decomposition of matrix T be T = UDV ′, then

∂Corr(H1, H2)

∂H1
=

1
n− 1

(2∇11H̄1 +∇12H̄2), (9)

∂Corr(H1, H2)

∂H2
=

1
n− 1

(2∇22H̄2 +∇12H̄2), (10)

where
∇11 = −1

2
Σ̂−1/2

11 UDU ′Σ̂−1/2
11 , (11)

∇22 = −1
2

Σ̂−1/2
22 UDU ′Σ̂−1/2

22 , (12)

∇12 = −1
2

Σ̂−1/2
11 UV ′Σ̂−1/2

22 . (13)

3.3. Generative Adversarial Netwrok

Generative Adversarial Netwrok (GAN) [53] is an unsupervised learning approach, which is
used for several multimedia tasks, such as image generation, 3D reconstruction, super-resolution,
etc. As shown in Fig. 2 (b), GAN consists of two component: a generator G and a discriminator D.
The generator aims to synthetize forged image according to real samples, and the discriminator is to
recognize whether the inputs are the productions of generator or the natural images. The training
process is equivalent to a two-player zero-sum game: the generator G endeavours to produce synthetic
samples more similar to the real samples, while the discriminator D vigorously to identify whether the
inputs is from the distribution of G or the natural distribution. At last, these two models achieve a
dynamic equilibrium: the generated samples are similar enough to the natural distribution, while the
discriminator D cannot discriminate the real and synthetic samples. Let a narual image sample be I
that obey natural random distribution P(I), z ∈ Rγ be a random vector from distribution Pz(z). The
generator G(I; θG) aims to map z to a synthetic sample G(z; θG). The discriminator D(I; θD) receives
G(z; θG) as input and outputs the discriminant result D(G(z; θG); θD) which is the probability that
G(z; θG) is generated from G. Thus, this game process can be formulated as an minimax optimization,
formalized by the following objective function:

arg min
G

max
D
LGAN(G, D) = EI∼Pn(I)[logD(I; θd)] +Ez∼Pz(z)[log(1− D(G(z; θG); θD))] (14)
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Figure 3. The architecture of the proposed ALSCOR. ALSCOR is an end-to-end framework of
cross-modal retrieval. It has three layers: (1) Input layer that feeds image-text paris into the
cross-modal representation layer; (2) cross-modal Representation layer includs two models: VisNet
and TxtNet; (3) Loss layer contains three model. CCA model is used to learn the correlations between
representations of image and text via correlation loss. Intra-modal Classifier model is to learn the
intra-modal discriminative representations via discrimination loss. The modality discriminator is
used to learn modality-invariant representations via adversarial loss.

where θG and θD are the model parameters of G and D, respectively. EI∼Pn(I)[·] and Ez∼Pz(z)[·] are the
expectations, and

EI∼Pn(I)[logD(I; θD)] =
∫

I
Pn(I)log(D(I; θD)) dI, (15)

Ez∼Pz(z)[log(1− D(G(z; θG); θD))] =
∫

z
Pz(z)log(1− D(G(z; θG); θD)) dz. (16)

The generator G and discriminator D are trained in an alternate and iterative manner. For the
generator G, the objective is to minimize the loss function to produce more authentic samples to
fool the discriminator D. By contrast, for the discriminator D, the objective is to maximize the loss.
Formally, the objective functions are:

arg min
G
LGAN(G, D) =

∫
I

Pn(I)log(D(I; θD)) dI (17)

arg max
D
LGAN(G, D) =

∫
z

Pz(z)log(1− D(G(z; θG); θD)) dz (18)

4. The Method

To learn a common subspace and bridge the semantic gap between different modalities, we
propose an effective end-to-end framework, named Adversarial Learning based Semantic COrrelation
Representation (ALSCOR), which is a combination of cross-modal correlation learning and adversarial
learning. In this section, we introduce this method in details.

4.1. The Architecture of ALSCOR

Overview. The general architecture of the proposed ALSCOR is illustrated in Fig. 3, which
is a combination of deep CCA and adversarial learning technique. However, different from the
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traditional deep CCA that uses two deep fully connected networks, ALSCOR utilizes a deep CNN for
image representation and a integration of BiLSTM and convolutional network for text representations.
Specifically, this is an end-to-end framework of cross-modal retrieval. It has three layers: (1) Input
layer, (2) cross-modal Representation layer and (3) Loss layer. The input layer contains a multimedia
collection, and it feeds image-text paris into the next layer, namely cross-modal representation layer.
Cross-modal Representation layer is a two-way deep neural network structure, which includs two
models to learn deep representations of image and text, respectively. The one is VisNet, which is
implemented by deep convolutional network to learn the deep representations of images. The other is
TxtNet, which is generate text representations via a comnination of word2vec model, BiLSTM network
and text convolutional network. The Loss layer contains three models. CCA model is used to learn
the correlations between representations of image and text via correlation loss. Intra-modal Classifier
model is to learn the intra-modal discriminative representations via discrimination loss. The modality
discriminator is used to learn modality-invariant representations via adversarial loss.

VisNet. VisNet is a CNN based model to generate deep representations of images, formally,
(ξ

(1)
i , ξ

(2)
i , ..., ξ

(γI)
i ) = VisNet(Ii; θI), where θI is the model parameter vector. Compared with deep

fully-connected neural networks in deep CCA method, CNN is more powerful to capture high-level
visual semantic information from images. In our approach, we utilize AlexNet [42], a well-known
CNN model to implement VisNet. Specifically, it has five convolutional layers and two fully-connected
layers. The input images are resized to 224× 224× 3, which are fed into the first convolutional layer.
The first convolutional layer has 96 kernels of size 11× 11× 3. The second convolutional layer has
256 kernels of size 5× 5× 96. The third convolutional layers has 384 kernels of size 3× 3× 256. The
fourth convolutional layers has 384 kernels of size 3× 3× 192. The fifth convolutional layers has
256 kernels of size 3× 3× 192. Following the last convolutional layer, there are two fully-connected
layers that have 4096 neurons each. The second full-connected layer output 4096-demensional feature
representations, namely γI = 4096.

TxtNet. TxtNet is a combination of word2vec, BiLSTM network and CNN model, which is to
generate λ-demensional text representations, namely (ζ

(1)
i , ζ

(2)
i , ..., ζ

(γT)
i ) = TxtNet(Ti; θT), where

θT is the model parameter vector. The word2vec model receives the inputs and generates a set of
word embeddings (v1, v2, ..., vn), where n is the number of the words. Compared to the traditional
representation method (such as BoW), word2vec can capture both semantic and synthactic information
of text. Following word2vec model, a BiLSTM model is used to encode the contextual information
from both the previous and future context. For each of the directions, the LSTM has three gates: the
input gate i, forget gate f and output gate o. At the time t, the each state in the LSTM is:

i(t) = σ(Wi[h(t− 1), v(t)] + bi) (19)

f (t) = σ(W f [h(t− 1), v(t)] + b f ) (20)

o(t) = σ(Wo[h(t− 1), v(t)] + bo) (21)

C̃(t) = tanh(Wc[h(t− 1), v(t)] + bc) (22)

C(t) = i(t)× C̃(t) + f (t)× C(t− 1) (23)

h(t) = o(t)× tanh(C(t)) (24)

where h(t) is the hidden vector, σ is the sigmoid function, Wi, W f , Wo, bi, b f , bo are the model
parameter vectors. The output of the BiLSTM is the concatenation of the outputs of two LSTMs,
namely h(t) = h1(t) ./ h2(t), where ./ is the vector concatenation operator.

After the BiLSTM model, a convolutional network is used to capture the local semantic information
of the output of BiLSTM. This network has one convolutional layer with κ convolutional kernels of
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size m×m, i.e.,K = (K(1), K(2), ..., K(κ)). For the j-th location of the input map, the calculation can be
formalized as follows:

f (j)
i (t) = g(

m

∑
i=1

h(t + i− 1)T ∗ K(i) + b) (25)

where g(·) : R 7→ R is a non-linear activation function, b is a bias, ∗ is the convolutional operator. For
the i-th kernel K(i), it slides across the input feature map step-by-step and generate the feature map as
follows:

fi(t) = ( f (1)i (t), f (2)i (t), ..., f (H−m+1)
i (t)) (26)

where H is the size of the input map. All the feature maps are denoted as ( f1(t), f2(t), ..., fm(t)), which
are fed into the max-pooling layer, namely,

( f̂1(t), f̂2(t), ..., f̂m(t)) = max( f1(t), f2(t), ..., fm(t)) (27)

where max(·) is the function to select the maximal element of each feature vector.
To restraint overfitting, before the fully-connected layers, a drop-out operation is used to randonly

discards a part of outputs of max-pooling, shown as follows:

(ζ
(1)
i , ζ

(2)
i , ..., ζ

(γT)
i ) = W f c × ( f̂1(t), f̂2(t), ..., f̂m(t))T �M+ β (28)

where W f c and β are the parameters of the fully-connected layers, � is the is the elementwise
multiplication operator,M is a masking vector of Bernoulli random variables.

4.2. The Loss

In the loss layer, three modules are used to learn the common semantic subspace. The CCA
module aims to learn the correlation between images and texts by correlation loss, which recives the
deep representations from VisNet and TxtNet. The intra-model classifier is to learn the intra-modal
discriminations by using the classification labels of image-text pairs via discrimination loss. The
modality classifier plays an role of discriminator in GAN, which is to diminish the heterogeneity
between representations of different modalities via adversarial loss.

Correlation Loss. The CCA module integrated with VisNet and TxtNet forms a end-to-end
non-linear correlation learning model to maximize the cross-modal correlation. According to deep
CCA, the correlation loss is formalized as follows:

Lcorr(Ii, Ti; θI , θT) = Corr(VisNet(Ii; θI), TxtNet(Ti; θT)). (29)

Therefore, the correlation learning is to optimize the following objective function:

(θ∗I , θ∗T) = arg max
(θI ,θT)

Lcorr(Ii, Ti; θI , θT), ∀〈Ii, Ti〉 ∈ D. (30)

The optimal parameters (θ∗I , θ∗T) are calculated by using gradient of the correlation objective on the
training set D. The optimization can be followed the equation 9 to 13.

Discrimination Loss. The intra-modal classifier is to maintain the discrimination of multi-modal
data after the cross-modal non-linear mapping. It is realized by predicting the categories label of the
cross-modal data in the common semantic subspace. Specifically, this model is a feed-forward neural
network followed by a softmax layer, which is to recieves the representations of different modalites
in the common subspace and output a probability distribution of categories. In our scheme, the
cross-entropy loss is used to implement the discrimination loss, shown as follows:

Ldisc(Ii, Ti; θI , θT , θD) = −
1
m

m

∑
i=1

Li(logP(VisNet(Ii; θI)) + logP(TxtNet(Ti; θT))) (31)
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where P(·) is the probability distribution of categories, θD is the parameter vector of the classifier, m is
the number of samples in each mini-batch during the training.

Adversarial Loss. Inspired by GAN, the adversarial learning in our method is realized by a
modality classifier D, which works as the discriminator to identify the representation is generated
from an image and a text. Accroding to [15], this model is implemented by a three-layer feed-forward
neural network with parameter θA. The representations generated from image modality are assigned
with label 01, and the represenations generated from text modality are assgined with label 10. The loss
function can be formalized as follows:

Ladv(Ii, Ti; θI , θT , θA)

= − 1
n

n

∑
i=1

mi(logD(VisNet(Ii; θI); θA) + log(1− D(TxtNet(Ti; θT); θA)))
(32)

where mi is the ground-truth modality label of each representation.
Adversarial Learning. For the adversarial learning process, we incorporate the correlation loss

(equation 29), discrimination loss (equation 31) and adversarial loss (equation 32), and optimize them
as a min-max game, shown as follows:

(θ∗I , θ∗T , θ∗D) = arg min
(θI ,θT ,θD)

(αLcorr(Ii, Ti; θI , θT) + δLdisc(Ii, Ti; θI , θT , θD)− εLadv(Ii, Ti; θI , θT , θ∗A)), (33)

θ∗A = arg max
θA

(αLcorr(Ii, Ti; θ∗I , θ∗T) + δLdisc(Ii, Ti; θ∗I , θ∗T , θ∗D)− εLadv(Ii, Ti; θI , θT , θA))), (34)

∀〈Ii, Ti〉 ∈ D.

where α, δ and ε are the weight parameters for these three loss terms. The training can be realized by
using a stochastic gradient descent algorithm.

5. Experiments

In this section, we present the performance evaluation of the proposed method and the comparison
with several state-of-the-arts on four multimedia datasets. The experimental setup is introduced in
section 5.1, the implementation details of the proposed method is described in section 5.2, and the
performance evaluation and comparison are shown in section 5.3.

5.1. Experimental Setup

Datasets. Our experiments are conducted on three benchmark multimedia datasets: Wikipedia [5],
NUS-WIDE [55], andPascal Sentence [56], which are widely used in multi-modal/cross-modal retrieval
tasks. The detailed descriptions are presented as follows. Some samples of these datasets are shown in
Fig. 4.

• Wikipedia. Wikipedia (https://en.wikipedia.org/wiki/) dataset is generated from the
"Wikipedia feature articles". It contains 2866 image-text documents that are divided into ten
different semantic categories, including art & architecture, biology, geography & places, history,
literature & theater, media, music, royalty & nobility, sport & recreation and warfare. For each
document, the text part is the description of the corresponding image content. Following the
experimental settings in [5], Wikipedia dataset in our experiments is split randomly into a training
set containing size 2173 image-text documents, and a testing set containing 693 documents. To
compared with the proposed multi-modal convolutional representations, for each image, the
SIFT [57] descriptor is used to produce hand-crafted visual features and then the vocabulary
is built by k-means clustering to produce 1000-demensional Bag-of-Visual-Words (BoVW) [58]
vector. For each text, the 3000-demensional Bag-of-Words (BoW) vector is generated.
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An airplane sitting on the tarmac at an airport with another plane in the background.
A white an blue airplane parked at the airport near another small plane.
Blue and white airplane parked.
two airplanes are waiting on the tarmac 
Two airplanes parked at the airport.

A boat is in the water and a small airplane is on the dock.
A boat is on the water near a small plane.
A small boat passes near a sea plane parked at the dock house.
Boat in water with a seaplane landed on a platform by a orange roofed building 
Plane parked on deck with boat gliding through the water.

A man on a mountain bike going down an incline.
A mountain biker riding over a small stone ridge.
A person on a bicycle rides on a rocky path.
Man on mountain bike coming off of small rocky ledge.
This is a man riding a mountain bike over rocks on a clear day.

A car is painted with bright colors and designs.
A multicolored Rolls-Royce car.
An exhibit of a custom car that is brightly painted with shades of yellow, blue, orange 
and blue paint.
Car painted in various colors with different designs.
Custom painted Rolls Royce 
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The uniform organization of the town and its institutions give evidence that the 
Harappans were a very disciplined people. Commerce and administrative duties were 
performed according to standards laid out. Municipal administration was strict — the 
width of most streets remained the same over a long time, and no encroached 
structures were built. Householders possessed a sump, or collection chamber to 
deposit solid waste in order to prevent the clogging of city drains. Drains, manholes 
and cesspools kept the city clean and deposited the waste in the river, which was 
washed out during high tide. A new provincial style of Harappan art and painting was 
pioneered — new approaches included realistic portrayals of animals in their natural 
surroundings, including the portrayal of stories and folklore. Fire-altars were built in 
public places. Metalware, gold and jewellery and tastefully decorated ornaments 
attest to the culture and prosperity of the people of Lothal.

On plan, Lothal stands 285 metres (935 ft) north-to-south and 228 metres (748 ft) 
east-to-west. At the height of its habitation, it covered a wider area since remains 
have been found 300 metres (1000 ft) south of the mound. Due to the fragile nature 
of unbaked bricks and frequent floods, the superstructures of all buildings have 
receded. Dwarfed walls, platforms, wells, drains, baths and paved floors are visible. 
But thanks to the loam deposited by persistent floods, the dock walls were preserved 
beyond the great deluge (c. 1900 BCE). The absence of standing high walls is 
attributed to erosion and brick robbery. The ancient nullah, the inlet channel and 
riverbed have been similarly covered up. The flood-damaged peripheral wall of mud-
bricks is visible near the warehouse area. The remnants of the north-south sewer are 
burnt bricks in the cesspool. Cubical blocks of the warehouse on a high platform are 
also visible.

Soldier Field, located on Lake Shore Drive in Chicago, is the current home to the 
Bears. The Bears moved into Soldier Field in 1971 after outgrowing Wrigley Field, the 
team's home for 50 years, and Northwestern University's residential neighbors 
objected to their playing at Dyche Stadium, now called Ryan Field. After the AFL-NFL 
Merger, the newly merged league wanted their teams to play in stadiums that could 
hold at least 50,000 fans. Even with the portable bleachers that the team brought into 
Wrigley, the stadium could still only hold 46,000. Soldier Field's playing turf was 
changed from astroturf to natural grass in time for the start of the 1988 season. The 
stadium was the site of the infamous Fog Bowl playoff game between the Bears and 
Philadelphia Eagles.In 2002, the stadium was closed and rebuilt with only the exterior 
wall of the stadium being preserved. It was closed on Sunday, January 20, 2002, a day 
after the Bears lost in the playoffs. It reopened on September 27, 2003 after a 
complete rebuild (the second in the stadium's history). Many fans refer to the rebuilt 
stadium as "New Soldier Field". 

The Western Chalukya kingship was hereditary, passing to the king's brother if the 
king did not have a male heir. The administration was highly decentralised and  
feudatory clans such as the Alupas, the Hoysalas, the Kakatiya, the Seuna, the 
southern Kalachuri and others were allowed to rule their autonomous provinces, 
paying an annual tribute to the Chalukya emperor.Kamath (2001), p110 Excavated 
inscriptions record titles such as ''Mahapradhana'' (Chief minister), ''Sandhivigrahika'', 
and ''Dharmadhikari'' (chief justice). Some positions such as ''Tadeyadandanayaka'' 
(commander of reserve army) were specialised in function while  all ministerial 
positions included the role of ''Dandanayaka'' (commander), showing that cabinet 
members were trained as army commanders as well as in general administrative 
skills.Kamath (2001), p109

The uniform organization of the town and its institutions give evidence that the 
Harappans were a very disciplined people. Commerce and administrative duties were 
performed according to standards laid out. Municipal administration was strict — the 
width of most streets remained the same over a long time, and no encroached 
structures were built. Householders possessed a sump, or collection chamber to 
deposit solid waste in order to prevent the clogging of city drains. Drains, manholes 
and cesspools kept the city clean and deposited the waste in the river, which was 
washed out during high tide. A new provincial style of Harappan art and painting was 
pioneered — new approaches included realistic portrayals of animals in their natural 
surroundings, including the portrayal of stories and folklore. Fire-altars were built in 
public places. Metalware, gold and jewellery and tastefully decorated ornaments 
attest to the culture and prosperity of the people of Lothal.

On plan, Lothal stands 285 metres (935 ft) north-to-south and 228 metres (748 ft) 
east-to-west. At the height of its habitation, it covered a wider area since remains 
have been found 300 metres (1000 ft) south of the mound. Due to the fragile nature 
of unbaked bricks and frequent floods, the superstructures of all buildings have 
receded. Dwarfed walls, platforms, wells, drains, baths and paved floors are visible. 
But thanks to the loam deposited by persistent floods, the dock walls were preserved 
beyond the great deluge (c. 1900 BCE). The absence of standing high walls is 
attributed to erosion and brick robbery. The ancient nullah, the inlet channel and 
riverbed have been similarly covered up. The flood-damaged peripheral wall of mud-
bricks is visible near the warehouse area. The remnants of the north-south sewer are 
burnt bricks in the cesspool. Cubical blocks of the warehouse on a high platform are 
also visible.

Soldier Field, located on Lake Shore Drive in Chicago, is the current home to the 
Bears. The Bears moved into Soldier Field in 1971 after outgrowing Wrigley Field, the 
team's home for 50 years, and Northwestern University's residential neighbors 
objected to their playing at Dyche Stadium, now called Ryan Field. After the AFL-NFL 
Merger, the newly merged league wanted their teams to play in stadiums that could 
hold at least 50,000 fans. Even with the portable bleachers that the team brought into 
Wrigley, the stadium could still only hold 46,000. Soldier Field's playing turf was 
changed from astroturf to natural grass in time for the start of the 1988 season. The 
stadium was the site of the infamous Fog Bowl playoff game between the Bears and 
Philadelphia Eagles.In 2002, the stadium was closed and rebuilt with only the exterior 
wall of the stadium being preserved. It was closed on Sunday, January 20, 2002, a day 
after the Bears lost in the playoffs. It reopened on September 27, 2003 after a 
complete rebuild (the second in the stadium's history). Many fans refer to the rebuilt 
stadium as "New Soldier Field". 

The Western Chalukya kingship was hereditary, passing to the king's brother if the 
king did not have a male heir. The administration was highly decentralised and  
feudatory clans such as the Alupas, the Hoysalas, the Kakatiya, the Seuna, the 
southern Kalachuri and others were allowed to rule their autonomous provinces, 
paying an annual tribute to the Chalukya emperor.Kamath (2001), p110 Excavated 
inscriptions record titles such as ''Mahapradhana'' (Chief minister), ''Sandhivigrahika'', 
and ''Dharmadhikari'' (chief justice). Some positions such as ''Tadeyadandanayaka'' 
(commander of reserve army) were specialised in function while  all ministerial 
positions included the role of ''Dandanayaka'' (commander), showing that cabinet 
members were trained as army commanders as well as in general administrative 
skills.Kamath (2001), p109

Wikipedia NUSWIDE Pascal Sentence

Figure 4. Some image-text pairs in Wikipedia, NUS-WIDE and Pascal Sentence dataset.

• NUS-WIDE. NUS-WIDE (https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/
\NUS-WIDE/NUS-WIDE.html) dataset is a real-world web image dataset which contains 269648
images and the associated tags from Flickr, with a total number of 5018 unique tags. Each image
in NUS-WIDE corresponds to 81 ground truth labels and 1000 text tags. We select the labeled
images which belong to the 21 largest categories for experiments. The training set has 114117
samples and the testing set contains 76303 samples. Following the experimental settings in [55],
the hand-crafted features of iamges are 500-demensional SIFT descriptions based BoVW vectors
and the textual features are 1000-demensional BoW vector.

• Pascal Sentence. Pascal Sentence (http://vision.cs.uiuc.edu/pascal-sentences/) dataset aims
to support for pattern analysis, statistical modeling and computational learning, which is a
subset of Pascal VOC. It contains twenty categories, including aeroplane, bicycle, bird, boat,
bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep,
sofa, train, tv. The training set consists of 10103 images with 23374 objects such that there are
approximately 500 training objects per category. To compare with CNN representations, we
generate 1024-demensional SIFT based BoVW feature vectors for images, and 100-demensional
topic probability features by LDA and BoW for texts.

Compared Approaches. To verify the effectiveness of the proposed method, we compare the
proposed ALSCOR with 8 approaches on these three datasets. The brief introduction of these
approaches are shown as follows:

• CCA. CCA [27] is a multivariate statistical analysis method to find the linear correlation between
two multivariate random variables. It is widely used in many multi-modal/cross-modal retrieval
tasks.

• DCCA. Deep Canonical Correlation Analysis [54] (DCCA for short) is an extension of CCA
to learn complex nonlinear transformations of two representation vectos via two deep neural
networks.

• TVKCCA. Three-view Kernel Canonical Correlation Analysis [59] (TVCCA for short) contains
three views: two modalities views and a semantic views. It aims to learn a common subspace for
visual, textual and semantic information via kernel CCA to achieve a better separation of data
that belong to different categories.

• SM. Semantic Matching [5] (SM for short) is to map image and text to a high-level semantic
subspace by using multi-class logisic regression. In this common semantic space, the natural
correspondences between cross-modal representation can be captured.

• Deep-SM. Deep Semantic Matching [46] (Deep-SM for short) is a deep learning based method
which maps image and text to a common semantic space by using CNN and LDA.
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• RE-DNN. Regularized Deep neural network [11] (RE-DNN for short) to generate high-level
representations of different modalities. This approach learns a joint model that captures both
intra-modal and inter-modal relationships by an intra-modal regularization.

• Corr-AE. Correspondence Autoencoder [10] (Corr-AE for short) is built by correlaing hidden
representations with only common information of two uni-modal autoencoder. It incorporates
representation learning and correlation learning into a single process.

• ACMR. Adversarial Cross-Modal Retrieval [15] (ACMR for short) is an adversarial learning
based method to generate modality-invariant representations. This method minimizes the gap
between different representations belong to the same categories, while maximizes the distances
among semantically different data.

Performance Metrics. In our experiments, two cross-modal retrieval tasks are considered:
image-to-text (I2T) retrieval and text-to-image (T2I) retrieval. The I2T retrieval is to retrieve similar
texts from an image query, and the I2T retrieval is to find similar images from a text query. To evaluate
cross-modal correlation learning, Pearson correlation coefficient is used to measure the correlation
between different representations:

Pearson(X, Y) =
Cov(X, Y)

σX σY

=
∑n

i=1(Xi − µX)× (Yi − µY)√
∑n

i=1(Xi − µX)2 ×
√

∑n
i=1(Yi − µY)2

(35)

To comprehensive evaluate the retrieval performance, Precision-Recall curves (PR-Curves) are
used in these experiments, in which

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

.

Besides, based on precision and recall, mean Average Precision scores (mAP) are calculated for the
global performance evaluation. mAP is an important measurement to evaluate the global performance
of retrieval algorithm, which is calculated via the following equation:

mAP =
1
|Q| ∑

Q∈Q
AP(Q),

AP(Q) =
1
N

R

∑
r=1

PQ(r)Φ(r),

(36)

where Q is the query set, N is the number of results that is correlative to the query, R is number of
results, PQ(r) is the precisionof the current query Q, Φ(r) is an indicator function. If the r-th result is
correlative to the query, Φ(r) = 1, otherwise Φ(r) = 0.

Experimental Environment. All the experiments are run on a workstation with Intel(R) CPU
Xeon 2.60GHz, 16GB RAM and NVIDIA GeForce GTX 1080 GPU with 8GB memory running Ubuntu
16.04 LTS Operation System. All algorithms in the experiments are implemented in Python.

5.2. Implementation Details

In our experiments, VisNet is realized by a pre-trained AlexNet whose the model parameters
are provided by [60]. Then, we fine-tune this model on Wikipedia, NUS-WIDE and Pascal Sentence
datasets. Specifically, the first five convolutional layers are initialized by the pre-training parameters,
and the last two fully-connected layers are initialized by a Gaussian distribution G(µ, σ2), where
µ = 0, σ = 0.01. All the training samples are resized to 256× 256× 3 without cropping. For the
training, different learning rates are set to different layers: for the first five convolutional layer, the
learning rate is set to 0.001; for fully-connected layers, the learning rate is set to 0.01. stochastic
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Methods Wikipedia NUS-WIDE Pascal Sentence
Img2Txt Txt2Img Average Img2Txt Txt2Img Average Img2Txt Txt2Img Average

CCA 21.01 17.84 19.43 38.17 36.80 37.49 11.21 12.06 11.64
DCCA 29.58 28.12 28.85 41.50 36.82 39.16 15.83 15.10 15.47
TVKCCA 20.13 22.06 21.09 39.50 40.39 39.95 14.85 15.42 14.89
SM 23.34 28.51 25.93 39.16 42.37 40.77 18.74 21.12 20.14
Deep-SM 39.90 35.43 37.67 57.80 62.55 60.18 44.63 48.05 46.34
RE-DNN 28.23 24.25 26.24 39.25 41.82 40.54 20.28 22.54 21.41
Corr-AE 32.63 36.10 34.37 31.93 38.63 35.28 29.86 28.35 29.36
ACMR 50.33 61.71 56.02 58.41 57.85 58.13 60.48 59.75 60.12
ALSCOR 51.05 63.58 57.32 60.88 65.26 63.07 63.92 68.41 66.17

Table 2. The performance (mAP @50 IN %) of the proposed method and the compared methods
on Wikipedia, NUS-WIDE and Pascal Sentence for image-to-text (Img2Txt) retrieval, text-to-image
(Txt2Img) retrieval and average performance.

gradient descent (SGD) algorithm with a mini-batch size of 128 is used to optimize the training, and the
momentum is set to 0.8, the weight decay is set to 0.0005 to reduce the training error, the dropout ratio
in each layer is set to 0.5. For the training of TxtNet, word2vec model is implemented by Skip-gram.
We pre-train this model on Wikipedia corpus by using SGD algorithm, the margin is set to 0.2. The
word2vec model outputs 100-demensional word embeddings from the input texts, which are fed into
the BiLSTM network. Following the settings in [61], the dimension of LSTM output vectors is 141 for
one direction. On all datasets, the mini-batch size is set to 100.

5.3. Performance Evaluation

In this section, we show the performance evaluation of the proposed method on Wikipedia,
NUS-WIDE, and Pascal Sentence datasets, and conpared it with 8 cross-modal retrieval approaches.
The experimental results are reported in Table 2 and Fig. 5.

Experiments on Wikipedia Dataset. We compare the proposed ALSCOR with CCA, DCCA,
TVKCCA, SM, Deep-SM, RE-DNN, Corr-AE, ACMR on Wikipedia dataset. From Table 2 we
can see that for both Img2Txt and Txt2Img task, our method (Img2Txt=51.05%, Txt2Img=63.58%)
not only defeats the traditional approaches such as CCA (Img2Txt=21.01%, Txt2Img=17.84%),
DCCA (Img2Txt=29.58%, Txt2Img=28.12%), TVKCCA (Img2Txt=20.13%, Txt2Img=22.06%), SM
(Img2Txt=23.34%, Txt2Img=28.51%), etc., but also outperform the adversarial learning based method
ACMR (Img2Txt=50.33%, Txt2Img=61.71%). This is mainly because the proposed ALSCOR has
more powerful semantic representation. That means our method can capture more abstract concepts
information to bridge the semantic gap. On the other hand, the performance of adversarial learning
based methods, i.e., ACMR and ALSCOR, are much better than others, which verifies the adversarial
learning can strongly support the common semantic subspace learning.

Fig. 5 (a) and Fig. 5 (d) illustrate the Precision-Recall curves of CCA, DCCA, TVKCCA, SM,
Deep-SM, RE-DNN, Corr-AE, ACMR and ALSCOR on Wikipedia dataset. From Fig. 5 (a), it is obvious
that with the increasing of recall, the precision of ALSCOR and ACMR rise gradually and then drop
rapidly near recall=1.0. Unsurprisingly, they performns much better than others over all values of
recall. This verifies the improvement brought from adversarial learning once again. Similar to the
discussed above, the precision of ALSCOR is a bit higher than ACMR for both Img2Txt retrieval and
Txt2Img retrieval, which is because the advanced cross-modal representation learning model (the
combination of VisNet and TxtNet).

Experiments on NUS-WIDE Dataset. We evaluate the performance of CCA, DCCA, TVKCCA,
SM, Deep-SM, RE-DNN, Corr-AE, ACMR and the proposed ALSCOR on NUS-WIDE dataset, shown
in the middle collumn of Table 2. Similar to the experiment on Wikipedia, our method outperforms
all the opponents by 60.88% for Img2Txt retrieval and 65.26% for Txt2Img retrieval. ACMR is the
second best method, whose performance (Img2Txt=58.41%, Txt2Img=57.85%) is close to our method.
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(a) Wikepedia
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(c) Pascal Sentence
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(e) NUS-WIDE
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(f) Pascal Sentence

Figure 5. Precision-Recall curves for image-to-text query and text-to-image query on Wikipedia,
NUS-WIDE and Pascal Sentence dataset. (a) Wikipedia Img2Txt Query. (b) NUS-WIDE Img2Txt
Query. (c) Pascal Sentence Img2Txt Query. (d) Wikipedia Txt2Img Query. (e) NUS-WIDE Txt2Img
Query. (f) Pascal Sentence Txt2Img Query.

Different from the experiment on Wikipedia, Deep-SM performs better, which achieve Img2Txt=57.80%
and Txt2Img=62.55%. However, it still connot defeat ALSCOR. Meanwhile, the performance of other
methods is far behind the proposed method.

Fig. 5 (b) and Fig. 5 (e) show the comparison of ALSCOR and other 8 approaches on NUS-WIDE
dataset for Img2Txt and Txt2Img, respectively. Fig. 5 (b) tells us that for Img2Txt retrieval, the precision
of ALSCOR, ACMR and Deep-SM are close, which are higher than other five approaches obviously.
Specifically, in the recall internal [0.1, 0.8], these top-3 approaches are not sensitive to the changing
of recall. Like the situation on Wikipedia, the performance of ALSCOR is better than ACMR. On the
other hand, for Txt2Img retrieval, the performance gap between the top-3 methods and others is not so
obvious, and the precision of Deep-SM is a little bit higher than ACMR. However, ALSCOR is still the
best for all value of recall. This verifies effectiveness of the proposed ALSCOR.

Experiments on Pascal Sentence Dataset. The experimental results of the proposed ALSCOR
and CCA, DCCA, TVKCCA, SM, Deep-SM, RE-DNN, Corr-AE, ACMR on Pascal Sentence dataset
are shown in the right collumn of Table 2. On this multimedia dataset, our method ALSCOR is still
the best. It achieves mAP = 63.92% for Img2Txt task and mAP = 68.41% for Txt2Img task, which
are obvious higher than ACMR (mAP = 63.92% for Img2Txt and mAP = 68.41% for Txt2Img), the
most competitive opponent. The precision of other hand-crafted feature based methods, i.e., CCA,
TVKCCA and SM, etc., are much lower than the two former. On the other hand, similar to the above
experiments, the precision of ALSCOR for Txt2Img is better than Img2Txt. This is mainly because the
textual semantics is easier to be learnt than images, and the combination of BiLSTM and CNN model
can capture more high-level concept informaion from texts.

Fig. 5 (c) and Fig. 5 (f) demonstrates the trend of precision of ALSCOR and the campared methods
with the varying of recall on Pascal Sentence dataset. For Img2Txt retrieval, we can see from Fig. 5 (c)
that the proposed the precision of ALSCOR declines stey-by-step with the rising of recall, which is
higher than ACMR. Similar to the experiments on Wikipedia and NUS-WIDE, these two adversarial
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learning based approaches are much more powerful than others for Img2Txt retrieval. On the other
hand, in Fig. 5 (f), the superiority of them is not so obvious for Txt2Img retrieval, but they are still
defeat other methods. Compared with ACMR, the proposed ALSCOR performns better.

6. Conclusions

In this paper, a novel cross-modal approach, adversarial learning based semantic correlation
representation (ALSCOR) is proposed to address cross-modal retrieval problem. This approach is
a combination of adversarial learning and cross-modal correlation learning. To bridge the semantic
gap between different modalities, a deep learning based cross-modal correlation learning model is
developed, which is integrated two branches (VisNet and TxtNet) to learn cross-modal representations
and uses CCA model to learn the cross-modal correlation. Besides, a modality classifier is utilized
to implement adversarial learning, which is to learn modality-invariant representations. In addition,
an intra-modal classifier is used to capture the intra-modal discriminant information. We conduct
comprehensive experiments on three benchmark datasets to evaluate the performance of the proposed
method and compare it with 8 state-of-the-arts. Experimental results shows that the proposed ALSCOR
has better performance than the state-of-the-arts.
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