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Abstract: Systems Engineering is an ubiquitous discipline of Engineering overlapping industrial,
chemical, mechanical, manufacturing, control, software, electrical, and civil engineering. It provides
tools for dealing with the complexity and dynamics related to the optimisation of physical, natural,
and virtual systems management. This paper presents a review of how multi-agent systems and
complex networks theory are brought together to address Systems Engineering and management
problems. The review also encompasses current and future research directions both for theoretical
fundamentals and applications in Industry. This is made by considering trends such as mesoscale,
multiscale, and multilayer networks; along with the state-of-art analysis on network dynamics and
intelligent networks. Critical and smart infrastructure, manufacturing processes, and supply chain
networks are instances of research topics for which this literature review is highly relevant.
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1. Introduction

Systems Engineering is an amalgamation of Engineering disciplines for the design, control,
and overall management of the life-cycle of engineered systems from an interdisciplinary point
of view [1]. This involves various levels of abstraction of a system in which the interconnections
between the parts (at each abstraction level) are often represented by a complex network [2,3]. Each
component of the system, then, works towards individual and collective objectives to optimise local
and general performance objectives. This decision-making process of each component can be modelled
by multi-agent systems (MAS) [4,5]. Thus, both complex networks and MAS are of main importance
for Systems Engineering and management. This paper presents the essentials of complex networks
and MAS for control and optimisation in Systems Engineering. This is made through a theoretical
overview and literature review of both approaches, introducing them separately ahead of discussing
how they can be combined.

A complex network is mathematical abstraction of a real system in the form of a graph. As a
difference from graphs, complex networks usually take non-regular topologies to better represent such
real-world systems from which may also inherit another features. Examples of complex networks are
utility networks [6], social networks [7], chemical reactions [8], or molecular networks [9], among many
others. In many cases, networks may vary their properties and functionality depending on internal
evolution of their properties or reacting to exogenous interactions. For instance, in a telecommunication
system network, nodes (routers and switches, e.g.) may suffer over the time a degradation in their
properties that may lead them to diminish their performance. However, just the daily variation on
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traffic demand also has an impact on such nodes performance. Unexpected, external intervention
such as cyber-attacks or extreme weather conditions may affect the properties, even the topology of a
telecommunication system.

Intelligent distributed systems are capable of modelling how different parts of the network might
work individually and collectively [10]. Ultimately, this is used as support for any decision-making
system aiming to achieve better overall system functioning and its consequent performance. Intelligent
distributed systems encompass autonomous learning units that can be associated with the nodes of
a complex network. These intelligent network nodes are able to act independently and also interact
with other nodes, to pursue both individual (local) and general system-level targets. The necessary
communication between individuals can be represented by links of the complex network connecting
their nodes. It is natural to understand such nodes as intelligent agents within a MAS framework.
Each agent separately obeying simple rules but working together with other agents makes it possible
to approach complex engineering challenges. Intelligent distributed systems have been proposed in
a wide range of natural, social and engineered complex systems: Computer Science [11], Electrical
Engineering [12], Computational Chemistry [13], and Biology [14], among other research subjects.

Automatic optimisation and control in an engineering system is associated with a near real-time
data acquisition and an optimal decision-making. The aim is to maximise the quality and performance
of the outcome, while minimising the overall costs of the process. The combination of complex
networks and MAS provides an integrated framework for systems optimisation and control. The
success of this framework is mainly based on its high applicability together with the relative simplicity
of the approach. Part of the challenges and research directions in complex networks are coming from
the investigation further of their structure at several dimensions, or network layers, and also from the
variety of resolution levels (mesoscale networks) in which a network can be analysed. These research
topics are complement of those related to network-flow dynamics [15], time-evolving networks [16],
and smart systems [17] for which MAS have emerged in their research.

The paper introduces herein real-world systems engineering examples for which control and
optimisation processes based on complex networks and MAS have been shown to be essential for their
operation, management and protection.

2. Complex networks

A complex network is formally defined as a graph G which is composed of an ordered pair (V , ξ),
where V is a finite nonempty set of vertices or nodes and ξ is the set of edges or links between such
nodes ξ ⊆ {(u, v)|u, v ∈ ξ}. Thus, complex networks are graphs whose vertices represent physical or
virtual items and edges represent the interaction between them1.

2.1. Graph Theory: basic concepts

Graph Theory is the subject of Mathematics specifically dedicated to the study of graphs [18]. In
order to approach further analysis for graphs, there is a need to represent them as matrices. A common
way to do it is by defining the adjacency matrix,A. In case of undirected graphs,A is symmetric and its
elements have values aij = aji = wij if nodes i and j are directly connected and aij = aji = 0 otherwise.
Since the physical and performing characteristics of every link may vary, it can be considered to work
with weighted graphs and their respective adjacency matrices defined by wij > 0. It can be understood
that the unweighted graph is such that wij = 1 for all i and j. The adjacency matrix for directed graphs
does not need to necessary be symmetric. In an undirected graph, it is defined the degree of a vertex
as the total number of vertices directly connected to it (adjacent vertices). If the degree of a vertex is 0,
then it is a singleton or isolated vertex.

1 In this paper we refer as nodes and links to complex networks elements; the same elements are, respectively, referred as
vertices and edges within the graph theory framework.
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A main property of graphs is the connectivity. A graph is connected when there is a path (ordered
sequence of edges) for every path of vertices in V . Related to the graph connectivity is the definition of
clique as subset of vertices such that every two vertices are connected by an edge. This concept is key
to understand further other concepts and measures related to groups or clusters of graph components.

2.2. Complex networks models

Complex networks are instances of real-world graphs. They include examples such as the Internet
[19], social networks [20], supply networks [21], metabolic networks [22], and critical infrastructures
[23], among other engineered systems. In theory, graphs can take any topology. However, most of
them are analysed either by random graphs [24] or by a completely regular distribution. This is not the
case of complex networks, where underlying mechanisms provide the network of neither random nor
regular structures but following some distinctive patterns. Some of these structures are the following:

• Small-world network [25]: The paths between two randomly chosen network nodes is relatively
short (usually scales with the logarithm of the total number of nodes). So in a small-world
network, nodes that are not directly neighbours of one another are connected by passing just
through a small number of other nodes in between.

• Scale-free network [26]: In a random graph the node degree distribution for all the nodes in the
network follows a Poisson law. However, in complex networks this distribution often is a heavier
right-skewed one and it is better described by a power-law distribution function following the
relation f (x) = x−k. As the power-law function is invariant with respect to the scale, networks
with node degree following this distribution are named ’scale-free networks’.
• Planar or quasi-planar networks [27]: A planar graph is such that there are not crosses between

edges. That is, the edges intersect only at their endpoints. These types of graphs are naturally
sparse as they have the same order for the number of edges than for the number of vertices.
Planarity or near-planarity propriety can be taken into account to simplify the network analysis
of real-world applications. These include street network representation [28,29], road networks
[30], water distribution systems [31], data networks [32], and general network flow problems
[33].

• Community structure [34]: This structure happens when subsets of nodes within node-node
connections are dense, but between which are less dense. Communities in a social network
straightforwardly extend to applications in Biology [35], Ecology [36], Engineering [37], and
Industry [38], among others. The property of modularity [39] is often used for detecting
community structures. Modularity measures the strength of the division of a network into
modules (clusters or communities). This is defined by the fraction of the edges that fall within
the given groups minus the expected fraction if edges were distributed at random. The value of
the modularity lies in the range [0, 1].

• Core-periphery structure: These are structures in networks that present a set of densely connected
nodes (core) and a set of sparsely connected nodes (periphery) [40]. Although the most widely
studied network structure is that based on the concept of community, core-periphery networks
have also emerged as structures of high interest on complex networks modelling [41].

2.3. Complex networks measures

In addition to the common structures of complex networks, there are other network properties
and descriptors. This is the case of the centrality measures that are widely used for describing the
network connectivity. The following are the most common centrality measures:

• Degree centrality [42]: This is defined as the number of links incident upon a node. That is,
a node with higher degree centrality will be supplied easier by any item flowing through the
network.

• Betweenness [43]: This is a measure of the relative number of shortest paths from all vertices to
all others that pass through a node.
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• Closeness [44]: This measures the average distance between the network nodes. The information
that this measure provides is on the density of nodes that exists in a network together with an
idea of how well each node is connected with the network in terms of geodesic distance.

• Eigenvector centrality [45]: This assigns relative scores to all nodes in the network based on
the concept that connections to high-scoring nodes contribute more to the score of the node
in question than equal connections to low-scoring nodes. Google’s PageRank [46] and Katz
centrality [47] are variations of this concept.

All these measures can also be defined at the link level in addition to the nodes. Thus, the previous
definitions can straightforwardly be extended to measures such as edge-betweenness, edge-closeness,
and so on.

Additional statistical measures are:

• Transitivity or clustering [48]: This property is based on counting the number of triangles in
the network - two linked nodes each of them linked to other third node in common. This is
ultimately a measure quantifying how network nodes tend to cluster together.

• Degree distribution [49]: A network node degree is the number of links connecting with that
node. This has associated the following measures:

– Degree density: This measure is regarding how strong the vertices of a graph are connected.
– Degree-correlation measures: This is computed between nodes of different nature or

function for the network (degree assortativity) [50].

2.4. Percolation and node ranking in complex networks

In a context of risk analysis and resilience assessment of engineered systems, it is worth
mentioning how to develop complex network based measures useful as surrogate indices or estimations
of the network performance [51]. Usually, these measures are based on the so-called percolation
analysis. Percolation analysis measures the consequence of nodes/links removal from the network
with respect to how the typical length of a path connecting pairs of nodes increases, eventually leading
to a disconnected network (infinite distance). Network resilience is a measure on how network
performance indices may vary after removal of such nodes and/or links out of the network. From
a more general perspective, percolation may be understood as a methodology for ranking nodes
in complex networks. This subsection presents as well alternative solutions relying on concepts of
diversity in connectivity (vitality) and other solutions based on computational Epidemiology processes.

2.4.1. Percolation analysis in complex networks

In Stauffer and Aharony [52], percolation theory is presented as a method to analyse cascading
failures in networks. Percolation models several types of network failures ranging from a single node
disruption to a scenario in which a critical fraction of the network components have failed [53]. Within
a complex networks framework, these failures are modelled by removal of the associated node/link
elements. A fully operative network can become into nonfunctional and disconnected network as
increasing the percolation of its components. Given the analogies between percolation theory and
cascading failures, percolation has been widely used for risk analysis and resilience assessment [54].

Monte Carlo (MC) methods are key for percolation in complex networks [55]. MC methods
generate random processes aiding to approach complex or large-scale problems [56].They can be
understood as a sampling mechanism that assigns a probability per node to be removed or to remain
in the network configuration [57]. In this way, it is possible to simulate several random disruption
scenarios and check the global consequences at removing a series of links or nodes. Note that removing
a node consequently removes its connection links. Li et al. [58] applied percolation theory to modelling
bottlenecks in transportation networks. Carvalho et al. [59] found it also suitable for the resilience
assessment of gas networks. Percolation analysis was also investigated in water networks by the works
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of Torres et al. [60] and also by [61]. Chen et al. [62] used percolation analysis to approach cascading
models for cyber-physical power systems.

2.4.2. Node ranking in complex networks

MC methods are also key for node ranking and prioritisation of assets to further management
and rehabilitation plans. For instance, Hui [63] proposed MC methods as a criterion for prioritising
network assets in order to approach a reliability ranking for maintenance issues. The following bullet
points gather some main features of node raking in networks.

• Percolation centrality is a way to better assess the network nodes importance. This measure
enhances the purely centrality based measures with node information with respect to the
percolation state [64] making it to vary with the network dynamics of the propagation processes
[65].

• Vital nodes are defined by their topological role in the network as well as by their function
and performance within the whole system [66,67]. These functions range from network
synchronisation [68] to information spreading [69].

• An alternative for locating sensitive nodes to trigger cascading failures comes by borrowing
models from Epidemiology [70–72]. How virus spread through a network has a direct parallelism
to the way failures can happen at infrastructures [73]. Epidemiology models have been already
adapted to aerospace infrastructure [74], transportation networks [75], and urban water networks
[76], among others.

2.5. Evolving and multilayer complex networks

The recent advances in real-time monitoring of Engineering systems are among the main reasons
why evolving complex networks should be considered further [77]. The network assets status, their
properties and even their existence vary over time in response to exogenous variables and given the
dynamic nature of the network flow. Barrat et al. [78] pointed out that these variations need to be
considered when modelling engineering systems through changing topology complex networks.

Understanding and modelling evolving networks have enabled the development of a wide and
diverse range of ranking algorithms that take the temporal dimension into account [65]. To approach
this challenge, Kim and Anderson [79] presented the temporal node centrality concept. This directly
extends the well-known centrality metrics by representing the dynamic case through a static network
with directed flows. An alternative methodology is based on identifying network hubs and describing
how they change over accumulation-time intervals [80]. Shekhtman et al. [81] showed that dynamic
complex networks are suitable to consider failures and recovery time of nested networks configurations
representing power grids, transportation systems, and communication networks.

Evolving complex networks can be uderstood as a special case of multilayer networks. A
multilayer network is a network with more than one dimension. This is often approached as an
adjacency multidimensional array (tensor) whose dimension can be reduced by constraining the
network space or by applying operators for flattening the tensor into a matrix [82,83]. It is possible to
analyse multilayer complex networks by generalising main network descriptors such as those on degree
centrality, clustering coefficients, eigenvector centrality, and modularity [84,85]. Diffusion dynamics
[86], failure spread processes [87,88], percolation analysis [89,90], and MAS simulations [91] have also
been developed for multilayer networks modelling. Milanović et al. [92] showed how multilayer
networks aid to model interconnected critical infrastructures. These systems performance depends on
a hierarchy of their parts that should work synchronised. These are the physical system, a hardware
and software system aiding management and control of the physical assets, and an organisational
system in which there is carried out the interrelationship between various infrastructures and/or
elements of the same system.
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3. Multi-agent systems

Multi-agent Systems have been in the research arena for at least 40 years now. Their foundations
date back to around 1980 when these systems were identified as a branch of the Distributed Artificial
Intelligence (DAI) field [93,94]. For the purpose of this review, we distinguish between multi-agent
system (MAS) and agent-based modelling and simulation (ABMS).

• MAS is the sub-field of DAI, originated as an approach to tackle complex problems, with a
distributed nature, by splitting work among cooperative computing units (agents) that plan,
reason and communicate with each other to execute their part of the solution [93]. The essence of
a MAS is its ability to enable solutions beyond the individual capabilities of each participating
agent [95]. Hence, the role of agents as part of a society and the mechanisms for coordination
and cooperation with others are fundamental characteristics of any MAS [5].

• ABMS is the approach for representing repeated interactions of agents within a social system
[96,97]. From this perspective, a multi-agent system is simply a network of dynamic entities
called agents [98]. ABMS focus on providing tools for observing and analysing the individual and
collective behaviour of agents in a simulated environment. Different sciences and engineering
disciplines have benefited from ABMS by representing humans [99], animals [100], financial
traders [101], machines[102] and other active entities. ABMS is used as a tool to explore
self-organisation and emergent behaviours and also to evaluate MAS theories, architectures,
protocols, etc. at a macro level, that otherwise would be costly, time-consuming or even
impossible to achieve.

3.1. Agents and their properties

Despite the progress made in last decades there is no agreement about what an agent is and what
its essential properties are. Some authors identify actions as distinctive characteristics of agents [103].
Hence, agents are action triggers with a wide spectrum of complexity in the process that lead to every
action. Other researchers use the notion of agency to distinguish between two types of agents: those that
exhibit properties attributed to hardware and software systems i.e., autonomy, social ability, reactivity
and pro-activeness and those that exhibit properties normally attributed to humans e.g., based mental
or emotional notions such as knowledge [104]. From this analysis, agents are regarded as computer
systems that perform autonomous actions, within the environment they are situated, in pursuit of
meeting their objectives [5]. Agents can also be seen as intentional systems, with representations of the
mental attitudes such as belief, desires and intentions [105]. From an ABMS perspective, agents are
autonomous, not necessary computing, entities that are proactive and interact with others [106]. The
agent’s behaviour is defined by a set of simple rules to respond to local events in a certain environment,
hence leading to the emergence of a system behaviour as opposite to pre-defined rules for the overall
system behaviour [107].

The key properties of agents are presented in table 1, we group them according to criteria where
these come from. We also provide a relevance assessment indicating if these are mainly found in
literature as essential or optional properties.

As consequence of the different interpretations of the agent notion, multiple authors, mainly from
an MAS perspective, have come out with classifications. Authors of [95] present a multi-dimensional
scheme where, based on agent’s properties, tasks and structure they propose 7 types: collaborative,
interface, mobile, information, reactive, hybrid, heterogeneous and smart agents. Another classification
[108] incorporates novel agent’s properties such as flexibility (lack of scripts on agent’s actions) and
character (believable personality and emotional state). To date, reactive and deliberative (goal-oriented)
agents have been widely used to differentiate key behaviour and properties of agents. It is also worth
noting from Franklin’s classification [108], the identification of biological and robotic agents in addition
to the computational ones.
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Criteria Property Description Relevance

Location Situatedness Agent is situated within and is a part of an environment[108]. Essential

Mobility
Able to travel across networks [95] and transport itself among
different machines [108] Optional

Abilities

Autonomy

Different views.
Absolute: the ability to manipulate its own capabilities [109].
Relative to other entities, subjects or functions, ability to perform an
action with independence of others [110] e.g. operate with no human
guidance [95].

Essential

Perception
Ability to perceive environment through sensors, with a perception
referring to an instant input and a perception sequence to the complete
history [111].

Essential

Communication Agents communicate with other agents, even people [108] Essential
Adaptation Agent learns, i.e. uses previous experience to change environment [108] Optional

Behaviour

Reactivity Agent responds in timely fashion to changes in environment [108,112] Essential

Pro-activeness

Agents have a purpose (goal) beyond acting in response to
environment [108], they take the initiative to satisfy these goals [112].
Agents follow a deliberation process that includes reasoning, planning,
negotiating and coordinating with other agents [95].

Optional

Rationality
Agents are expected to choose actions that maximise their
expected performance [111] Optional

Social
Agents have dynamic interactions with others that influence their
behaviour [97]. Essential

Table 1. Summary of Main Agent Properties

3.2. Multi-agent models

Multi-agent models (MAM) include representation for the individual agents, their interaction
and the environment [97]. The relevant agent definition depends on what they are representing e.g.,
humans, machines, particles, organisms or computing systems. The key components of multi-agent
models found in literature are illustrated in Fig. 1 and described below.

Figure 1. Key components of multi-agent models

The agent’s capabilities are influenced by the adopted notion of agent (see Section 3.1) but
commonly include communication with other agents, a mechanism for sensing the environment in order
to capture the state of the properties of interest; and a mechanism to act on or to influence others and
the environment. The knowledge model covers relevant information for the agent to operate, including
its own state as well as that of the environment and other agents [97]. In ABMS, knowledge is usually
simplified and modelled as set of properties and values or as a state-machine [113,114]. More complex
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knowledge representations have been proposed, mainly from a MAS perspective, for example using
the Fuzzy Cognitive Model (FCM) in [115] or ontologies in [116–118]. The approach for representing
agent’s knowledge is tied to the decision-making process. The decision-making approach uses agent’s
current knowledge to trigger actions given its capabilities and, hence, drive individual agent behaviour.
A simple approach to decision-making in ABMS is based on the generation of random numbers [119].
Bringing more rationality to the process is possible by using predefined condition/action rules where
a state-machine captures also the conditions for the transitions among them [114].

The work on intentional systems [120], have influenced more complex models that try to mimic
the way humans make decisions. In the belief-desire-intention (BDI) model, the information perceived,
by the agent as facts, are the beliefs, and the desires and intentions represent a pool of future states the
agent might reach, with the difference that an agent is only committed to work towards the intentions.
Other cognitive, conceptual and mathematical models for modelling human decision-making in ABMS
are reviewed in [121]. From a MAS perspective, the decision-making models have been widely studied
in the context of a more complex reasoning process and they are the distinctive feature of the agent
architectures. The three main classes of architectures include reactive, deliberative and hybrid [122].
For example, the BDI models are a key reference for building deliberative architectures [123].

The interaction models drive the collective system behaviour and enable communication
between agents. On top of this communication the coordination model enables the management
of inter-dependencies between agent’s activities [124]. The interactions between agents might happen
spontaneously within the environment (e.g. in case of agents making decisions randomly) or agents
might try to achieve goals rationally which requires interactions to follow a defined model. In the later
case, different forms of coordination have been explored as it is an essential condition for complex
collective behaviours including conflict-resolution, cooperation, organisation, collective learning,
planning, control and optimisation.

The coordination between agents can be based on direct or indirect communication. In the
first case, extensive work has been done around definition of languages for communication between
agents, for example, using different types of messages according to the purpose and categories of the
speech acts theory [125,126]. Indirect coordination is possible when agents observe updates on the
environment state produced by other agents, for example, authors of [127] present a coordination
model inspired in the ant colony behaviour that does not require direct agent communication. One
of the main problems in coordination is consensus, i.e. agents agreement over a certain value of
interest, depending on their states [128]. Consensus can be achieved, for example, by specifying rules of
information exchange [129].

Different techniques for achieving coordination have been proposed. Authors of [130,131] present
a review of different approaches for coordination that include organisational structures (defined a-priori
by agent’s responsibilities, capabilities, connectivity and control flow), contracting (to accomplish a
set of tasks), planning (centralised or distributed plans that drive their behaviour/operation), and
negotiation (seek agreement with others). In MAS literature, there is no clear distinction between
negotiation and consensus. Other nature-inspired models for coordination include stigmergy (indirect
coordination through, for instance, the environment), chemical coordination, physical coordination,
and biochemical coordination [132]. Animal organisation has inspired models for addressing motion
of agents. For example, swarms have enabled distinction of different group of agents as introduced by
[98] and presented in Table 2. Fig. 2 identifies some of the most common coordination models found
in literature.

The environment provides the space where agents interact, it imposes constraints for their operation
(e.g. boundaries) and provides resources they can consume [97]. The environment is also the place
where relevant events under study happen so the agents can perceive them and consider in their
operation. Some examples of environments in ABMS include simulated geographical location [133],
living organisms such as animals [134], the financial markets [135] and a product manufacturing
shop floor [102]. In MAS, the environment is usually a software platform that offers services such as
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Figure 2. Common coordination models found in literature

communication, life cycle management or advertisement of agent’s services, for instance, JADE [136]
or EVE [137].

Swarm Formation
Structure Low High
Quantity of
agents High Low

Motion
Dynamics Uncertainty Deterministic

Table 2. Swarms and Formations Differences according to [98]

3.3. Agent-based complex networks

Agent-based complex networks is a research topic directly related to evolving complex networks.
This proposes a new management framework where each system’s element cooperates with others
towards their own individual targets, also achieving a global solution. Agent-based systems suit
well at dealing with the nowadays ubiquity of sensors, smart-meters and, in general, cyber-physical
systems. Thus, agent-based systems are of major importance for monitoring and controlling engineered
systems. They are also straightforwardly related to the distributed information and intelligence behind
to manage the Internet of Things of assets placed in a network [138,139]. Agent-based solutions have
shown to be suitable for smart-grids [140,141], transportation [142,143], water distribution systems
[144], and telecommunication infrastructure [145]. The works of Cardellini et al. [146], Setola et al.
[147] and Iturriza et al. [148] showed how MAS are suitable to model network interdependence.

In a more than ever interconnected world of monitor and control engineered systems, there is the
emergence of cyber-attacks which are, today, an important concern for system processes functioning
[149,150]. Cyber-attacks typically interfere with the Supervisory Control And Data Acquisition
(SCADA) systems. In normal conditions, SCADA is ready for leading industrial automated control
of systems at near real-time. However, cyber-attacks target those systems misleading them and even
blocking their readings while they are disguised as normal commands [151]. This directly affects the
natural system performance. In gas transmission [152,153], SCADA system controls and monitors
moisture, quantity, pressure and temperature of the network of pipelines. In water distribution systems,
cyber-attacks can be considered to control unexpected scenarios that can potentially produce shortages
and reduce the water quality for public consumption [154,155]. In the case of smart-grids, cyber-attacks
can cause damage at connecting physical assets [156,157]. In transportation, cyber-attacks might be
in the way vehicles dynamics and monitoring is collected and analysed [158]. In telecommunication
systems the cyber-attacks may directly affect the network topology by line-addition, line-removal,
and line-switching [159]. Also in telecommunications and mobile networks, cyber-attacks can directly
inject false data in the network, spread malware, send spam, or collect information for illegal purposes
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[160]. Self-organised networks [161,162] and virtual network functions [163,164] aid to get an early
detection and better mitigation of cyber-attacks in mobile networks [165,166].

4. Control and optimisation of complex networks and multi-agent systems

This section presents how MAS and complex networks have been used to address a wide set
of control and optimisation problems arising in Systems Engineering. We particularly focus on
representative applications related to manufacturing processes and critical infrastructure management.
Thanks to them we show how complex networks and MAS are able to model, control and optimise
Engineering systems of main importance.

4.1. Complex networks for control and optimisation

Controlling complex networks attempts to guarantee that such networks can reach a targeted
performance. This is through monitoring how their state evolves on time, under a range of scenarios,
and what actions are better placed to reach the aimed control. Control is also achieved through MAS,
as it is stated below. However, network dynamics and topology play a key role in the success of such
control process [167]. This can also be checked at the paper of Ding et al. [168] where the authors
select network key-nodes to be connected to external controllers. Such key nodes can be selected by
their relative importance on propagating errors/information or by their connectivity. Overall, this
is a particular case of the so-called landmark nodes [169]. Landmark nodes are special nodes in the
network, typically aiding to speed up internal computations such as centrality measures. This is of
interest in case of dealing with large-scale networks or with near real-time operations [170,171]. For
instance, in the work of Giudicciani et al. [172] landmark nodes are selected as nodes in the boundary
of network communities (nodes with links connecting nodes of other community). This set of landmark
nodes shows to be suitable to get faster computation of the shortest paths in addition to improve the
overall management of complex networks related to critical infrastructures.

Control is naturally related to optimisation tasks. To this end, there are several works on
network dynamics, topology and design to optimise resilience [173], recovery [174], connectivity [175],
performance [176], and even network control [177]. Overall, complex networks couple with MAS in
many optimisation processes. Complex networks have shown to be essential to assign agents (or agents
of different breeds) to network nodes depending on their importance. Still, MAS for optimisation gain
the space, distance, and neighbourhood notions thanks to the complex network topology. To this end,
a network of agents (likely different to the complex network aimed to be controlled or optimised) may
also be necessary for an optimal activity between agents, and so providing an enhanced response.

4.2. MAS architectures for control and optimisation

The control architecture determines, among others, the components of the system, the
responsibilities and interactions [178]. The control architecture is tailored for each system and might
include specific domain functions or entities. However there are some common abstractions and
approaches that can be reused across different problems and domains. This encompasses terminology,
structure, a standard template of components and their relationships, and even examples [179]. There
are three main distributed control architectural approaches: hierarchical, heterarchical and holonic
[180]. These three are briefly introduced in the following bullet points:

• Hierarchical architectures imply components or functions are structured along two or more levels
with the upper levels having broader view and influence over the lower levels [181]. They also
have a command/respond communication across the levels with decision-making in the higher
levels, whereas the modified hierarchical architecture shifts the command-based communication
to a coordination approach where subordinates might interact with each other within a level in
order to complete some of their tasks, without requiring constant instructions from a higher level
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[180]. Hierarchical architectures are usually rigid and lack flexibility to adapt to changes and
disturbances [178].

• Heterarchical architectures lack a direct controlling component, instead the supervision is spread
across the system and cooperatively carried out [181,182]. The key aspect is that functions
are allocated in distributed entities that make decisions with a local perspective. These are
autonomous entities and use communication protocols to cooperate with other peers without
a central coordinator. The horizontal distribution nature of the functions implies there is no
consideration of a global view, which prevents autonomous entities to reach global optimum
goals and incorporates unpredictability to the system.

• Holonic architectures intend to overcome disadvantages of hierarchical and heterarchical
approaches by offering a hybrid solution [179,180,183]. In a holonic architecture the system
is structured around “holons” –entities that are both a sub-whole, from an interior perspective,
an a part, from a system-wide point of view [184]– that can be arranged in different forms
according to concrete system requirements. The generic holonic form combines distributed and
centralised optimisation by enabling holons to react timely to disturbances and consider updated
local views when making decisions while operating under the view of a central coordinator
holon.

MAS organisation may result into control as shown above and also into optimisation processes.
This optimisation takes place thanks to distributed, local objectives of agents (or aggregation of agents)
that negotiate/coordinate/cooperate with other agents (or aggregation) towards a global optimum
[185].

4.3. Representative applications

This subsection presents a number of representative applications of complex networks and
agent-based control tackling key challenges in different Systems Engineering domains. We give special
emphasis to application requirements and key architectural aspects with designs that have led to
concrete implementations either of real systems or prototypes.

4.3.1. Supply chain and manufacturing networks

Control of manufacturing processes is a challenging work-stream that has obtained attention from
researches from both MAS and complex networks. The production processes incorporate heterogeneity
of functions, goods, workflows, work products (i.e. orders) and resources, that are usually constrained
and require efficient utilisation while ensuring the quality of the end products. Several solutions
have been proposed to manage and control production of goods in shop floors [183,186–191]. The key
control requirements cover scheduling, simultaneous processing or orders, quality assurance, real-time
customisation and context-aware servicing and maintenance. These requirements can only be met
by flexible and agile factories able to re-configure and adapt to changes, even at late stages of the
manufacturing process. The need of a supervision function aligned with this dynamics is implicit to
these requirements.

• Complex networks: Supply chain and manufacturing processes have a proper research avenue
within a network science framework [192]. To this end, simplistic chain models can be
approached by complex systems allowing, for instance, a deeper interpretation of the relationship
between different supply actors [193]. The paper of Hearnshaw et al. [194] is a pivotal work
on supply chain network theory where complex network developments are shown to be a
useful working environment. There also are specific applications, as it is the analysis of
supply chains for the aerospace industry [21]. Complex networks make, then, possible to
extract useful information such as nonlinear pathways between firms, geographic locations and
industrial-sectors communities, and connectivity hub firms.
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• MAS: In the last two decades, distributed approaches have gained attention, becoming a solid
alternative to monolithic architectures [195,196]. Together, holonic manufacturing systems (HMS)
and multi-agent systems help to overcome the limitations of the centralised approaches such as
lack of flexibility, agility, dynamics and re-configuration features [189]. In HMS, the scheduling
is intended to be realised from the cooperative interaction of holons, while ensuring that global
factory concerns are addressed, sometimes, with some degree of central coordination [183]. The
agent notion has been used as both a solution domain abstraction and its corresponding software.
When used as software building blocks, agents complement broader engineering concepts such
as holon [197], intelligent products [198,199] and self-service assets [190].

4.3.2. Electricity power grids

Electrical power is essential for basic services such as providing lighting, heating, cooling and
refrigeration in the built environment. Computers, mobile phones and other domestic appliances use
electrical power. Electricity is generated at power plants and moves through a complex system called
the ’grid’. The grid is made of electricity sub-stations, transformers, and power lines that connect
electricity load from source providers to users.

• Complex networks: Electrical power grids can be considered as complex networks [200]. The
nodes are power plants, and distributing and transmission substations [201]. The links are the
power lines which may have different voltage (see Table 3). At urban level, grids often become
into a higher inter-connectivity system aiming to get reliability in the supply. Smart grids [202]
enhance the traditional electricity supply by adding digital technology which allows utilities
and customers to receive information from and communicate with the grid. This benefits on
optimal energy generation, on electricity and meter-reading cost, and on reliability in case of
interruptions and blackouts [203]. The work of Das et al. [204] shows how topological, physical
and electrical features of a power grid provide complementary information. As a consequence,
all of such features should be considered further to better address near real-time challenges in
power grids.
• MAS: Smart grids have been widely supported by SCADA systems. However, other distributed

approaches have been used to overcome limitations of traditional supervisory control systems
[205]. Particularly, multi-agent systems have become an enabler of distributed control for the
power systems providing some of the supervision functions without a hierarchical or central
supervisor. The requirements for control in power systems include reliability, economic efficiency
and capacity to support from individuals to large industrial customers. Some of the problems
addressed include market operations, time-sensitive control, service restoration and system
evolution/flexibility. Authors of [206,207] present a solution to improve, in real time, the energy
market performance with a large number of multiple production and consumption units, each
one with different objectives. Based on an auction model, agents use a price vector to gather the
quantity of bids for a particular energy demand, and this enables them to decide on the supplier
considering the global desire [207]. A similar approach is presented in [208], where a distributed
architecture with a single control layer and multiple distributed agents is organised around a set
of central facilities.

4.3.3. Transportation systems

A transportation system is a spatial network which permits either vehicular movement, flow of
people, or products supply. The transportation system comprises transport infrastructure, vehicles,
and equipment. This should also be considered the transportation assets operation and service to the
end-user. This is of main importance for society development and well-being as millions of citizens
worldwide use transportation systems on a daily basis.
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• Complex networks: Instances of transportation systems are such important infrastructures as
roads and streets, railways, and airline networks. All of them are organised in network patterns
[209,210] (see Table 3). For instance, by considering urban streets and roads it is possible to take
segments of these routes as links. The intersections and ends are considered as nodes [211–213].
Another example is the associated network to a city underground transit as shown in Figure 3,
where the nodes represent the metro-stations and the links are the train lines connecting such
stations. Some of the most common issues in transportation and communication systems are
related to link and node congestion [214] in a network which often have a scale-free topology.

• MAS: Smart transportation systems [215] also named intelligent transport systems aim to achieve
traffic efficiency by minimising their associated issues such as traffic congestion [216]. Having
real-time data of the network status, it is possible to release traffic alert messages and public
safety messages. Associated with the concept of smart transportation systems comes the idea of
smart, resilient and energy efficient cities. Baronti et al. [217] proposed an integration of energy
storage systems for the smart transportation and the smart grid. A distributed hierarchical
approach for control of automated highways is presented in [218]. The architecture is based on a
hierarchical control where supervision functions are distributed among four layers. Two layers
(network and link) are in the roadside and two other layers (coordination and regulation) are in
the vehicle.

Figure 3. London underground scheme as example of complex network. The layout shows a
quasi-planar (few crosses between links) as well as a core-periphery (more densely connected at
the centre) structure.

4.3.4. Water distribution systems

Water supply services are naturally related to food availability, health and hygiene. However,
they are also key for energy, manufacturing, and other fundamental services. Drinking water comes
from reservoirs from which water flows through pressurised pipes to tanks (to storage water for daily
supply operations in small urban areas) and demand points. The risks in water distribution systems
are associated with pipe bursts, contamination events, and lack of resources during drought periods
that are usually of high demand. These events can cause socioeconomic losses but also directly affect
the citizen health and well-being.

• Complex networks: Water distribution systems can be considered as complex networks where
nodes are water sources and demand points and links are water pipes, valves and pump stations
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[219] (see Table 3). The works of Herrera et al. [220] and di Nardo et al. [221] present instances on
how complex network analyses provide useful approaches for the operation and management of
water distribution systems. Features and positions of valves and pumps have special relevance
for the global water network performance. Smart water networks extend the traditional water
distribution system elements by including assets such as sensors and flow-meters, providing
information of the network performance. Among other advantages, Candelieri et al. [222]
highlighted that the cyber-physical water system is key for more efficient water distribution
network management, hydraulic performance, and optimised network protection [155].

• MAS: Water networks are heterogeneous, ranging from ad hoc farm irrigation systems to critical
water infrastructures. The authors of [223] use agent-based modelling to sampling large size
water supply networks graphs and, then, propose their further division into district metered
areas for management purposes. Similar work is found in [224] and [225]. From an asset
management point of view, it is worth mentioning the work of Ayala-Cabrera et al. [226] since
the authors use an agent-based system to locate and classify buried pipes. Authors of [227]
propose an architecture based on a SCADA system that uses Model Predictive Controller (MPC)
[228] techniques for controlling an automatic water canal. A key contribution of this architecture
is to extend the standard SCADA system with capabilities for complex mathematical processing
via a Dynamic Data Exchange (DDE) protocol.

4.3.5. Gas transmission

Gas supply is essential for heating, hygiene, and cooked food. The gas is transported by high
pressure transmission pipelines from the production facility to the entry point (gate station) of the
distribution network. The transmission systems are made by high pressure pipelines, compressor
stations, and storage facilities among other elements. From the gate station, natural gas moves into
distribution lines towards users at home. The distribution network consists of smaller distribution
pipes which typically supply urban areas. Each distribution system is connected to the higher pressure
transmission system at a pressure reduction station.

• Complex networks: Pipelines for gas transmission can be considered a complex network [229].
Gas pipelines and compressor stations are network-links and underground storage systems and
gas stations are network nodes (see Table 3). Smart gas grids are controlled near real-time to meet
the time-varying gas demand and to interact with the electrical power smart grid [230]. In this
regard, Bliek et al. [231] pictured an ideal smart gas grid as the one that is able to communicate
with the smart electric power grid for an improved energy distribution. Brown et al. [232] also
pointed out the smart grid capacity to transport non-conventional gases such as biogas or syngas.
• MAS: The authors of [233] introduce a holonic architecture for the control of continuous

production complexes (CPC). They work with the case of oil production, where various complex
processes take place involving extraction, transportation, treatment and delivery of oil and
secondary products (e.g. gas). Holons are linked to production groups that are a specialisation of
production units (PU) representing oil wells or flow stations [179]. The PUs aggregate orders,
resources and a component of process supervision and control. The supervisory layer carries
out standard functions of measurement, identify state changes on discrete process and update
the state. Holons are implemented with Temporary Agent Programs (TAP) that negotiate to
accept mission assignments. A supervisor agent determines the production method to apply for
achieving the missions, and requests for external resources to other PUs.

An example of the interdependence between the electric power network and the natural gas
system is shown at Figure 4. Several elements for the gas transmission such as PUs and pipeline
compressors directly rely on the electricity supply.
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Figure 4. Geographical and functional infrastructure interdependence between the national electricity
grid (left) and the gas transmission infrastructure (right) for Great Britain. Figure adapted from [234]
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Table 3. Elements related to nodes and links for a variety of engineering systems

Nodes Links Topology Flow Quality of Service Challenges
Electricity transformers, users

sub-stations
power lines
cables

quasi-planar, radial
small-world, core-p.

electric load
Ohm’s, Kirchhoff

continue service
meeting demand

peak demand
energy cuts

Gas transformers, users
gas stations

transmission lines
pipelines, valves

quasi-planar
small-world, core-p.

liquid gas
Floyd algorithm

composition
meeting demand

safety
energy cuts

Water tanks, users
reservoirs

pump stations
pipes, valves

quasi-planar
core-periphery

water
hydraulic laws

drinking water
quantity, pressure

low pressure
contamination

Transportation cities
stations

railways
roads, streets

quasi-planar, radial
core-periphery

vehicles, commodities
circulation rules

safety
synchronisation

accidents
delays

Telecom. computers, routers
peripheral devices

cables
wireless
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core-periphery

voice, data, video
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speed
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ubiquity
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5. Discussion and research directions

Advances on complex network analysis have boosted their ability to represent more realistic
examples of real cases. For instance, there have been important developments on weighted networks
[235] and networks with time-varying characteristics and topology [236]. Multiscale complex networks
[237] and networks of networks [238] have been recently a very active research topic. Along with
the essentials, the current paper already introduced highly advanced methods in complex networks,
MAS and their combination. However, there are some methods and technologies of particular interest,
having the potential of becoming main topics in future research. This section highlights important
insights and research avenues.

5.1. Future methodology developments

Applied complex networks to Systems Engineering should come with developments at multiscale,
dynamic and multidimensional systems. On top of this, MAS will play an essential role providing
these networks intelligence in their network flow, evolution, and protection (self-healing, resilient
design, and so on). Both, complex networks and MAS, should be integrated in a process in which
distributed, networked agents agree in a common objective for optimal systems control and decision
making. There is, then, necessary a consensual dynamics in complex networks, working with the
streams of time series varying over time [239] and how the agents can reach a consensus at near
real-time is a research avenue regarding the methodology development as well as the applications.
The rest of the section describes other main research challenges for complex networks and MAS in
Systems Engineering.

5.1.1. Complex networks

• Time series in networks: Temporal networks might well be understood as the study on how
network topology and features vary over time. Some approaches use multilayer networks to
represent as many layers as time units capturing the network status variations through snapshots
at each time. This research framework being relatively new, it should be developed further by
conducting proper analysis on the streams of time series data associated to complex networks.
That is, through the analysis of the temporal evolution of such streams and how it has an impact
on the very network structure and performance. As a consequence, future research will be about
statistics and inference in dynamic graphs [240]. The challenge may be extended further to the
more general framework of machine learning in networks.

• Graph convolutional neural networks: Convolutional neural networks (CNN) have been mainly
focused so far on image analysis. A series of convolutional filters and pooling layers are imposed
over the matrix representing such images. The process ends with a layer where the actual learning
and the image is approached, for instance, is classified. However, there is an emergence of the
so-called geometric deep learning in which the CNN input is a manifold or graph-structured
data [241]. In the case of CNN over graphs, the input can be the adjacency or the Laplacian
matrices associated to such a graph. Then, the learning is similar to the developed for study
images since the image input is also a matrix. There is a ample room for research on graph-CNN
on the analysis of (evolving) complex networks representing engineering systems [242].

5.1.2. Multi-agent systems

• Big data and calibration of ABMS: The validity of agent-based models is given by the real data
and theories it uses to base behaviour of agents in the model. Thanks to the wide spreading
of sensors, we are experiencing an increased ability to capture huge amounts of data related
to physical properties from living/active entities. These data can set the basis for modelling,
validation and calibration of agent-based models across different scientific disciplines. A key
challenge is how to process these data effectively while providing feedback to the model. The use
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of supervised, unsupervised and semi-supervised learning techniques can produce new methods
for model calibration, for example, by enabling classification and comparison of key features of
the model within a particular observation window, or by easing the definition of baselines for
predicted behaviours across the model [243,244].
• Breaking down learning phase with MAS: This future research highlights the problem of agent

breeds learning to teach other agents within a MAS environment. The initial efforts have been via
reinforcement learning [245] in which each agent takes the role of student or teacher, requesting
and providing advice, respectively, at the appropriate moments looking forward an improved
overall system performance [246]. There is a number of further challenges coming from this
approach, to deal with complex domains for real-world applications.

5.2. Future applications in Systems Engineering

Advances on complex networks and MAS consequently lead to advances further in their
applications for Systems Engineering. There are foreseen some key applications as a potential
breakthrough in Systems Engineering briefly introduced in the following bullet points.

• Cyber-physical systems (CPSs): CPSs are representations of physical, spatially distributed
systems into a network of sensors and actuators leading to a suitable monitor and control of the
system processes. The final aim is to reach optimal decision-making over the system for their
optimal management. There are emerging challenges for CPSs to address further in which MAS
and complex networks will play a significant role. For instance, in industrial systems such as
smart electric grids there is a need of decentralised, adaptive CPSs framework towards their
operative automation and optimal performance [247]. Other systems may also benefit from the
use of MAS and complex networks over their CPSs, from smart manufacturing and logistics
[248] to food supply chain systems [249].

• Digital twins (DT): DTs are a digital replica of physical assets and engineering systems taking
into account their internal functioning and external processes that may affect their performance.
Working with digital twins it is possible to test in advance systems performance under any
regular or anomalous scenario to aid the decision making process and to accurately foresee
further systems issues. One of the key challenges for future digital twins is on increasing their
dimensionality and complexity. This will make necessary to create a new generation of systems
engineering modelling systems relationships and interdependencies at large scale. To accomplish
this challenge, it will be necessary to combine a set of relevant methods such as complex networks,
MAS and visualisation processes, among others [250].

• Blockchain technologies: Blockchain is a global ledger that records transactions on a chain of
blocks. Within a complex network framework, these blocks can be expressed as network nodes,
while transactions are network links representing the exchanges between nodes. Future research
will be based on temporal and dynamic complex networks to model and analyse blockchain
technologies. Still, as the information flow is passing through the network, agent based systems
will also have a key role on synchronisation and network control tasks [251].
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9. Gosak, M.; Markovič, R.; Dolenšek, J.; Rupnik, M.S.; Marhl, M.; Stožer, A.; Perc, M. Network science of

biological systems at different scales: a review. Physics of life reviews 2018, 24, 118–135.
10. Demazeau, Y.; Müller, J.P. Decentralized Ai; Elsevier, 1990.
11. van Steen, M.; Tanenbaum, A.S. A brief introduction to distributed systems. Computing 2016, 98, 967–1009.
12. Yang, T.; Yi, X.; Wu, J.; Yuan, Y.; Wu, D.; Meng, Z.; Hong, Y.; Wang, H.; Lin, Z.; Johansson, K.H. A survey of

distributed optimization. Annual Reviews in Control 2019, 47, 278 – 305.
13. Obrovac, M. Chemical computing for distributed systems: algorithms and implementation. PhD thesis,

Université Rennes 1, 2013.
14. Feinerman, O.; Korman, A. Theoretical distributed computing meets biology: A review. International

Conference on Distributed Computing and Internet Technology. Springer, 2013, pp. 1–18.
15. Morstyn, T.; Hredzak, B.; Agelidis, V.G. Network topology independent multi-agent dynamic optimal

power flow for microgrids with distributed energy storage systems. IEEE Transactions on Smart Grid 2016,
9, 3419–3429.

16. Kiesling, E.; Günther, M.; Stummer, C.; Wakolbinger, L.M. Agent-based simulation of innovation diffusion:
a review. Central European Journal of Operations Research 2012, 20, 183–230.

17. Nair, A.S.; Hossen, T.; Campion, M.; Selvaraj, D.F.; Goveas, N.; Kaabouch, N.; Ranganathan, P. Multi-Agent
Systems for Resource Allocation and Scheduling in a Smart Grid. Technology and Economics of Smart Grids
and Sustainable Energy 2018, 3, 15.

18. Bollobás, B. Modern graph theory; Vol. 184, Springer Science & Business Media, 2013.
19. Bornholdt, S.; Schuster, H.G. Handbook of graphs and networks: from the genome to the internet; John Wiley &

Sons, 2006.
20. Scott, J. Social network analysis; Sage, 2017.
21. Brintrup, A.; Wang, Y.; Tiwari, A. Supply networks as complex systems: a network-science-based

characterization. IEEE Systems Journal 2015, 11, 2170–2181.
22. Guimera, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. nature 2005, 433, 895.
23. Zio, E. From complexity science to reliability efficiency: a new way of looking at complex network systems

and critical infrastructures. International Journal of Critical Infrastructures 2007, 3, 488–508.
24. Erdos, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 1960, 5, 17–60.
25. Watts, D.J.; Strogatz, S.H. Collective dynamics of ’small-world’ networks. Nature 1998, 393, 440.
26. Barabási, A.L. Scale-free networks: a decade and beyond. Science 2009, 325, 412–413.
27. Viana, M.P.; Strano, E.; Bordin, P.; Barthelemy, M. The simplicity of planar networks. Scientific reports 2013,

3, 3495.
28. Boeing, G. Planarity and street network representation in urban form analysis. Environment and Planning

B: Urban Analytics and City Science 2018, p. 2399808318802941.
29. Diet, A.; Barthelemy, M. Towards a classification of planar maps. Physical Review E 2018, 98, 062304.
30. Strano, E.; Nicosia, V.; Latora, V.; Porta, S.; Barthélemy, M. Elementary processes governing the evolution

of road networks. Scientific reports 2012, 2, 296.
31. Giudicianni, C.; Di Nardo, A.; Di Natale, M.; Greco, R.; Santonastaso, G.F.; Scala, A. Topological taxonomy

of water distribution networks. Water 2018, 10, 444.
32. Bowden, R.; Nguyen, H.X.; Falkner, N.; Knight, S.; Roughan, M. Planarity of data networks. Teletraffic

Congress (ITC), 2011 23rd International. IEEE, 2011, pp. 254–261.
33. Nussbaum, Y. Network flow problems in planar graphs. PhD thesis, PhD thesis, Tel-Aviv University, 2014.
34. Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proceedings of the

National Academy of Sciences 2002, 99, 7821–7826.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2020                   doi:10.20944/preprints202001.0282.v1

Peer-reviewed version available at Processes 2020, 8, 312; doi:10.3390/pr8030312

https://doi.org/10.20944/preprints202001.0282.v1
https://doi.org/10.3390/pr8030312


20 of 28

35. Rieckmann, J.C.; Geiger, R.; Hornburg, D.; Wolf, T.; Kveler, K.; Jarrossay, D.; Sallusto, F.; Shen-Orr, S.S.;
Lanzavecchia, A.; Mann, M.; others. Social network architecture of human immune cells unveiled by
quantitative proteomics. Nature Immunology 2017, 18, 583.

36. Kurvers, R.H.; Krause, J.; Croft, D.P.; Wilson, A.D.; Wolf, M. The evolutionary and ecological consequences
of animal social networks: emerging issues. Trends in Ecology & Evolution 2014, 29, 326–335.

37. Brentan, B.; Campbell, E.; Goulart, T.; Manzi, D.; Meirelles, G.; Herrera, M.; Izquierdo, J.; Luvizotto Jr, E.
Social Network Community Detection and Hybrid Optimization for Dividing Water Supply into District
Metered Areas. Journal of Water Resources Planning and Management 2018, 144, 04018020.

38. Palau, A.S.; Liang, Z.; Lütgehetmann, D.; Parlikad, A.K. Collaborative prognostics in Social Asset Networks.
Future Generation Computer Systems 2018.

39. Prokhorenkova, L.O.; Prałat, P.; Raigorodskii, A. Modularity of complex networks models. International
Workshop on Algorithms and Models for the Web-Graph. Springer, 2016, pp. 115–126.

40. Lee, S.H.; Cucuringu, M.; Porter, M.A. Density-based and transport-based core-periphery structures in
networks. Physical Review E 2014, 89, 032810.

41. Verma, T.; Russmann, F.; Araújo, N.; Nagler, J.; Herrmann, H.J. Emergence of core–peripheries in networks.
Nature Communications 2016, 7, 10441.

42. Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and
shortest paths. Social Networks 2010, 32, 245–251.

43. Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, pp. 35–41.
44. Wuchty, S.; Stadler, P.F. Centers of complex networks. Theoretical Biology 2003, 223, 45–53.
45. Bonacich, P. Factoring and weighting approaches to status scores and clique identification. Mathematical

Sociology 1972, 2, 113–120.
46. Brin, S.; Page, L. Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer

Networks 2012, 56, 3825–3833.
47. Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43.
48. Serrano Moral, M.; Boguñá, M.; others. Clustering in complex networks. I. General formalism. Physical

Review E, 2006, vol. 74, núm. 5, p. 056114-1-056114-9 2006.
49. Suchecki, K.; Eguíluz, V.M.; San Miguel, M. Voter model dynamics in complex networks: Role of

dimensionality, disorder, and degree distribution. Physical Review E 2005, 72, 036132.
50. Noldus, R.; Van Mieghem, P. Assortativity in complex networks. Journal of Complex Networks 2015,

3, 507–542.
51. Gao, J.; Barzel, B.; Barabási, A.L. Universal resilience patterns in complex networks. Nature 2016, 530, 307.
52. Stauffer, D.; Aharony, A. Introduction to percolation theory: revised second edition; CRC press, 2014.
53. Li, D.; Zhang, Q.; Zio, E.; Havlin, S.; Kang, R. Network reliability analysis based on percolation theory.

Reliability Engineering & System Safety 2015, 142, 556–562.
54. Gao, J.; Liu, X.; Li, D.; Havlin, S. Recent progress on the resilience of complex networks. Energies 2015,

8, 12187–12210.
55. Chen, X.G. A novel reliability estimation method of complex network based on Monte Carlo. Cluster

Computing 2017, 20, 1063–1073.
56. Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the Monte Carlo method is so important today. Wiley

Interdisciplinary Reviews: Computational Statistics 2014, 6, 386–392.
57. Newman, M.E.; Ziff, R.M. Fast Monte Carlo algorithm for site or bond percolation. Physical Review E 2001,

64, 016706.
58. Li, D.; Fu, B.; Wang, Y.; Lu, G.; Berezin, Y.; Stanley, H.E.; Havlin, S. Percolation transition in dynamical

traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences 2015,
112, 669–672.

59. Carvalho, R.; Buzna, L.; Bono, F.; Masera, M.; Arrowsmith, D.K.; Helbing, D. Resilience of natural gas
networks during conflicts, crises and disruptions. PloS one 2014, 9, e90265.

60. Torres, J.M.; Duenas-Osorio, L.; Li, Q.; Yazdani, A. Exploring topological effects on water distribution
system performance using graph theory and statistical models. Journal of Water Resources Planning and
Management 2016, 143, 04016068.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2020                   doi:10.20944/preprints202001.0282.v1

Peer-reviewed version available at Processes 2020, 8, 312; doi:10.3390/pr8030312

https://doi.org/10.20944/preprints202001.0282.v1
https://doi.org/10.3390/pr8030312


21 of 28

61. Facchini, A.; Scala, A.; Lattanzi, N.; Caldarelli, G.; Liberatore, G.; Dal Maso, L.; Di Nardo, A. Complexity
science for sustainable smart water grids. Italian Workshop on Artificial Life and Evolutionary
Computation. Springer, 2016, pp. 26–41.

62. Chen, Y.; Li, Y.; Li, W.; Wu, X.; Cai, Y.; Cao, Y.; Rehtanz, C. Cascading Failure Analysis of Cyber Physical
Power System With Multiple Interdependency and Control Threshold. IEEE Access 2018, 6, 39353–39362.

63. Hui, K.P. Monte Carlo network reliability ranking estimation. IEEE Transactions on Reliability 2007,
56, 50–57.

64. Piraveenan, M.; Prokopenko, M.; Hossain, L. Percolation centrality: Quantifying graph-theoretic impact of
nodes during percolation in networks. PloS one 2013, 8, e53095.

65. Liao, H.; Mariani, M.S.; Medo, M.; Zhang, Y.C.; Zhou, M.Y. Ranking in evolving complex networks. Physics
Reports 2017, 689, 1–54.

66. Morone, F.; Makse, H.A. Influence maximization in complex networks through optimal percolation. Nature
2015, 524, 65.

67. Lü, L.; Chen, D.; Ren, X.L.; Zhang, Q.M.; Zhang, Y.C.; Zhou, T. Vital nodes identification in complex
networks. Physics Reports 2016, 650, 1–63.

68. Jalili, M.; Yu, X. Enhancement of synchronizability in networks with community structure through adding
efficient inter-community links. IEEE Transactions on Network Science and Engineering 2016, 3, 106–116.

69. Jalili, M.; Perc, M. Information cascades in complex networks. Journal of Complex Networks 2017, 5, 665–693.
70. Chen, D.; Lü, L.; Shang, M.S.; Zhang, Y.C.; Zhou, T. Identifying influential nodes in complex networks.

Physica A: Statistical mechanics and its applications 2012, 391, 1777–1787.
71. Lawyer, G. Understanding the influence of all nodes in a network. Scientific reports 2015, 5, 8665.
72. Zhang, Z.K.; Liu, C.; Zhan, X.X.; Lu, X.; Zhang, C.X.; Zhang, Y.C. Dynamics of information diffusion and

its applications on complex networks. Physics Reports 2016, 651, 1–34.
73. Loecher, M.; Kadtke, J. Critical Infrastructures, Scale-Free˜ Networks, and the Hierarchical Cascade of

Generalized Epidemics. In Applications of Nonlinear Dynamics; Springer, 2009; pp. 211–223.
74. Dai, X.; Hu, M.; Tian, W.; Xie, D.; Hu, B. Application of Epidemiology Model on Complex Networks in

Propagation Dynamics of Airspace Congestion. PloS one 2016, 11, e0157945.
75. Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex

networks. Reviews of Modern Physics 2015, 87, 925.
76. Bardet, J.P.; Little, R. Epidemiology of urban water distribution systems. Water Resources Research 2014,

50, 6447–6465.
77. Ding, L.; Li, K.; Zhou, Y.; Love, P.E. An IFC-inspection process model for infrastructure projects: Enabling

real-time quality monitoring and control. Automation in Construction 2017, 84, 96–110.
78. Barrat, A.; Barthelemy, M.; Vespignani, A. Dynamical processes on complex networks; Cambridge university

press, 2008.
79. Kim, H.; Anderson, R. Temporal node centrality in complex networks. Physical Review E 2012, 85, 026107.
80. Braha, D.; Bar-Yam, Y. From centrality to temporary fame: Dynamic centrality in complex networks.

Complexity 2006, 12, 59–63.
81. Shekhtman, L.M.; Danziger, M.M.; Havlin, S. Recent advances on failure and recovery in networks of

networks. Chaos, Solitons & Fractals 2016, 90, 28–36.
82. Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks. Journal

of complex networks 2014, 2, 203–271.
83. Choi, J.H.; Vishwanathan, S. DFacTo: Distributed factorization of tensors. Advances in Neural Information

Processing Systems, 2014, pp. 1296–1304.
84. De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M.A.; Gómez, S.; Arenas, A.

Mathematical formulation of multilayer networks. Physical Review X 2013, 3, 041022.
85. Rahmede, C.; Iacovacci, J.; Arenas, A.; Bianconi, G. Centralities of nodes and influences of layers in large

multiplex networks. Journal of Complex Networks 2018, 6, 733–752.
86. Gomez, S.; Diaz-Guilera, A.; Gomez-Gardenes, J.; Perez-Vicente, C.J.; Moreno, Y.; Arenas, A. Diffusion

dynamics on multiplex networks. Physical review letters 2013, 110, 028701.
87. Zhao, D.; Li, L.; Peng, H.; Luo, Q.; Yang, Y. Multiple routes transmitted epidemics on multiplex networks.

Physics Letters A 2014, 378, 770–776.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2020                   doi:10.20944/preprints202001.0282.v1

Peer-reviewed version available at Processes 2020, 8, 312; doi:10.3390/pr8030312

https://doi.org/10.20944/preprints202001.0282.v1
https://doi.org/10.3390/pr8030312


22 of 28

88. De Domenico, M.; Granell, C.; Porter, M.A.; Arenas, A. The physics of spreading processes in multilayer
networks. Nature Physics 2016, 12, 901–906.

89. Cellai, D.; López, E.; Zhou, J.; Gleeson, J.P.; Bianconi, G. Percolation in multiplex networks with overlap.
Physical Review E 2013, 88, 052811.

90. Osat, S.; Faqeeh, A.; Radicchi, F. Optimal percolation on multiplex networks. Nature Communications 2017,
8, 1540.

91. He, W.; Chen, G.; Han, Q.L.; Du, W.; Cao, J.; Qian, F. Multiagent systems on multilayer networks:
Synchronization analysis and network design. IEEE Transactions on Systems, Man, and Cybernetics: Systems
2017, 47, 1655–1667.
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