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Abstract: The second part of the paper develops the approach, suggested in the Entropy 

2020, 22(1), 11; https://doi.org/10.3390/e22010011 , which relates ordering in physical 

systems to their symmetrizing. Entropy is frequently interpreted as a quantitative 

measure of “chaos” or “disorder”. However, the notions of “chaos” and “disorder” are 

vague and subjective to a much extent. This leads to numerous misinterpretations of 

entropy. We propose to see the disorder as an absence of symmetry and to identify 

“ordering” with symmetrizing of a physical system; in other words, introducing the 

elements of symmetry into an initially disordered physical system. We explore the 

initially disordered system of elementary magnets exerted to the external magnetic field 

�⃗⃗� . Imposing symmetry restrictions diminishes the entropy of the system and decreases 

its temperature. The general case of the system of elementary magnets demonstrating 

the j-fold symmetry is treated. The interrelation 𝑇𝑗 =
𝑇

𝑗
 takes place, where T and 𝑇𝑗 are 

the temperatures of non-symmetrized and j-fold-symmetrized systems of the magnets 

correspondingly.    

Keywords: entropy; symmetry; ordering; elementary magnets; magnetic field; j-fold 

symmetry 
 

1. Introduction 

Entropy is a key concept in the characterization of ordering in physics [1-2], 

chemistry [3], biology [4-6] and engineering [6]. At the same time the notion of entropy 

remains one of the most abstract and least intellectually transparent quantities of physics 

[7-9]. The widespread illustrative interpretation of entropy is “the measure of disorder” 

in macroscopic systems built from a large number of particles [10]. However equating 

entropy with disorder was criticized recently [8]. In the first part of our manuscript we 

suggested that that “ordering” may be strictly related to the symmetry, and may be 

quantified by symmetry [11]. In turn, “chaos” or “disorder” are understood as an absence 

of symmetry [11]. We already illustrated this suggestion with the simplest binary 1D and 

2D systems built of elementary magnets, which can point only up or down, fixed in a 
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space and aligned [11]. They formed a binary, non-interacting system. We demonstrated 

that introducing elements of symmetry necessarily diminishes the entropy, which is true 

for true for 1D and 2D systems built of the elementary magnets [11]. In the present work 

we generalize the approach, reported in ref. 11 for the initially disordered systems of 

elementary magnets, embedded into the magnetic field �⃗⃗�  and symmetrized by the j-fold 

symmetrizing procedure.     

2. Symmetry and entropy of binary magnetic systems embedded into the magnetic 

field  

2.1. Symmetrizing and entropy of 1D systems exposed to the magnetic field �⃗⃗⃗�  

Consider first a binary 1D system built of non-interacting magnets (spins) 𝜇  illustrated 

in Figure 1A. We assume that there are N separate and distinct sites fixed in a space and 

aligned as shown in Figure 1A [11]. Attached to each site is an elementary magnet 𝜇 , 

which can point only up or down. The system of magnets is embedded into the magnetic 

field �⃗⃗� ≠ 0 , leading to the orientation of spins. The potential energy of the single 

elementary magnet in the magnetic field is given by: 

                                 𝑈1 = −𝜇 ∙ �⃗⃗�                               (1) 

Magnetic field leads to the orientation of magnets; consider the configuration of magnets 

demonstrating the spin excess 2m defined by Eq. 2 (the number N is supposed to be even):  

                           
1

2
𝑁 + 𝑚 − (

1

2
𝑁 − 𝑚) = 2𝑚,                       (2) 

corresponding to the configuration where 
1

2
𝑁 + 𝑚 of magnets are oriented “up” and 

1

2
𝑁 − 𝑚  are oriented “down”. The total potential energy of the system of magnets 

characterized by the spin excess 2m is given by [12-14]: 

                                 𝑈(2𝑚) = −2𝑚𝜇𝐻                         (3) 

The entropy S of this system is given by [12-14]: 

                                 𝑆(𝑁,𝑚) = 𝑘𝐵𝑙𝑛𝑔(𝑁,𝑚),                   (4a) 

                         𝑔(𝑁,𝑚) ≅ 2𝑁 (
2

𝜋𝑁
)
1

2⁄

𝑒𝑥𝑝 (−
2𝑚2

𝑁
),                 (4b) 

                 𝑆(𝑁,𝑚) ≅ 𝑘𝐵 [𝑁𝑙𝑛2 −
1

2
𝑙𝑛

2

𝜋𝑁
−

2𝑚2

𝑁
] = 𝑆0(𝑁) −

𝑘𝐵𝑈2

2𝑁𝜇2𝐻2          (4c)     
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where 𝑔(𝑁,𝑚) is the multiplicity function, i.e. the number of states having the same 

value of m [12-14]; 𝑆0(𝑁) = 𝑘𝐵 [𝑁𝑙𝑛2 −
1

2
𝑙𝑛

2

𝜋𝑁
]. Eqs. 4b-c hold for 𝑚 ≫ 1;𝑁 ≫ 1;

|𝑚|

𝑁
≪ 1.  

 Now let us restrict the possible configurations of elementary magnets by introducing 

the symmetry axis, shown with the dashed line in Figure 1B. After introducing the 

symmetry axis only the symmetric configurations of the elementary magnets are available, 

as depicted in Figure 1B, this implies the decrease in the number of “states” available for 

the symmetrized system to𝑔(
𝑁

2
, 𝑚) . The multiplicity function for the symmetrized, 

ordered, binary, non-interacting system is given by [12-14]: 

                         𝑔(
𝑁

2
, 𝑚) ≅ 2

𝑁
2⁄ (

2

𝜋(
𝑁

2
)
)

1
2⁄

𝑒𝑥𝑝 (−
4𝑚2

𝑁
),               (5)        

Hence, the entropy of the symmetrized, ordered, binary, non-interacting system is given 

by: 

                     𝑆2(𝑁,𝑚) = 𝑘𝐵ln𝑔 (
𝑁

2
, 𝑚) ≅ 𝑆02(𝑁) −

𝑘𝐵𝑈2

𝑁𝜇2𝐻2 ,              (6) 

where the subscript “2” indicates the presence of the axis of symmetry of the second order 

and 𝑆02(𝑁) = 𝑘𝐵 [
𝑁

2
𝑙𝑛2 −

1

2
𝑙𝑛

2

𝜋
𝑁

2

] takes place. Combining Eqs. 3-6 and trivial 

transformations yield: 

                   𝑆 − 𝑆2 = 𝑘𝐵 [
𝑁

2
𝑙𝑛2 +

2𝑚2

𝑁
] = 𝑘𝐵 [

𝑁

2
𝑙𝑛2 +

𝑈2

2𝑁𝜇2𝐻2] > 0          (7)   

It is seen that introducing symmetry decreases the entropy, whatever are the spin excess 

2m, energy of the system U and the value of the magnetic field �⃗⃗�  (recall that Eq. 7 holds 

for 𝑚 ≫ 1;𝑁 ≫ 1;
|𝑚|

𝑁
≪ 1). The larger spin excess 2m the stronger a decrease in entropy 

emerging from symmetrizing. Thus, the generalization of the results reported in ref. 11 is 

achieved.  

 Consider the temperatures of the original and symmetrized systems of magnets; Eqs. 

4c and 6 yield {12-14]: 

                            
1

𝑇
= (

𝜕𝑆

𝜕𝑈
)
𝑁

= −
𝑘𝐵𝑈

𝑁𝜇2𝐻2                          (8a) 

                            
1

𝑇2
= (

𝜕𝑆2

𝜕𝑈
)
𝑁

= −
2𝑘𝐵𝑈

𝑁𝜇2𝐻2                         (8b)   
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Recall that 𝑈 < 0 takes place. It is recognized that the interrelation 𝑇2 =
1

2
𝑇 takes place; 

in other words, the symmetrized system of magnets is “colder” than the non- 

symmetrized one, when the spin excess and the energy of the systems are the same. This 

result is intuitively quite expectable.  

2.2. Symmetrizing and entropy of the 2D systems possessing axes of symmetry of 

various orders (j-fold symmetry)  

 Consider the 2D system of elementary magnets possessing the axes of symmetry of 

the j-th order (Figure 2 depicts the sample system of spins with 𝑗 = 6). Again the number 

of the available states for the j-fold-symmetrical system is given by  𝑔(
𝑁

𝑗
, 𝑚) . Indeed, 

keeping the j-fold symmetry demands simultaneous re-orientation of j magnets. The 

entropy of such a j-fold system of magnets is supplied, in turn, by:      

     𝑆𝑗 = 𝑘𝐵𝑙𝑛𝑔(
𝑁

𝑗
, 𝑚) ≅ 𝑘𝐵ln {2

𝑁
𝑗⁄ (

2𝑗

𝜋𝑁
)
1

2⁄

𝑒𝑥𝑝 (−
2𝑗𝑚2

𝑁
)} = 𝑆0𝑗(𝑁, 𝑗) −

2𝑘𝐵𝑗𝑚2

𝑁
= 

                          = 𝑆0𝑗(𝑁, 𝑗) −
𝑘𝐵𝑗𝑈2

2𝑁𝜇2𝐻2                             (9a) 

                       𝑆0𝑗(𝑁, 𝑗) = 𝑘𝐵 [
𝑁

𝑗
𝑙𝑛2 +

1

2
𝑙𝑛 (

2𝑗

𝜋𝑁
)]                      (9b) 

The initial entropy of the 2D non-symmetrical binary system of magnets is given 

by Eqs. 4 (2D location of elementary magnets does not matter). Combining Eqs. 9 and 4 

yields: 

     𝑆 − 𝑆𝑗 = 𝑘𝐵(𝑗 − 1) [
𝑁

𝑗
𝑙𝑛2 +

2𝑚2

𝑁
] = 𝑘𝐵(𝑗 − 1) [

𝑁

𝐽
𝑙𝑛2 +

𝑈2

2𝑁𝜇2𝐻2
] > 0       (10) 

Again introducing symmetry decreases the entropy, whatever are the order of the 

symmetry axis j, the spin excess 2m, energy of the system U and the value of the magnetic 

field �⃗⃗�  (recall that Eq3. 9a-10 hold for 𝑚 ≫ 1;𝑁 ≫ 1;
|𝑚|

𝑁
≪ 1). It is easily seen that: 

           
𝜕𝑆

𝜕𝑗
= −𝑘𝐵 (

𝑁𝑙𝑛2

𝑗2
−

1

2𝑗
+

2𝑚2

𝑁
) ≅ −𝑘𝐵 (

𝑁𝑙𝑛2

𝑗
+

2𝑚2

𝑁
) < 0             (11) 

Eq. 11 holds when the condition 
𝑁

𝑗
≫ 1 takes place, and it means that increase in 

the order of the symmetry axis j, decreases the entropy of the system. It is also seen from 

Eq. 9a, that Eq. 12 is true: 

                         
1

𝑇𝑗
= (

𝜕𝑆2

𝜕𝑈
)
𝑁,𝑗

= −
𝑘𝐵𝑗𝑈

𝑁𝜇2𝐻2
 ,                     (12) 
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where 𝑇𝑗 is the temperature of the system of magnets, possessing the axis of symmetry 

of the order of j , i.e. the j-fold symmetry. Comparing Eqs. 12 and 8a supplies: 

                                      𝑇𝑗 =
𝑇

𝑗
                             (13) 

Again symmetrizing of the system of magnets “cools” it; moreover, the larger is the value 

of j the cooler is the system. The presented results support the idea that ordering 

(understood as symmetrizing) necessarily decreases the multiplicity of the system and 

consequently decreases the entropy.  

Conclusions 

We conclude that introducing of elements of symmetry orders the system of 

elementary magnets exposed to the external magnetic field and consequently diminishes 

its multiplicity, entropy and temperature. The idea is illustrated with the binary system 

built from elementary magnets 𝜇  embedded into magnetic field �⃗⃗� . Symmetrizing of the 

initially disordered system of N magnets diminishes the multiplicity function 

𝑔(𝑁,𝑚), where 2m is the spin excess, and consequently the entropy 𝑆(𝑁,𝑚). The simplest 

1D exemplification of the binary systems is treated. Introducing two-fold symmetry 

decreases the entropy, whatever are the spin excess 2m, energy of the system U and the 

value of the magnetic field �⃗⃗� . The general case of the system of elementary magnets 

demonstrating the j-fold symmetry and exposed to the magnetic field �⃗⃗�  is addressed. 

Symmetrizing decreases the multiplicity and the entropy of the system whatever is the 

value of j, and 
𝜕𝑆(𝑗)

𝜕𝑗
< 0 is true. The interrelation 𝑇𝑗 =

𝑇

𝑗
 takes place, where T and 𝑇𝑗 are 

the temperatures of non-symmetrized and j-fold-symmetrized systems of the magnets 

correspondingly. Thus, symmetrizing necessarily “cools” the discussed system.                                   
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Figure 1. A. The binary 1D system of N non-interacting elementary magnets is shown, 

exposed to the external magnetic field �⃗⃗� ≠ 0. The spin excess of the system is given by 

2𝑚 =
1

2
𝑁 + 𝑚 − (

1

2
𝑁 − 𝑚). B. The axis of symmetry shown with the dashed line restricts 

the number of available configurations of magnets.  
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Figure 2. System of the elementary magnets possessing the axis of symmetry of the order 

of six embedded into magnetic field �⃗⃗�  is shown. Magnetic moments and the magnetic 

field �⃗⃗�  are normal to the image plane. Keeping the 6-fold symmetry demands 

simultaneous re-orientation of six magnets (for example re-orientation of the magnets, 

marked in the Figure with a blue color).      

�⃗⃗�  
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